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Abstract. We give a simple argument to show that every polynomial f(t) ∈

Z[t] such that f(1) = 1 is the Alexander polynomial of some ribbon 2-knot
whose group is a 1-relator group, and we extend this result to links.

It is well known that every Laurent polynomial f(t) ∈ Λ = Z[t, t−1] with f(1) = 1
is the Alexander polynomial of some ribbon 2-knot [7]. (See also [1, 2], for the fibred
case, and §7H of [11], for a construction of knot polynomials by surgery.) We shall
give another argument, which seems particularly simple, and which gives a slightly
stronger result. We shall then extend this result to higher-dimensional links.

In higher dimensions the term “Alexander polynomial” is potentially ambiguous.
Let X = Sn+2 − intK ×D2 be the knot exterior, π = πK = π1(X) the knot group
and X ′ the maximal abelian covering space of X . The homology groups Hq(X

′; Z)
are finitely generated torsion Λ-modules under the action of Aut(X ′/X) ∼= Z. They
each have a sequence of “Alexander polynomial” invariants ∆q

i (K) such that ∆q
i (K)

divides ∆q
i+1(K) in Λ [8]. Poincaré duality implies that ∆n+1−q

i (K) = ∆q
i (K) for

q ≤ [n+1
2 ], where the overbar is the involution defined by inverting the generators

ti. More generally, if L is a µ-component n-link there are similar invariants in
Λµ = Z[t±1 , . . . , t±µ ].

In this paper “Alexander polynomial” shall mean the greatest common divisor
∆(π) of the first nonzero elementary ideal of the “Alexander module” A(π) of π. A
presentation for this module may be derived from a presentation for π by the free
differential calculus. If n > 1 the module has rank µ and ∆(L) = ∆1

µ(L), but when
n = 1 it has rank ≤ µ, with equality if L is concordant to a boundary link. (See [6]
for more on Alexander modules.)

Let ε : Λµ → Z be the augmentation homomorphism defined by ε(ti) = 1 for all
i. Then ε(∆(π)) = 1, since π/π′ ∼= Zµ. The burden of this note is that this is the
only constraint on such link polynomials, if n > 1. The case n = 2 is of particular
interest, for then H1(X

′; Z) and duality determine the other homology modules.
(When n = 1 and L is a boundary link we must also have ∆ = ∆; there is as yet
no such characterization for other classical links.)

1. knots

An n-knot is a ribbon knot of 1-fusion if it bounds the sum of two disjoint copies
of Dn+1 along a band Dn × [0, 1] which meets the discs only at its ends.

Theorem 1. Let f = f(t) ∈ Λ be such that f(1) = 1, and let n > 1. Then there

is an n-knot K which is a ribbon knot of 1-fusion such that π′/π′′ ∼= Λ/(f), where

π = πK.
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Proof. We may assume that f ∈ Z[t] and f(0) 6= 0. Let d be the degree of f and

let g = g(t) = (f(t) − 1)/(t − 1). Then g(t) = Σi=d−1
i=0 git

i ∈ Z[t]. Let

π = 〈a, t | a = wtw−1t−1〉,

where w = w(a, t) = Πi=d−1
i=0 tiagit−i = ag0 . . . td−1agd−1t1−dt−g(1). (The final term

ensures that w(1, t) = 1 in 〈t〉.) Clearly π/π′ ∼= Z, and it is easily seen that
π′/π′′ ∼= Λ/(f), since f = (t − 1)g + 1.

Let x = at and let wk . . . w1 be a word of length k in the alphabet {t, t−1, x, x−1}
representing w(xt−1, t) Then π also has the deficiency-1 Wirtinger presentation

〈t, x0, . . . , xk, x | t = x0, x = xk, xi = wixi−1w
−1
i ∀ 1 ≤ i ≤ k〉.

We may then use the elementary construction of §1.8 of [6] to obtain an n-ribbon
R : Dn+1 → Sn+2 with π as its ribbon group, for any n ≥ 1. This has k parallel
throughcuts, and the corresponding slits are in the two extreme components of the
complement of the throughcuts. Hence K = R|∂Dn+1 is the fusion of a 2-component
trivial link along a single band, and so is a ribbon knot of 1-fusion. If n ≥ 2 then
πK ∼= π. �

The group π is a 1-relator group. (This is so for the group of any ribbon knot of
1-fusion.) Since π/π′ ∼= Z the relator atwt−1w−1 is not a proper power. Therefore
c.d.π ≤ 2 [9]. The conditions c.d.π = 1, π ∼= Z and f(t) = 1 are clearly equivalent
for groups with such presentations.

When n = 1 the knot K = R|∂D2 provided by the construction of §1.8 of [6]
bounds a disc knot D2 ⊂ D4 with group π, obtained by desingularizing the ribbon
immersion R, and so K has Alexander polynomial ff . Ribbon knots realizing such
polynomials were first constructed in [12]. In fact, the Alexander polynomial of any
classical slice knot has this form [4]. However the ribbon immersion R realizing π
is not uniquely determined, and we do not know whether we can arrange that πK
be a 1-relator group.

Addendum. The knot constructed in Theorem 1 is fibred if and only if the extreme

coefficients of f are ±1.

Proof. If f is a monic polynomial with f(0) = ±1 then π′ is free with basis repre-
sented by {tiat−i | 0 ≤ i < d}. Since n > 1 and K is a ribbon knot of 1-fusion it is
fibred, by a theorem of Yoshikawa [1, 13].

The converse is clear. �

By taking connected sums of knots we may realize arbitrary finite sequences δi

with δi+1 dividing δi in Λ as the higher polynomial invariants associated to A(π).
If the summands are all fibred so is their sum.

2. links

Let A = {a1, . . . , aµ} and T = {t1 . . . , tµ}, and let ∂i : ZF (A ∪ T ) → Λµ be the

composite of the free derivation ∂
∂ai

of ZF (A ∪ T ) with respect to the generator ai

with the retraction onto Z[F (T )] which sends aj to 1 and tj to tj for j ≤ µ.

Lemma. Given fi ∈ Z[F (T )], there is a word W ∈ F (A ∪ T ) with trivial image in

F (T ) and such that ∂i(W ) = fi for all i ≤ µ.
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Proof. Suppose that fi = Σm∈F (T )fimm. Let vi = Πm∈F (T )mafim

i m−1, where the
factors are taken in some fixed order, and let W = Πvi = v1 . . . vµ. Then the vi

and W have trivial image in F (T ). Moreover, ∂i(vi) = Σm∈F (T )fimm = fi, and
∂j(vi) = 0, if j 6= i, so ∂i(W ) = ∂i(vi) = fi, for all i ≤ µ. �

The order on F (T ) used in this lemma is not important.

Theorem 2. Let f ∈ Λµ be such that ε(f) = 1, and let n > 1. Then there is a

µ-component ribbon boundary n-link L with ∆(πL) = f .

Proof. We may write f = 1−Σ(ti−1)fi. Choose Fi ∈ Z[F (T )] with image fi ∈ Λµ.
There are words Wi ∈ F (A ∪ T ) with trivial image in F (T ) and such that ∂jWi = Fi

for all j ≤ µ, by the lemma. Let π be the group with presentation

〈ai, ti, 1 ≤ i ≤ µ | ai = tiWit
−1
i W−1

i , ∀ i〉.

The free differential calculus gives a presentation matrix [Iµ − D, 0µ] for A(π),
where D is a µ × µ matrix with Dij = (ti − 1)fi for all i, j ≤ µ and 0µ is a null
µ × µ matrix. As the columns of D are all equal, it is easy to see that ∆(π) =
det(Iµ − D) = 1 − Σ(ti − 1)fi = f .

As in Theorem 1, the group π has an equivalent Wirtinger presentation of defi-
ciency µ, and the elementary construction of §1.8 of [6] gives a µ-component ribbon
n-link L with group πL ∼= π and meridians corresponding to the generators ti.
Since the projection of π onto π/〈〈a1, . . . , aµ〉〉 ∼= F (T ) carries the meridians to a
free basis, L is a boundary link. �

Let Y be the finite 2-complex corresponding to the above presentation, and
let Z be the complex obtained by adjoining 2-cells along maps corresponding to
the generators ti. Then Z is 1-connected and χ(Z) = 1, and so it is a finite
contractible 2-complex. Thus if the Whitehead Conjecture is true Y is aspherical,
and so c.d.πL ≤ 2.

When n = 1 this construction gives a ribbon boundary link L with ∆(π) =

ff . This condition is satisfied by the first nonzero Alexander polynomial of every
classical slice link. Every f ∈ Λµ such that εf = 1 and f = f is ∆(π) for some
µ-component boundary 1-link [5].

3. a non-commutative analogue?

A µ-component link L is an homology boundary link if there is an epimorphism
from π = πL to F (µ). (It is a boundary link if and only if there is such an
epimorphism which takes the images of a set of meridians to a basis for the free
group.) The kernel of any such epimorphism is πω = ∩π[n], the intersection of the
lower central series. Let k be a field and kΓµ = k[F (µ)]. The homology groups
Hq = Hq(X

ω; k) of the covering space Xω with group πω are finitely generated
left kΓµ-modules. If 1 ≤ q < n then Hq satisfies the Sato property: k ⊗kΓµ

Hq =

Tor
kΓµ

1 (k, Hq) = 0. (See Chapter 9 of [6].)
Farber constructed invariants of such modules with values “noncommutative

rational functions”. When µ = 1 these are equivalent to the usual Alexander
polynomials ∆q

0 (although closer in form to the logarithmic derivative) [3]. His
work has been reformulated in terms of Gelfand-Retakh quasideterminants [10]. Is
there a realization result analogous to Theorem 2 for the invariants of H1(X

ω; k) =
k ⊗Z (πω/πω

′)?
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