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Abstract. We calculate the minimal degree for a class of finite
complex reflection groups G(p, p, q), for p and q primes and estab-
lish relationships between minimal degrees when these groups are
taken in a direct product.

1. Introduction

The minimal faithful permutation degree µ(G) of a finite group G is
the least non-negative integer n such that G embeds in the symmetric
group Sym(n). It is well known that µ(G) is the smallest value of
∑n

i=1 |G : Gi| for a collection of subgroups {G1, . . . , Gn} satisfying
⋂n

i=1 core(Gi) = {1}, where core(Gi) =
⋂

g∈GG
g
i .

We will often denote such a collection of subgroups by R and refer
it as the representation of G. The elements of R are called transitive

constituents and if R consists of just one subgroup G0 say, then we say
that R is transitive and that G0 is core-free.

The study of this are dates back to Johnson [3] where he proved
that one can construct a minimal faithful representation {G1, . . . , Gn}
consisting entirely of so called primitive groups. These are groups which
cannot be expressed as the intersection of groups that properly contain
it.

Here we give a theorem due to Karpilovsky [4], which also serves as
an introductory example. We will make use of this theorem later and
the proof of it can be found in [3] or [8].

Theorem 1.1. Let A be a finite abelian group and let A ∼= A1 × . . .×
An be its direct product decomposition into non-trivial cyclic groups of

prime power order. Then

µ(A) = a1 + . . .+ an,
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where |Ai| = ai for each i.

The aim of this paper is calculate µ(G(p, p, q)) where p and q are
prime numbers and G(p, p, q) is the monomial complex reflection group
(see Section 3 for the definition).

When q = 2, the group G(m,m, 2) is the dihedral group of order
2m (m an integer) and in [2, Proposition 2.8], Easdown and Praeger
calculated the minimal degree for the dihedral groups. Specifically,
they proved the following:

Proposition 1.2. For any integer k =
∏m

i=1 p
αi

i > 1, with the pi dis-

tinct primes, define ψ(k) =
∑m

i=1 p
αi

i , with ψ(1) = 0. Then for the

dihedral group D2rn with n odd, we have

µ(D2rn) =







2r if n = 1, 1 ≤ r ≤ 2
2r−1 if n = 1, r > 2
ψ(n) if n > 1, r = 1
2r−1 + ψ(n) if n > 1, r > 1.

When p = 2 and q = 3, the group G(2, 2, 3) is isomorphic to Sym(4)
and so µ(G(2, 2, 3)) = 4. So for the rest of this article, we will assume
that p and q are odd primes. The main result of this article (see
Theorem 3.4, Theorem 3.12 and Proposition 3.14) is that

µ(G(p, p, q)) =







pq if p < q or, p > q ≥ 5 or, q = 3 and p ≡ 2 mod 3
p2 if p = q
2q if q = 3 and p ≡ 1 mod 3.

In Section 4 we continue the theme of Johnson [3] and Wright [10],
of investigating the inequality

µ(G×H) ≤ µ(G) + µ(H) (1)

for finite groups G and H . Johnson and Wright first investigated under
what conditions equality holds in (1), (see Section 4 for more details).
However examples for when the inequality is strict are not well known.

We show that standard wreath Cp ≀ Sym(q) is the internal direct
product of G(p, p, q) and its non-trivial centralizer in Cp ≀ Sym(q) and
furthermore,

µ(Cp ≀ Sym(q)) = µ(G(p, p, q)) = pq,

so we get a family of examples of a strict inequality in (1).

2. Background

2.1. Definitions Relating to the Socle. The socle of a finite group
G is defined to be the subgroup generated by all of the minimal normal
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subgroups of G. It follows that this is the direct product of all of the
minimal normal subgroups of G. That is,

soc(G) =
d∏

i

Mi,

where each Mi is a minimal normal subgroup of G and d is the number
of minimal normal subgroups.

Definition 2.1. For a finite group G define dim(G) to be the number
of minimal normal subgroups of G. For a subgroup H of G define
dimG(H) to be the number of minimal normal subgroups of G that are
contained in H . Also define codimG(H) = dim(G) − dimG(H). By
convention, the trivial group is defined to have dimension 0.

2.2. A Note on Cyclotomic Polynomials and Roots of Unity.

We now state a result from [7, Theorem 10.2.4] which will be needed
later.

Theorem 2.2. Let p and q be distinct primes and let S be a split-

ting field for xq − 1 over the field Fp. Then S = Fpo where o is the

multiplicative order of p mod q.

Given this theorem, we immediately have the following.

Corollary 2.3. Let p and q be distinct primes. Then Fp is the splitting

field for xq − 1 if and only if p ≡ 1 mod q.

This corollary shows that a q-th root of unity exists in Fp if and only
if p ≡ 1 mod q.

The next definition and result is taken from [5].

Definition 2.4. For r a prime number, the polynomial

Qr(x) = 1 + x+ x2 + . . .+ xr−1

is called the r-th cyclotomic polynomial. The roots of this polynomial
are non-trivial r-th roots of unity.

Theorem 2.5. Let Fq be a finite field of q elements and let n be a

positive integer coprime to q. Then the polynomial Qn(x) factors into
φ(n)

d
distinct monic irreducible polynomials in Fq[x] of the same degree

d where d is the least positive integer such that qd ≡ 1 mod n.

Thus for r a prime, Qr(x) splits into r−1
d

monic irreducible factors
where d is the multiplicative order of r in the group of units (Z/nZ)∗.

2.3. The Groups G(m, p, n). In this section we follow the notation
of [9].
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Let m and n be positive integers, let Cm be the cyclic group of order
m and B = Cm × . . . × Cm be the direct product of n copies of Cm.
For each divisor p of m define the group A(m, p, n) by

A(m, p, n) = {(θ1, θ2, . . . , θn) ∈ B | (θ1θ2 . . . θn)m/p = 1}.

It follows that A(m, p, n) is a subgroup of index p in B and the sym-
metric group Sym(n) acts naturally on A(m, p, n) by permuting the
coordinates.

G(m, p, n) is defined to be the semidirect product of A(m, p, n) by
Sym(n). It follows that G(m, p, n) is a normal subgroup of index p in
the wreath product Cm ≀ Sym(n) and thus has order mnn!/p.

It is well known that these groups can be realized as finite subgroups
of GLn(C), specifically as n × n matrices with exactly one non-zero
entry, which is a complex m-th root of unity, in each row and column
such that the product of the entries is a complex (m/p)th root of unity.
Thus the groups G(m, p, n) are sometimes referred to as monomial
reflection groups. For more details on the groups G(m, p, n), see [6], [1].

3. Calculation of Minimal Degrees

Throughout this section, p and q will be distinct odd primes. Recall
that G(p, p, q) = A(p, p, q) ⋊ Sym(q) where

A(p, p, q) = {(θ1, θ2, . . . , θq) ∈ B | θ1θ2 . . . θq = 1},

which is isomorphic to the direct product of q − 1 copies of the cyclic
group of order p, Cp. Hence

G(p, p, q) ∼= (Cp × . . .× Cp)
︸ ︷︷ ︸

q−1

⋊Sym(q).

From now on, we will let G denote the group G(p, p, q) and A denote
the group A(p, p, q). Since A is a proper subgroup of G we have by
Theorem 1.1, µ(A) = p(q − 1) and so p(q − 1) ≤ µ(G). On the other
hand, G is a proper subgroup of the wreath product Cp ≀Sym(q) which
can easily be seen to have minimal degree pq, thus

p(q − 1) ≤ µ(G) ≤ pq. (2)

Since p is prime, we may treat B as a Sym(q)-module over the finite
field Fp with basis θ1, . . . , θq. In this setting, A is the codimension one
submodule of B consisting of the elements

q
∏

i=1

θλi

i with

q
∑

i=1

λi = 0.
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It is clear that c1 = θ1θ
−1
2 , . . . , cq−1 = θq−1θ

−1
q is a basis for A. Let

b = (1 2 . . . q) be the q-cycle in Sym(q). Then b acts on the basis for
A in the following manner

cb1 = c2, c
b
2 = c3, . . . , c

b
q−2 = cq−1, c

b
q−1 = (c1c2 . . . cq−1)

−1. (3)

The matrix for the action of b with respect to this basis is the compan-
ion matrix










0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0
. . .

. . .
...

...
...

...
. . . 0 1

−1 −1 −1 . . . −1 −1










The minimal polynomial for this action is the cyclotomic polynomial
Qq(λ) = 1+λ+λ2 + . . .+λq−1. We can make an important observation
at this point.

Proposition 3.1. b does not commute with any non-trivial element of

A.

Proof. Suppose there is an element of A which commutes with b. Then
this element corresponds to an eigenvector for b with eigenvalue 1. How-
ever, this implies that 1 is a solution to the characteristic polynomial
Qq(λ), a contradiction. �

We will make greater use of the action of b on A and the cyclotomic
polynomial Qq(λ) in later sections.

If e1, . . . , eq is the dual basis forB where ei(θj) = δij, then the basis of
A∗ dual to {ci} is f1 = e1, f2 = e1+e2, . . . , fq−1 = e1+. . .+eq−1. It easily
follows that fi(cj) = δij . Observe that the functional e1 + . . .+ eq = 0
when restricted to A, since A is the subspace of B whose elements have
the property that the sum of their coefficients is zero. We write A∗ and
B∗ additively and we have A∗ = B∗/Fp(e1 + . . .+ eq).

3.1. µ(G(p, p, q)) for p > q. In this subsection we assume that p > q
and exploit the action of Sym(q) on A to prove that every minimal
faithful representation of G is given by a core-free subgroup.

The following is a well known result from modular representation
theory.

Proposition 3.2. Sym(q) acts irreducibly and faithfully on A.

Proof. We show that the submodule generated by an arbitrary non-
trivial element is the whole of A. Let w =

∏q
i=1 θ

λi

i be a non-trivial
element of A so that

∑q
i=1 λi = 0. It is enough to prove that we can
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obtain the basis elements c1 = θ1θ
−1
2 , . . . , cq−1 = θq−1θ

−1
q of A via the

action of Sym(q) on w.

Fix a non-zero λi. There is another non-zero λj such that λi−λj 6= 0.
For if λi−λk = 0 for all k, then we would have λi = λk for all non-zero
λk and so

w = (
∏

i∈I

θi)
λi

where I is a subset of {1, 2, . . . , q}. So
∑

i∈I λi = |I|λi = 0 in Fp.
However since p > q, this implies that λi = 0 contradicting that w is
non-trivial.

Choose two non-zero λi and λj with λi − λj 6= 0. Then applying the
transposition (i j) to w we have

w(i j) = θλ1

1 . . . θ
λj

i . . . θλi

j . . . θλq

q ,

so

w(w(i j))−1 = θ
λi−λj

i θ
λj−λi

j = (θiθ
−1
j )λi−λj .

Therefore, θiθ
−1
j is contained in A and by applying the appropriate

permutation to it, we can obtain all the basis elements c1, . . . , cq−1 as
required. So Sym(q) acts irreducibly on A.

Now suppose that the action of Sym(q) on A has a kernel. This
kernel must be normal subgroup of Sym(q) and since q 6= 4, the only
possibility is the alternating group Alt(q). However, the q-cycle b is
an even permutation which does not commute with any non-trivial
element of A. Therefore Sym(q) acts faithfully on A. �

Corollary 3.3. A is the unique minimal normal subgroup of G.

Proof. Certainly A is a normal subgroup of G and since Sym(q) acts
irreducibly on it, it is a minimal normal subgroup.

Suppose N is a non-trivial normal subgroup of G which does not
contain A. By minimality of A we must have A ∩N = {1}. It follows
that AN = A×N , that is A and N pairwise commute.

Let a ∈ A and n = a′σ ∈ N , where a′ ∈ A and σ ∈ Sym(q). Then
n = a−1na so a′σ = a−1a′σa = a′a−1σa, and so σ = a−1σa. That is,
σ commutes with a and so σ is contained in the kernel of the action
of Sym(q) on A. Therefore σ is trivial and n = a′ contradicting that
A ∩N = {1}.

Therefore A is contained in every non-trivial normal subgroup of G
and is thus the unique minimal normal subgroup of G. �



THE MINIMAL DEGREE FOR A CLASS OF GROUPS 7

It follows now that any minimal faithful representation of G must be
transitive, that is, given by a single core-free subgroup.

Let L be a core-free subgroup of G such that |G : L| = µ(G). Recall
we have the upper and lower bounds p(q − 1) ≤ µ(G) ≤ pq. Since
|G| = pq−1q! the upper and lower bounds above simplify to

q − 1 ≤
pq−2q!

|L|
≤ q.

Observe that |L| is not divisible by pq−1 since L is core-free, so pq−2q!
|L|

is indeed an integer. Therefore if µ(G) 6= pq then µ(G) = p(q− 1). We
aim to show that this is not the case (except when q = 3 and p ≡ 1
mod 3) via an argument by contradiction. First we suppose that the
odd prime q is at least 5.

Assume µ(G) = p(q − 1) so that |L| = pq−2q(q − 2)!. Then since
p > q and A is the unique Sylow p- subgroup of G, we have that L
contains a unique Sylow p-subgroup A ∩ L of order pq−2. Moreover by
Sylow’s Theorem and since we are assuming q is at least 5, L contains
an element of order q, which without loss of generality, we may assume
this element is the q-cycle b = (1 2 . . . q) and L also contains and
element of order 3, x say.

Now it is cleat that we may simultaneously treat A as a 〈b〉-module
and as an 〈x〉-module, and in this respect, A ∩ L as a codimension-1
submodule of A for both these cyclic groups 〈b〉 and 〈x〉. Therefore
we can consider A ∩ L as the kernel of a linear functional f on A.
Upon expressing f in terms of the dual basis for A∗ we have f =
a1f1 + . . . + aq−1fq−1 for some ai ∈ Fp not all zero. Therefore we may
write

A ∩ L = {cα1

1 c
α2

2 . . . c
αq−1

q−1 | a1α1 + a2α2 + . . .+ aq−1αq−1 = 0}.

Since b preserves A ∩ L, the condition cα1

1 c
α2

2 . . . c
αq−1

q−1 ∈ A ∩ L must

be equivalent to (cα1

1 c
α2

2 . . . c
αq−1

q−1 )b ∈ A ∩ L. Now

(cα1

1 c
α2

2 . . . c
αq−1

q−1 )b = cα1

2 c
α2

3 . . . c
αq−2

q−1 (c1c2 . . . cq−1)
−αq−1

= c
−αq−1

1 c
α1−αq−1

2 . . . c
αq−2−αq−1

q−1 .

So the condition for (cα1

1 c
α2

2 . . . c
αq−1

q−1 )b to be in A ∩ L is:

a1(−αq−1) + a2(α1 − αq−1) + . . .+ aq−1(αq−2 − αq−1) = 0.

Rewriting this equation in terms of the αi’s we have

a2α1 + a3α2 + . . .+ aq−1αq−2 + (−a1 − a2 − . . .− aq−1)αq−1 = 0.
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Upon equating the coefficients up to scalar equivalence, we get

a1 = λa2

a2 = λa3

...

aq−2 = λaq−1

aq−1 = λ(−a1 − a2 − . . .− aq−1)aq−1,

for some non-zero λ ∈ Fp.

Hence we may express each ai as λq−1−iaq−1 and so the last equation
can be expressed as

(λq−1 + λq−2 + . . .+ 1)aq−1 = 0.

Now aq−1 6= 0 since otherwise all of the ai would be zero, so it follows
that

λq−1 + λq−2 + . . .+ 1 = 0.

Therefore, since q is prime, λ is a primitive q-th root of unity ζq which
exists if and only if p ≡ 1 mod q by Corollary 2.3. So if p is not con-
gruent to 1 modulo q, then we have our desired contradiction proving
that µ(G) = pq. Therefore from now on, we assume p ≡ 1 mod q.

The condition for the element cα1

1 c
α2

2 . . . c
αq−1

q−1 ∈ A ∩ L to satisfy is
now

ζq−2
q α1 + ζq−3

q α2 + . . .+ ζqαq−2 + αq−1 = 0,

and so f = ζq−2
q f1 + ζq−3

q f2 + . . .+ ζqfq−2 + fq−1. Upon expressing each
of the fi’s in terms of the ei’s we have

f = ζq−2
q e1 + ζq−3

q (e1 + e2) + . . .+ ζq(e1 + . . .+ eq−2) + (e1 + · · · + eq−1)

= (ζq−2
q + ζq−3

q + . . .+ 1)e1 + . . .+ (ζq + 1)eq−2 + eq−1.

Now since A ∩ L is a 〈x〉-submodule of A, 〈x〉 fixes the line through
f in the dual space A∗. Multiplying f by ζq − 1 we get the point

(ζq−1
q − 1)e1 + (ζq−2

q − 1)e2 + . . .+ (ζq − 1)eq−1

and adding the functional e1 + . . . + eq which is zero on A to it, we
obtain another point

f̃ = ζq−1
q e1 + ζq−2

q e2 + . . .+ ζqeq−1 + eq

=

q
∑

i=1

ζq−i
q ei.

Just as Sym(q) acts on the module B by permuting the basis ele-
ments θi via a right action, it acts on the dual space B∗ via a left action
by permuting the ei’s, and hence also on A∗ = B∗/Fp(e1 + . . .+ eq).
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Suppose σ ∈ Sym(q) leaves the line through f̃ fixed. That is, σf̃ =

νf̃ for some ν ∈ Fp. But then

σf̃ =

q
∑

i=1

ζq−i
q eσ(i) =

q
∑

i=1

ζq−σ−1(i)
q ei =

q
∑

i=1

νζq−i
q ei = νf̃ .

Therefore ζ
q−σ−1(i)
q = νζq−i

q for all 1 ≤ i ≤ q and so ζ i−σ−1(i) = ν. That
is, the difference between σ(i) and i is constant, so σ is a power of the
q-cycle (1 2 . . . q). Therefore 〈x〉 cannot fix the line in A∗ through f
and hence cannot stabilize A ∩ L which is a contradiction. Therefore
no core-free subgroup L can exist and so µ(G) = pq.

Now suppose q = 3 and p ≡ 1 mod 3 so that the group G(=
G(p, p, 3)) is isomorphic to (Cp × Cp) ⋊ Sym(3). As before, let c1, c2
generate the base group A and a = (1 2), b = (1 2 3) generate Sym(3).
Also as before, the action of a and b on the base group A induce a two
dimensional Sym(3)-module structure on A. Thus

ca1 = c−1
1 , ca2 = c1c2, cb1 = c2, cb2 = c−1

1 c−1
2 .

Let ζ3 be the primitive cube root of unity in Fp, so that ζ2
3 + ζ3 +1 = 0.

Consider the element c1c
−ζ3
2 . We have

(c1c
−ζ3
2 )b = cζ31 c

ζ3+1
2 = (c1c

−ζ3
2 )ζ3 ,

so c1c
−ζ3
2 is an eigenvector for b with eigenvalue ζ3. It is easily veri-

fied that c1c
−ζ3
2 is not an eigenvector for a and so the subgroup L =

〈c1c
−ζ3
2 , b〉 forms a core-free subgroup of G of order 3p. Since G has

order 6p, we have |G : L| = 2p, so µ(G) = 2p.

Combining this with the previous arguments we have proved:

Theorem 3.4. Let p and q be odd primes with p > q. Then

µ(G(p, p, q)) =

{
pq if q ≥ 5, or q = 3 and p ≡ 2 mod 3
2p if q = 3 and p ≡ 1 mod 3.

3.2. µ(G(p, p, q)) for p < q. In this subsection, we assume p < q and
exploit the action of b on A given in Equation (3). Form the group

H := 〈c1, c2, . . . , cq−1, b〉 = A⋊ Cq

and treat A as a cyclic 〈b〉-module. To prove that the minimal degree
of G is pq in this case, we prove it for this proper subgroup H .

Recall that the minimal polynomial for the action of b on A is the
cyclotomic polynomial Qq(λ). Thus the irreducibility of the cyclic 〈b〉-
module A depends upon the irreducibility of Qq(λ) over Fp. That is
there is a one to one correspondence between the irreducible factors of
Qq(λ) and the irreducible submodules of A. Moreover, the irreducible
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factors of A are precisely the minimal normal subgroups of H as the
proposition below proves.

Proposition 3.5. Let A = A1 × A2 × . . . × Al be the decomposition

of A into irreducible Cq-modules. Then the Ai are the minimal normal

subgroups of H of order pd, where l = q−1
d

and d is the multiplicative

order of p in F∗
q.

Proof. Certainly since the Ai are irreducible Cq-modules, they are min-
imal normal subgroups of H . That the order of these groups is pd fol-
lows directly from Theorem 2.5 since every irreducible factor of Qq(λ)
is of degree d which implies that every irreducible submodule of A is
of dimension d.

Conversely, let N be a non-trivial normal subgroup of H . One can
easily adapt the proof of Corollary 3.3 to show that N contains Ai

for some i. Thus the Ai are indeed the minimal normal subgroups of
G. �

This proposition allows us to determine the structure of the sub-
groups of H .

Proposition 3.6. Let K be a proper subgroup of H whose order is

divisible by q. Then K ∼= Cq or K = core(K) ⋊ 〈x〉 where x is an

element of order q.

Proof. Suppose K is not isomorphic to Cq. Therefore |K| = pkq for
1 ≤ k ≤ q − 1 and so K contains Sylow p-subgroups of order pk.

By Sylow’s Theorem, the number of Sylow p-subgroups divides q and
is congruent to 1 mod p. Suppose there are q Sylow p-subgroups and
let T1 and T2 be two distinct such subgroups. Then they are both p-
subgroups of H and are thus contained in A since A is the unique Sylow
p-subgroup of H . However this implies 〈T1, T2〉 is a p-subgroup of H
contained in K, which properly contains both T1 and T2, contradicting
that they are maximal p-subgroups of K.

Therefore there is a unique Sylow p-subgroup of K and we may write

K = Sylp(K) ⋊ 〈x〉,

where x is an element of order q. Observe that x = abj where a ∈ A
and 1 ≤ j ≤ q − 1. Since Sylp(K) is normal in K we have

Sylp(K) = Sylp(K)x = Sylp(K)abj

= Sylp(K)bj

,

which shows that Sylp(K) is normal in H .

Now since K does not contain A, there exists a minimal normal
subgroup Ai that intersects trivially with K. This implies that K is
not normal in H since for all ai ∈ Ai, x

ai = a−1
i a

′

ix for some a
′

i ∈ Ai.
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Since Sylp(K) is normal in H and maximal in K, it now follows that
core(K) = Sylp(K) and so K = core(K) ⋊ 〈x〉. �

Corollary 3.7. Let K be a subgroup of H whose order is divisible by

q. Suppose T is a product of minimal normal subgroups Ai which are

not contained in K. Then core(KT ) = core(K)T is an internal direct

product, unless KT = H in which case core(KT ) = H.

Proof. Assume that KT 6= H . We have by Proposition 3.6 that K =
core(K)⋊〈x〉 where x is an element of order q. Since no Ai is contained
in K, we have core(K)∩T = {1}. Both are subgroups of A and so they
pairwise commute giving that core(K)T is an internal direct product.

We may write the group KT as (core(K)×T )⋊ 〈x〉 and so again by
Proposition 3.6, we have core(KT ) = core(K)T . �

These results give us a clear picture as to the normal structure of
H . We now proceed to show that the smallest intransitive permutation
representation of H must consist entirely of codimension 1 subgroups.

Lemma 3.8. Let L be a subgroup of H whose order is divisible by q
and which is of codimension at least 2. Then there exist two subgroups

of H, L1 and L2, which properly contain L such that

core(L1) ∩ core(L2) = core(L)

and
1

|L1|
+

1

|L2|
<

1

|L|
.

Proof. Write L = core(L)⋊ 〈x〉 where x is an element of order q. Since
L is of codimension at least 2, there are two distinct minimal normal
subgroups N1 and N2 which intersect L trivially.

Define two subgroups L1 = LN1 and L2 = LN2. By Corollary 3.7,
we have core(L1) = core(L)N1 and core(L2) = core(L)N2 and it is clear
that core(L1) ∩ core(L2) = core(L).

Now L is a proper subgroup of both L1 and L2 of index at least p,
where p > 2. Therefore

1

|L1|
+

1

|L2|
< (

1

2
+

1

2
)

1

|L|
=

1

|L|
.

In fact equality can only occur if p = 2 and H contains more than one
central involution. �

Notice that the groups L1 and L2 above have dimension dimG(L)+1.

Theorem 3.9. The faithful intransitive permutation representation of

H of smallest degree is given by a collection of codimension 1 subgroups.
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Proof. Let R = {L1, L2, . . . , Ln} be a faithful collection of subgroups
H where core(Li) is non-trivial for all i. If there is an i for which
codimG(Li) = 0, then core(Li) = soc(H) and so

{1} =

n⋂

j 6=i

core(Lj) ∩ core(Li)

implies R \ Li is also a faithful representation.

Otherwise we suppose there is an Li which has codimension at least
2. Then as is Lemma 3.8 we may replace it with two subgroups such
that the new collection remains faithful and of smaller degree. We
repeat this process until the collection contains only codimension 1
subgroups of H and this collection will be of least degree. �

We are now in a position to calculate the minimal degree of H . We
wish to show that every minimal faithful permutation representation is
necessarily transitive, so we must rule out all the intransitive represen-
tations. By Theorem 3.9, we only need to rule the possibility that there
is a minimal faithful intransitive representation consisting of codimen-
sion 1 subgroups. We first observe the following trivial lemma.

Lemma 3.10. Let r and n be integers such that r ≥ 3 and n ≥ 2.
Then rn−1 > n.

Theorem 3.11. Every minimal faithful permutation representation of

H is transitive and of degree pq.

Proof. We have H = A⋊ 〈b〉. If A is an irreducible Cq-module, then it
follows that A is the unique minimal normal subgroup of H . Therefore
in this case, it is clear that every minimal faithful representation of H
is transitive.

So suppose that A is a direct product of irreducible Cq-modules and
write

H = (
l∏

i=1

Ai) ⋊ 〈b〉,

where l = q−1
d

. Define subgroups Lj for each j ∈ {1, 2, . . . , l} by

Lj = (
l∏

i6=j

Ai) ⋊ 〈b〉.

Then each Lj is a codimension 1 subgroup of H with index

|H : Lj | =
pq−1

pd( q−1

d
−1)q

=
pq−1

pq−1−d
= pd.
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We have by Proposition 3.6 that core(Lj) =
∏l

i6=j Ai and so

l⋂

j=1

core(Lj) =

l⋂

j=1

(

l∏

i6=j

Ai) = {1},

thus the collection R = {L1, L2, . . . , Ll} is faithful.

Suppose that R yields a minimal faithful representation. We have

deg(R) =

l∑

j=1

pd =
(q − 1

d

)
pd

and since p(q − 1) ≤ µ(H) ≤ pq, this gives

p(q − 1) ≤
(q − 1

d

)
pd ≤ pq.

This simplifies to (q − 1) ≤ ( q−1
d

)pd−1 ≤ q and since q is prime, we are

forced to have q − 1 = ( q−1
d

)pd−1. Therefore pd−1 = d, but d ≥ 2 and
p ≥ 3, so this contradicts Lemma 3.10.

So we have have ruled out the possibility that a minimal faithful
representation of H can be given by codimension 1 subgroups and so
Theorem 3.9 implies that every minimal faithful representation must
be transitive and thus be given by a core-free subgroup.

Let L be a core-free subgroup of H . We claim that |H : L| ≥ pq.
Suppose for a contradiction that core(L) = {1} and that |H : L| < pq.
Since |H| = pq−1q, we must have that |L| > pq−2. Therefore |L| = pq−1

or q divides |L|.

The case |L| = pq−1 can be ruled out immediately since this implies
that L = A which is normal in H , contradicting that L is core-free. So
suppose q divides |L|.

By Proposition 3.6, we have that L = core(L) ⋊ 〈x〉 where x has
order q. Since we are assuming that core(L) is trivial, we must have
L = 〈x〉. Therefore the index of L in H is pq−1 and by assumption,
|H : L| = pq−1 < pq. On the other hand, p(q−1) ≤ µ(H), so p(q−1) ≤
pq−1 < pq and since q is prime, this gives (q− 1) = pq−2. Since p and q
are odd primes with p < q we have p is at least 3, q is at least 5 so this
contradicts Lemma 3.10. Therefore L has index at least pq as claimed.

So we have shown that any faithful representation ofH is transitive of
degree at least pq and since µ(H) ≤ pq, we have proved µ(H) = pq. �

It is now clear that we have proved
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Theorem 3.12. If p and q are odd primes with p < q, then µ(G(p, p, q)) =
pq.

3.3. µ(G(p, p, p)). Throughout this section, p will still denote an odd
prime. Our method for calculating µ(G(p, p, p)) is similar to the previ-
ous case in that we calculate the minimal degree ofH = 〈c1, c2, . . . , cp−1, b〉
where the ci generate the group A(p, p, p) and b = (1 2 . . . p) ∈ Sym(p).
However, the structure of the group H differs in this case.

Proposition 3.13. The centre Z(H) of H is 〈c1c
2
2 . . . c

k
k . . . c

p−1
p−1〉

∼= Cp.

Proof. Suppose α = ci11 c
i2
2 . . . c

ip−1

p−1 b
k lies in Z(H) for some i1, . . . ip−1, k ∈

Fp. Then α commutes with c1 say, and thus c1 commutes with bk forc-
ing k = 0. We also have that α commutes with b and so αb = α
where

αb = c
−ip−1

1 c
i1−ip−1

2 . . . c
ik−ip−1

k . . . c
ip−2−ip−1

p−1 .

Equating exponents gives is = si1. Without loss of generality we may
set i1 = 1 this giving α = c1c

2
2 . . . c

k
k . . . c

p−1
p−1. Any other choice of i1

would simply yield a power of α. Therefore Z(H) = 〈c1c
2
2 . . . c

k
k . . . c

p−1
p−1〉

∼=
Cp. �

Now H is a p-group so any non-trivial normal subgroup of H in-
tersects and hence contains the centre since Z(H) is a copy of Cp.
This immediately forces any minimal faithful representation of H to
be transitive as before. We may now prove

Proposition 3.14. µ(H) = µ(G(p, p, p)) = p2.

Proof. We only need to show that µ(H) = p2. We show that any core-
free subgroup L of H has index at least p2. Suppose this were false.
Then since |H| = pp, |L| ≥ pp−1. However this gives |H : L| ≤ p so
µ(H) ≤ p contradicting that p(p− 1) = µ(A(p, p, p)) ≤ µ(H).

AgainH is a proper subgroup ofG(p, p, p) which is a proper subgroup
of Cp ≀ Sym(p). Hence

p2 ≤ µ(H) ≤ µ(G(p, p, p)) ≤ p2,

proving the proposition. �

4. Minimal Degrees of Direct Products

One of the themes of Johnson and Wright’s work was to establish
conditions for when equality in (1) holds. The next result is due to
Wright [10].

Theorem 4.1. Let G and H be non-trivial nilpotent groups. Then

µ(G×H) = µ(G) + µ(H).
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Further in [10], Wright constructed a class of finite groups C with
the property that for all G ∈ C , there exists a nilpotent subgroup G1 of
G such that µ(G1) = µ(G). It is a consequence of Theorem (4.1) that
C is closed under direct products and so equality in (1) holds for any
two groups H,K ∈ C . Wright proved that C contains all nilpotent,
symmetric, alternating and dihedral groups, however the extent of it
is still an open problem. In [2], Easdown and Praeger showed that
equality in (1) holds for all finite simple groups.

In the closing remarks of [10], Wright flagged the question whether
equality in (1) holds for all finite groups. The referee to that paper
then provided an example where strict inequality holds. This formed
the basis for considering the minimal degree of these complex reflection
groups and we now demonstrate that strict inequality in (1) holds when
the groups G(p, p, q) are taken in a direct product.

Let p and q be distinct odd primes as above and let W = Cp ≀
Sym(q) be the standard wreath product of the cyclic group of order
p by the symmetric group of degree q. Let γ1, γ2, . . . , γq be generators
for the base group of W and let a = (1 2) and b = (1 2 . . . q) be the
generators for Sym(q) acting coordinate wise on the base group. Let
γ = γ1γ2 . . . γq, then γ is contained in the centre of W .

Let c1 = γ1γ
−1
2 , c2 = γ2γ

−1
3 , . . . , cq−1 = γq−1γ

−1
q . Then it follows that

〈c1, c2, . . . , cq−1, a, b〉 is isomorphic to G(p, p, q).

Now we claim that 〈γ〉 ∩ G(p, p, q) = {1}. For if this intersection
were non-trivial, then we could write

γ = ci11 c
i2
2 . . . c

iq−1

q−1

for some i1, i2, . . . , iq−1 in Fp. But upon expressing each side as a prod-
uct of the γi’s we have

γ1γ2 . . . γq = γi1
1 γ

i2−i1
2 . . . γ

iq−1−iq−2

q−1 γ−iq−1

q ,

and equating exponents gives a contradiction.

It now follows that W is the internal direct product of 〈γ〉 and
G(p, p, q) and that µ(〈γ〉 × G(p, p, q)) = µ(G(p, p, q)) = pq. There-
fore

pq = µ(〈γ〉 ×G(p, p, q)) < µ(〈γ〉) + µ(G(p, p, q)) = p+ pq

and we have a class of groups for when strict inequality in (1) holds.

In the case where p = q, the centralizer of G(p, p, p) in Sym(p) is
properly contained in G(p, p, p). So (1) is an equality in this case.
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