CYCLOTOMIC SOLOMON ALGEBRAS

ANDREW MATHAS AND ROSA C. ORELLANA

ABSTRACT. This paper introduces an analogue of the Solomon descegttraldor the
complex reflection groups of typ&(r, 1,n). As with the Solomon descent algebra, our
algebra has a basis given by sums of ‘distinguished’ cose¢septatives for certain ‘re-
flection subgroups’. We explicitly describe the structuomstants with respect to this
basis and show that they are polynomials-inThis allows us to define a deformation,
or g-analogue, of these algebras which depends on a parametée determine the irre-
ducible representations of all of these algebras and giases lfor their radicals. Finally,
we show that the direct sum of cyclotomic Solomon algebrasrismiaally isomorphic to

a concatenation Hopf algebra.

1. INTRODUCTION

In a seminal paper [27], Solomon showed that the group adgebany finite Coxeter
group has a remarkable subalgebra, $imsdomon descent algebraln this paper we con-
struct a similar subalgebra of the complex reflection grduppe G(r, 1, n) and show that
this algebra shares many of properties of the Solomon deatggbras.

Solomon showed that each descent algebra has a distinduiskes for which he gave
an explicit description of the structure constants. Th&tidguished basis is given by the
sums of the distinguished coset representatives of théplcasubgroups. Solomon gave
a basis for the radical of the descent algebra and he cotetramnatural homomorphism
from the descent algebra into the parabolic Burnside rinp@fssociated Coxeter group.
As a consequence, it follows that the irreducible repregemts of the Solomon descent
algebras are all one dimensional and that, in charactezstb, they are naturally indexed
by the conjugacy classes of the parabolic subgroups.

There has been an explosion of research into the descetrasgef Coxeter groups
since Solomon discovered them; see, for example, [2, 5,/8, I0, 25]. The study of
the Solomon descent algebras of the symmetric groups hasdvea more intense be-
cause of connections between these algebras and free eleratg)-Hecke algebras, non-
commutative and quasi-symmetric functions [1, 13, 15, ##, representation theory of
the symmetric group, and card shuffling and associated ranaalks [4, 17].

The algebra that we construct in this paper is in many waystaralageneralization
of the Solomon algebra of the symmetric groups. Tielotomic Solomon algebra
Sol(G,.,,) is a subalgebra of the group algebra of the complex reflegtionpG,. ,, of type
G(r,1,n). Like Solomon, we define our algebra to be the subalgebraeafitbup algebra
of G, , with basis the ‘distinguished’ coset representatives ditanal class of subgroups
of G, ,. It turns out that many natural choices of subgroups, andta@presentatives
for these subgroups, do not yield a subalgebra of the groggbed (see Remark 8.10).
We show, however, that with respect to the ‘right’ lengthdtion, the sums of the mini-
mal length coset representatives of #iandard reflection subgroups G, ,, give rise to
a subalgebra di.G,.,, which is free of rank - 3"~1. We give an explicit formula for the
structure constants for this basis which is similar to Sanis formula for the structure
constants of the descent algebra of the symmetric géup

2000Mathematics Subject Classificatiod6W30, 20C05, 05E15.
Key words and phrasessolomon descent algebra, complex reflection groups, Hopbedge

1
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One surprising feature of the cyclotomic Solomon algebrd&G,. ,,) is that the struc-
ture constants of these algebras for> 0 are polynomials in- which are independent
of n. As a consequence, these algebras admit a simultaneousndéifn Sol,, (n) which
depends on a parameterFor fixedn > 0, we show that the algebr&sl,(n) are free of
rank?2 - 3"~1. We construct and classify the irreducible representatafrthese algebras
over an arbitrary field, and hence give a basis for the radicébl, (n).

A remarkable result of Gessel [16] shows that there is a abduality between the Hopf
algebra of quasi-symmetric functions and the descent Higgbaa. This led Malvenuto
and Reutenauer [22] to show that the direct sum of these mgemder the shuffle (or
convolution) product is a Hopf subalgebra of the Hopf algadfrpermutations. This Hopf
algebra is dual to the Hopf algebra of quasi-symmetric fionstand it is isomorphic to the
Hopf algebra of non-commutative symmetric functions [1Bhese results are important
because they relate the coproduct of the quasi-symmetratifins with the product in the
descent algebras.

Baumann and Hohlweg[3] showed that there is a similar Hogélada structure under
the shuffle product on the spagér) = @, .., ZG,.,, of coloured permutations. We prove
that the direct sum of the cyclotomic Solomon algel§alr) = @, -, ZSol(G,.,,) is a
Hopf subalgebra o (r). We show thatol(r) is a concatenation Hopf algebra and that
Sol(r) has a second bialgebra structure which has the same copasié¢r) but where
the product map is induced by group multiplication. We ex et the Hopf algebr&ol(r)
is dual to the Hopf algebra of quasisymmetric functions p&tig considered by Hsiao and
Petersen [18].

Different generalizations of the Solomon algebras haven loemsidered by other au-
thors, the most striking of which are the Mantaci-Reutenalgebras [23]. It is natural
to ask whether the cyclotomic Solomon algebras and the MaRtautenauer algebras are
isomorphic, at least for typ&,,, since they are both free of rark- 37~1. We show in
Remark 8.10 that, in general, these two algebras are nobigiric. Examplé 8.9 shows
that, in stark contrast to the Solomon descent algebreg thero map fronbol(G,. ,,) into
the character ring of7,. ..

This paper is organized as follows. In the second sectiomweduce the complex re-
flection groups,.,, and set our notation. In section 3 we define and classify tredsird
reflection subgroups dF,.,, and section 4 shows that every coset of a reflection subgroup
has a unique element of minimal length. Sections 4 and 5 gimgbmatorial descriptions
of the coset and double representatives of the reflectiogreups. This combinatorics
turns out to be closely related to the structure constantseo€yclotomic Solomon alge-
bras, which are finally introduced in section 6. The first ma&sult of the paper, The-
orem 6.8, determines the structure constants of the cyniotS8olomon algebras, hence
showing that they are in fact subalgebrag®f,,. In section 7 we investigate the ‘generic’
cyclotomic Solomon algebras and in section 8 we construtthassify the irreducible rep-
resentations of the cyclotomic algebras and their defaomat In section 9 we show that
the direct sum of the cyclotomic algebras gives rise to aatmmation Hopf algebra which
is a Hopf subalgebra of the Hopf algebras of coloured periouts Finally, in section 10
we give a second combinatorial interpretation of the stmgctonstants of the cyclotomic
Solomon algebras. We use this to show that the direct suneafttiotomic Hopf algebras
comes equipped with a second bialgebra structure whicthleasaime coproduct but where
the product map is induced by group multiplication.

2. COMPLEX REFLECTION GROUPS OF TYPE:(r, 1,n)

This paper is concerned with certain subalgebras of thepgatgebra of the complex
reflection groups of typé&(r, 1,n), in the Shephard—Todd classification of the finite sub-
groups ofGL,,(C) which are generated by (pseudo) reflections. In this seet®mtro-
duce these groups and study a length function on them.
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Fix positive integers: andn. The complex reflection group of typ&(r, 1,7n) is the
groupG,. , which is generated by elemens s1, . . ., s,—1 subject to the relations

2
86 =1= S; 50515051 = S150S8150

$iSj = S;jSi, S$iSi415i = Si+15iSi+1,
wherel < i < j —1 < n — 1. This presentation is very similar to the presentation of a
Coxeter group; indeed, if < 2 thenG,. ,, is a Coxeter group. Accordingly, we encode this

presentation in the following “cyclotomic Dynkin diagram”

—o—o—  —@

S0 S1 52 Sp—1

The node labeled by indicates that the generatey has order-; otherwise, this graph
gives the presentation @¥, ,, in exactly the same way as a Dynkin diagram gives the
presentation of the corresponding Coxeter group. # 1 then( ,, is isomorphic to the
symmetric group of degree.

From the presentation df, ,, it is evident that there is a homomorphism from the
symmetric grous,, into G, ,, which is determined by mapping each transpositigis-1)
tos;, fori =1,...,n — 1. In fact, this map is injective so we can — and do — iden@fy
with the subgrougss, . .., s,—1) via this homomorphism.

The symmetric groufs,, acts on{1,2,...,n} from the right. We write this action
exponentially. Thusw € &,, sends the integerto i, for1 <i < n.

Definet; = sg andt;+1 = s;t;s;, for 1 < i < n. Using the relations it is easy to see
thatt;t; = t;t;, for all ¢, 5. It follows that the subgrouff” = (¢1,...,t,) is abelian and,
further, one can show thdt = (Z/rZ)™. Itis easy to see that

(2.1) tiw=wtw, forallwe&,andl <i<n,

Hence,T" is a normal subgroup af, ,,. With a little more work we obtain the following
description of, ,, as an (internal) semidirect product, or wreath product:

(22) Gr,n =T x Gn = <S()> i <81, ey 8n71> = (Z/’I’Z) i Gn

LetZ! ={a=(a1,...,a,) : 0<a; <r}. Fora € Z!lett* =t ...to~. Then,as a
set,G,, = {t*w: a € Z andw € &,, } and|G,.,,| = r"nl.

LetIl = 1II,,, = {t1,...,tn,51,--.,5n—1}. Thenll generates7, ,, becausgsy =
t1,81,...,8,—1} generatess, ,,.

2.3.Definition. TheIl-length functionon G,.,, is the functior? = ¢r; : G, — N given
byl(g) =min{k>0:g=r;...r,, forsomer; € II}.

2.4.Remark.Let Sy = {so, $1,...,5n—1}. Bremke and Malle [11] have studied the length
function/y : G, , — N which is defined by

lo(g) =min{k >0:g=r;...r,, forsomer;, € Sp}.

By definition, ¢(g) < 4y(g), for all ¢ € G, ,,. Furthermore, it is not hard to see that
2(g) = Lo(g) (mod 2). Moreover, ifw € &,, then

O(w) = bo(w) = #{(4,§) 1 1 <i<j<nandi® > j*}.

(The last equality is well-known; see, for example, [24,Pf03].) Hence, Proposition 2.5
below gives an effective way of computing thie-length function orG,. ,,.

Fora = (a1,...,a,) € Z' we setja] = ag + -+ + .

2.5.Proposition. Suppose that € Z"" andw € &,,. Then{(t*w) = |a| + £(w).
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Proof. By definition ¢(t1®*w) < |a| 4+ ¢(w). Conversely, suppose thétw = ry...7g,
for somer; € II. Using (2.1) we can move each € {ry,...,r;} to give a new word
in which all of the elements df’ appear on the left. As every element@jf,,, can be
written uniquely in the form®v, for 3 € Z" andv € &,,, this new word must be?w. By
(2.1), this rewriting process does not increaselithdength of the word, however, it may
decrease thH—length if some cancellation occurs. Henkez |«| + ¢(w), completing the
proof. O

2.6.Corollary. Suppose that € Z! and thatw € &,,. Then

0t - 1) 0(tw) + 1, ifa; <r—1,
j - tfw) =
! Ltw) —r+1, fa;=r—1,

for1 <j <nand{(s; -t*w) = |a] + £(s,w),for1 <i<n—1.

Note that*w-t; = t,,-1 t*wby (2.1) andl(t*w-s;) = |a|+L(ws;), forl <i <n—1
and1l < j < n. Hence, Corollary 216 can be used to compifte- t*w) and{(t“w - g),
foranyg € G, .

It is sometimes convenient to descrig ,, combinatorially as a set of ‘words’. Fix a
primitive ™ root of unity¢ = exp(2i/r) € C and set

n=1{1,2,...,n} and nc={m¢:menand0<i<r}.

Recall that ifz € C then|z| is the complex modulus of. In particular, ifm¢? € n, then
|m¢?| = m. Define aword in n, to be an element of the set

Grn ={w=(w1,...,wn) tw; €ncand{|wi|,...,|lwp|} =n}.

If w=(w1,...,w,)isaword then we abuse notation and wiite= w; . .. w,.
There is a faithful right action of7, ,, ong,. ,, given by

W1 ... Wy t%w = (M wie .. (P wpw,

fora € Z andw € &,,. Consequently, there is a natural bijecti@n,, — G, ,, given
by t*w — 1...n - t*w, so that|G,,| = r"n! = |G, ,|. Thus, we have described the
regular representation @f,. ,, as the permutation representation on the set of wgrds
Equivalently,G,. ,, is the group of permutations af. such that(m¢®)? = m9¢?, for all
memn,0<i<randg € G,p.

3. REFLECTION SUBGROUPS

Recall thatll = {¢1,...,ts,$1,...,8,—1}. In this section we define the reflection
subgroups of,.,, and show that every coset of a reflection subgroup containscpe
element of minimall-length.

3.1.Definition. A (standard reflection subgroupof G, ,, is a subgroup which is gener-
ated by a subset df.

Geometrically, a reflection subgroup@f. ,, should be any subgroup which is generated
by elements which act by (pseudo) reflections in the reflectpresentation af,. . All
of the elements ofI act as reflections in the reflection representatiold-pf,, so every
standard reflection subgroup is a reflection subgroup irgiisnetric sense. #f > 2 then
it is not difficult to see that there are ‘geometric reflectsubgroups’ ofG,. ,, which are
not standard reflection subgroups.

If J C IIletG,; = (J) be the corresponding (standard) reflection subgrou@,of.
This notation is inherently ambiguous because it can hapipriz ; = G even though
J # K, for J, K C II. ForexampleGr = G,.,, = Gg, (recallthatSy = {so,s1,...,Sn-1}),
and yetll # Sy if n > 1. We start our study of the reflection subgroups by resolving) t
ambiguity.
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A composition of n is a sequence = (ug, ..., ux) Of positive integers which sum
to n. A signed compositionof n is a sequence of non-zero integers= (i1, ..., (k)
such thatyu| = |p1] + -+ - + |ux| = n. Let A be the set of signed compositionsrofind
let A,, be the set of compositions of ThenA,, C A,

If o= (1, ., ) € AT letut = (|pal,. .., |ux]) @and—p = (—p1, ..., —u). Then
ut € A, is a composition of and —p € A, We set|u|t = %Zle(uj + 1;), SO
that|u| T is the sum of the positive parts pf Similarly, let|u|~ = %ZL(MT — ;) be
the absolute value of the sum of the negative partg.oThen|u| = ||~ + ||t = n.
Finally, setii, = 0 andz; = || + - - - + |4, fori > 1.

3.2.Definition. Suppose that = (u, ..., 1) € A is a signed composition. Define

H#: U {Sﬁi*1+1""’8ﬁqﬂfl}u U {tﬁ¢71+1;-..7tﬁi}.

1<i<k 1<i<k
pi >0

Thenll, C IT sowe set:,, = Gy, .

Let S = {s1,...,8,-1} C II. Suppose that € AF. ThenIl, C S if and only
if —u € A,. Ingeneralll, C II and the reflection subgrou@, is conjugate to the

reflection subgroup
Gu= [ Grw x [[ ©-4,

pi>0 ;<0
of G,,,. Moreover{ G, : n € A} is the complete set of reflection subgroup<ef,,.

3.3. Proposition. Suppose that > 1, » > 2 and thatJ C II. ThenG; = G, for a
unique signed compositign € AF. Consequently,.,, has2 - 3»~! distinct reflection
subgroups.

Proof. We prove both statements in the Proposition by inductiomorf n = 1 then
Gp = G(1) andGn = G(_y) are the only reflection subgroups Gf.; so the Proposition
holds. In particular, ; has|Af| = 2 reflection subgroups.

Suppose then that > 1 and observe thdil, , = II,,—1 U {s,_1,t,}. LetG’ =
Grn-1. ThenG, N G, is a reflection subgroup af’ and, by induction om, every
reflection subgroup is of the ford’,, for someu = (u1, ..., 1) € A}L_l. Now, t, 1 €
G/, ifand only if 1. > 0, so one can check that

Sn_1>, if Mk > 0,

!
( / Sn—1,tn) = <G(,,,1,___,;Lk,1,uk)7
(1 ,eesie)? ) / Sn—1), If pp <O0.

< (1 sesblo—1,— k)
Consequently, the reflection subgroupsf,, are precisely the grougs),, (G, t»), and

(G, 8n-1), wherep = (uy, ..., i) € AL . Moreover, by[(2.2) the groups arising this
way for differentu € Afffl are all distinct. Applying the definitions,

G(

/
H1seee i, —1) (115 1t8)?

G(#l,--~,ﬂk,1) = < /(Hls~~~7ﬂk)’tn>’

Gluropnten) = <G/(/,,17.,_,;Lk)35n—1>,
wheree, = 1if pi > 0 ande,, = —11if i < 0. Hence, the reflection subgroups@f
are naturally indexed by the signed compositions.oConsequently, by inductiony, ,,
has3|AE || =2- 3" reflection subgroups. O

It follows from the definitions and Proposition 3.3 thig} is the unique maximal subset
of IT (under inclusion) which generates the reflection subg@ypin contrast, ifu € A
then the reader can check that there g, ., p; distinct minimal subsets dfl which
generates,,. Thus, the (minimal) subsets ®f which generate the reflection subgroups
are, in general, not unique.
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4. DISTINGUISHED COSET REPRESENTATIVES

In this section we describe, both algebraically and contbitelly, a set of ‘distin-
guished’ coset representatives for the reflection subgrobi, ,,.

Fix a compositiom\ = (A, ..., Ax) of n. ThenG, = &, x -+ x &, is a parabolic,
or Young subgroup o8,,. According to our convention§, = G_j,, S0&, is a reflection
subgroup of4, ,,. Let

I\={de &, :L(d) <Ll(w)forallw e &, d}.
Then, as is well-knowny, is a complete set of right coset representativesfgiin &,,.
Moreover, ifd € 2, thend is the unique element of minimal length in the co&gtd;
see, for example, [14, Prop. 2.1.1]. It is not hard to see Thajf is a complete set of
minimal length coset representatives tr , = &, in G, ,,. We want to generalize this
observation to all reflection subgroups.

Recall thatifu = (1, ..., ux) € A thenp™ = (|u1], . .., |ux|) is @ composition of.
Consulting the definitionsi,, N &,, = &,,+. Similarly, define

TM:GMQT:<ti|ti€Gu>
= (t; | 1;_1 < i < 7i; for somej with p; > 0).

Then,T,, = (Z/rZ)"!".
With this notation,[(2.2) gives the following descriptioh@,, as a semidirect product
of T, and& ,+.

4.1.Lemma. Suppose that € AE. ThenG, =T, x & .

SinceT = (Z/rZ)™ is an abelian group, every subgroup®fis a normal subgroup
of T. In particular, ifG,, is a reflection subgroup af, ,, thenT), is normal inT" and
T/T, = (Z/rZ)"~ =T_,. FurtherT,T_, =T =T-,T,, forall u € A},

Mimicking the definition of%,,+ we have:
4.2.Definition. Suppose that € A, Set

Ep={e€ Gy, :le) <l(g)forallge G,e}.

We can now prove the main result of this section which shows £} is a (distin-
guished) set of coset representativesdorin G,.,.

4.3.Theorem. Suppose that € AX. Thené, =T, x Z,+ andé&), is a complete set of
right coset representatives f6f, in G,. .

Proof. We first show thatl’_, x %,+ is a complete set of coset representativesdgr
in G, . Suppose that'w € G, ,, wherea € Z andw € &,,. Define = (51,...,06,) €
7 by
5_ oy, |ft2¢GYH <:>tiET,l“

’ 0, ift;eG, < t;¢T,.
Then, by definitiont” € T_,,. Moreover,G ,t“w = Gt w and{(t*w) > ((tPw), with
equality if and only ifa = 3.

Write w = vd, wherev € &+ andd € Z,,+. Lety = fv = (B1v,...,0,v). Then
tPv = vt?, by (2.1), so that” = v=1tPv € T_,, sinceS,, centralizes_,,. Consequently,
G t*w = G,t"d, wheret” € T_, andd € Z,,+. However, by Lemma 4.1,

Grn :Gul =T :T_,] [6n: 6 4] = #(T-\ X D+ ).
ThereforeI”_, x 9,+ is a complete set of right coset representativeg:fpiin G.. ..

It remains to prove thaf, = 7_, x Z,,+. Suppose that, as above, we h&vg“w =
Gutvd,fora € Zi,w € 6,,t" € T_, andd € Z,,+. The argument of the first paragraph
shows that(t”d) < ((t*w) with equality if and only ift* € T_, andw € Z,,+. Thatis,
if and only if « = v andw = d. Hence&,, =T, x Z,,+ as claimed. O
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Theorem 4.8 shows that every coset of a reflection subgrouigics a unigue element
of minimal II-length. We call§,, the set ofdistinguished coset representativesor G,
in Gy p.
4.4.Example Suppose that > 2 and considelG,» = (Z/rZ) ! &;. Thenll =
{t1,t2,s1} and G, o has six reflection subgroups. The following table describese
groups and the corresponding sets of distinguished rigtétaepresentatives.

" G, I, 8,
(_1»_1) 1 0 T x Gy
(1,-1) {th:0<k<r} {t1} (ts) x Gy
(-1,1) {th:0<k<r} {2}  (t1) x &,

(1,1) T {t1,t2} GP)
(_2) S, {81} T
(2) T % 62 {tl,tg,sl} 1

For each reflection subgroup we have given the factorizaifo#, from Theorem 4.3.
Observe that the reflection subgroups do not depend in aatmaly onr and thaté),| =
|Gy.n|/|G,| is a polynomial inr, for u € A (andr > 2).

We now give combinatorial interpretations of the set ofidgished coset representa-
tives &), for 4 € A, which is similar to the description @#,,+ in terms of row standard
tableaux (see [24, Prop. 3.3]).

Fix a compositiom\ € A,,. Thediagram of ) is the set

N={(0Gj)eN:1<j<)Nandl <i</l(\)}.
Herel()\) is the number of non—zero partsof We think of[A] as being an array of boxes
in the plane.

Now suppose that € AF. A pu—tableauis a mapt: [u] — nc. We identify au—
tableau with a diagram for™ which is labeled by elements of;. If t is a u—tableau
let |t| be the tableau obtained by taking the complex modulus of tiges int; that is,
[t|(z) = [t(z)|, forall z € [uT].
4.5.Example Letp = (2,—3,1,—1). Then fouru—tableaux are:

1]2 1] 2 3|6 and 7 |ec
3|45 3¢ |a¢? 5<3| 2¢ |5¢? 7g3| 2¢ |5¢?fs¢?

| 6 | | 6 | | 1] | 1]

L7 ] [7¢’] [4¢] [4¢]

O

As remarked at the end of section 2 we can think:gf, as the group of permutations
of n¢ such that(m¢*)? = m9¢?, for all m¢* € nc and allg € G,.,,. Consequently,
G, acts on the set gf—tableaux by composition of maps. Thust i§ au—tableau and
g € G,.,, thent? is the tableau with? (z) = t(z)9, for z € [uT].

Let t* be theu—tableau which has the numbdrs .., n entered in order, from left to
right and then top to bottom, along the rows[pf ]. The firstu—tableau in Example 4.5
is t* wheny = (—2,3,—1,1).

So far none of the combinatorial definitions above distisguietween compositions
and signed compositions. We now single out a set-efableaux that are in bijection
with &,. First, define a total ordex onn, by declaring that¢* < b¢7 if a < b, 0ra =b
and: > j. Then

(Ml mT? <=1 =Ml <2< <M < <,
4.6. Definition. Suppose that: € AE. A p—tableaut is row standardif it satisfies the
following three conditions:

a) The set of entries in the tabledtliis {1,...,n}.
b) The entries in row of t belong to{1, ..., n} wheneve; > 0.



8 ANDREW MATHAS AND ROSA C. ORELLANA

c) Ineach row the entries afappear, from left to right, in increasing order with respect
to <.

For example, the first three of ti@, —3, 1, —1)—tableaux in Example 4.5 are row stan-
dard. The last tableau in this example is not row standarduseit fails conditions (b)
and (c).

The action ofG,. ,, on the set ofi—tableau which satisfy condition (a) of Definition 4.6
gives a realization of the regular representatio-of,. Consequently, the map— t*g,
for g € G, is a bijection fronG,. ,, to the set of thesg—tableaux. It is such gu—tableau
let d; be the unique element 6f, ,, such that = t“d.

4.7.Proposition. Suppose that € AF. Then
&, = {dy : tis arow standard:—tableau} .

Proof. By definition, the orbitt“G,, = {t*g:g € G, } of t* underG,, consists of all
those tableaux which can be obtained by permuting the sntfieeach row oft* and
multiplying the entries in row by a power of¢ whenp; > 0. Consequentlyt” is the
unigue row standard—tableaux int“G,,, so that each right coset 6f, in G,.,, contains a
unique element such that*e is row standard. Nows,, = T__, %, + by Theorem 4.3 and
T_,, acts ont” by multiplying the entries in row by different powers of wheny,; < 0.

If d € 2,,+ then itis well-known that the entries ifid increase from left to right along
each row; see, for example, [24, Prop. 3.3]. Hertte s row standard wheneverc &,.
This completes the proof. O

In the case of the symmetric groups the set of distinguisbedtaepresentatives can be
described combinatorially in terms of ‘descents’. Exphgiif w € &,, then itsdescent
setis

Des(w) ={s € S : l(sw) <l(w)}={s;: 1 <i<nandi® > (i+1)"}.

If 1 is a composition of: then the connection between distinguished coset repaars
and descents is that

(4.8) P9, ={de 6, :Des(d) CS—-TI_,}.

There is an analogous description®f, for 1 € A, If o € Z7 define thecolour of ¢t
to be the se€ol(t*) = {t; € T : a; > 0}. Then using Theorem 4.3 it is easy to see that
if u € A then

&, ={t"w e G, : Col(a) UDes(w) CITT —TI_, }.

We remark that it is easy to rephrase this last statement ic@atalpially in terms of words
iNnGrn.

4.9.Remark.ltis easy to check thaf, ' = 2, " x T_, = 9,/' x T_,, is a complete set
of left coset representatives f6k, in G..,,. Moreover,e € &, " if and only if £(e) < {(g)
forall g € eG,, so every left coset of/,, in G,.,, contains a unique element of minimal
II-length.

4.10.Remark. Mak [20] has shown that every coset of a reflection subgrouytaias a
unique element of minimal length with respect to the lengthction ¢, defined in Re-
mark 2.4. Mak’s set of coset representatives is differemmfe),. Nonetheless, it does
admit a factorization which is similar to the factorizatioh&), given in Theorem 4.3. To
describe this ifs = (1, ..., ur) € A then set

&, = H H [{1}U{sﬂj71+1sﬁj71+2...si,1tf 01 §k<r}}x@,l,

k>§>17, 20>,
n;<0
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where the product is taken in order from left to right in terafiglecreasing values af
One can show thaﬁjﬁ is Mak’s set of coset representatives @, in G, ,,. As we will
never need this result we leave the proof to the reader.

5. DouBLE COSET REPRESENTATIVES

Our next aim is to describe the double cosets of reflectiograwips. In order to do this
we first recall some well-known facts about the symmetricip®,,. Suppose that andv
are compositions of.. Then&,, and&,, are Young, or parabolic, subgroups®f,. Set
Dy =D, N 2,7 '. Then2,, is a complete set aiS,,, 6, )—double coset representatives
in &,,; see, for example, [24, Prop. 4.4]. Moreoverdit %, thend*lGud NG, isa
Young subgroup 06,,; see, for example, [24, Lemma 4.3]. DefinéN v to be the unique
composition ofn such thatS 4, = d‘leﬂd N &,. We remark that the composition
ud N v can be determined by comparing the row stabilizers of thiegatxt"d andt”.

5.1.Lemma. Suppose that, v € Af andd € Z,,+,+. Thend~'G,dN G, is areflection
subgroup ofG, ..

Proof. The groupG,, consists of those elements@f.,, which act ont” by first multiply-
ing each entry of row by possibly different powers af, if v, > 0, and then permuting the
entries in each row of the resulting tableaux. Similarlg ginoupd ! G,,d consists of those
elements of~, ,, which act on the row standard tablegu by multiplying each entry of
row k by different powers of;, if u;, > 0, and then permuting the entries in each row.
Consequently, the subgrodp' G, d N G, is generated by the elemerts;, ¢, }, wherei
runs over those integers for whi¢landi + 1 are in the same row af and in the same row
of t“d, andj € nisinrow/ of t" with ; > 0 andj is in row k of t*d with u; > 0 (cf. the
proof of [24, Lemma 4.3]). Thereford, !G,d N G, = G, whereo is the unique signed
composition such that™ = p*d N v* ando; > 0if and only if v; > 0 andyy, > 0,
wherea; appears in rovy of tV and rowk of t#d. O

Suppose thal € Z,,+,+, for u, v € AF. Thend=! € Dyt it SINCRD 11 = Qﬂ‘jﬁ.
Therefore G, N dG,d~! is also a reflection subgroup 6, ,,.

5.2. Definition. Suppose that, v € Af andd € Dytv+. Thenud N v is the signed
composition ok such that,4n, = d‘lGud N G, andp N dv is the signed composition
such thatG ,ng, = G, N dG,d .

Note that the proof of Lemma 5.1 gives a recipe for computidg) ». Note also that
pdNv=dpnv,ford € 9,4, andu,v € AL

We now describe a set ¢&,,, G,,)—double coset representatives. We do this by gener-
alizing the description of the double cosets of the Youngysoips of the symmetric group
in terms of row semistandard tableaux.

5.3.Definition. Suppose that € A . A u~tableauT : [uT] — n is row semistandard
if
a) The entries in row of T belong to{1, ..., n} wheneve,; > 0.
b) The entries in each row dof appear in weakly increasing order, from left to right,
with respect to<.

There is a map from the set of row semistandard tableau toghefgow standard
tableaux. To define this first observe that a row semistandatableauT determines a
unique total ordek.t on [u "] wherex <t 2/, for x, 2’ € [u™], if

a) |T(x)| <[T(«")], or
b) |T(x)| = |T(2’)| andz is in an earlier row of "] thanz’, or
¢) |T(z)| =|T(2')| andz andz’ are in the same row andis to the left ofz’.
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Letx; <1 --- <1 ¥, be the nodes inu*]. Then theu—tableauT* is defined by the
requirements thaf*(x;)| = ¢ andarg T*(z;) = arg T(z;), for 1 <4 < n. By construc-
tion, T* is a row standarg—tableaux. Moreover, it is easy to see that the ap T* is
injective.
5.4.Definition. Suppose that, v € A and letT be au—tableau. The hastypev if

a) |vj| =#{x € [pr]:|T(x)| =} forj> 1

b) If v; > 0theny; = #{z e [p]:T(x)=7}
LetZ¢(p,v) = {T:[pt]—n¢ : T is row semistandarg—tableau of type }. If andv
arecompositiondet 7 (i, v) = { T: [u*]—n : T is row semistandarg—tableau of type- }.

See Example 5|9 below for these definitions in action.
5.5 ([24, Prop. 4.4]) Suppose that, v € A,,. Then
Dy = {dr- - T €T(p,v) )}

is a complete set af5,,, S,,) double coset representatives@,. Moreovey, ifd € 2,
then/(d) < ¢(w), for all w € &,,d&,,, with equality if and only ifv = d.

If tis a row standard tableau left)’ be the tableau obtained by replacing each en-
try m¢® in t with k¢ if m appears in row: of t/, wherea’ = 0 if v, > 0 anda’ = a
otherwise. Now define/(t) to be the row semistandard tableau obtained by reordering
the entries in each row of(t)’ so that they are in increasing order. Theft) is a row
semistandard tableau of type

For example, let = (2,—-2,1) andt = L3 iclsc’] , where0 < a,b < r. Then, by
112

definition,v(t)’ = [ 2P 3| and v(t) = pelz]a].
111 111

5.6.Proposition. Suppose that andv are signed compositions afand let
Ep ={dr- : TEeTe(,v) }.

Thené),, is a complete set dfG,,, G,,) double coset representativesd).,,. Moreover,
if e € £, thenl(e) < {(g), forall g € G.eG,.

Proof. By Proposition 4.7 the right cosets 6%, in G, ,, are naturally indexed by the row
standardu—tableaux. Hence, thg-,,, G, )—double cosets are indexed by tig—orbits of
the row standargi—tableaux. Using the definitions it is easy to see thatw@bleauxs
andt belong to the samé@,—orbit if and only ifv(s) = v(t). Moreover, ift is row standard
thenv(t) is row semistandard. Finally, T is a row semistandarg-tableau of type then
T* is a row standargi—tableau such thal = »(T*). Hence,&,, is a complete set of
(G., G,)—double coset representativesin, .

To complete the proof we need to show thafife 7:(u,v) thendr- is an element
of minimal length in the double cosét, dr-G,. For convenience, let = dj7+. Then,
d € 9,+,+ by (5.5). Now, by the last paragragh,dr-G, = |J, G.d., wheret runs over
the row standarg—tableaut such that(t) = T. By definition,dr- = t{* ...t3~d, where
if z € [ut] thenT*(x) = ¢ if and only if T(x) = ¢k andi? is in row k of t“. Now
suppose thatis any row standarg—tableaux such that(t) = T. Then, using (5.5) again,
dy = % L tPrdy = 9 tPndu, for someu € &, and where3; = ;w, for some
w € &, (sincev(t) = T). Therefore,

Udg) =1+ + Bpn+L(du) = a1+ - + o, + {(du)
> aq 4+ ap +A(d) = (dr-),

with equality if and only ifu = 1. By Theorem 4.3, is the unique element of minimal
length in the cosetr,,d¢, for each such. Therefore{(dr-) < ¢(g) forall g € G,dr- G,
as claimed. O
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Note that we are not claiming that each double coset of twectdin subgroups dF,. ,,
contains a unigue element of minimal length. Indeed, thefpobProposition 5.6 shows
that if T is a row semistandarg—tableau of type’ then the double cosét,,dr- G, con-
tains more than one element of minimal length if and only drthexist integers, ¢, not
both zero, such that¢(® andm(¢® appear in the same row df, for somem € n. For
future comparison we make this statement explicit.

Ifd e Z,+,+ letTy € T(ut,v") be the unique row semistandard tableau such that
d=dryasin(55). X CG, letX ' ={g:g7'c X}

5.7.Lemma. Suppose that, v € A*. Then

; < a,; whenevet? andj? are in the
Euw = 80 € T (e | o =Y d
H dw]—[ { roin nd(=v) | same row off* and the same row df
ot

Moreover,

ENET = ]_[ T prd(—yd ={e € Grn: l(e) < {(g)forall g € G,eG, }
d€9“+y+

is the set of elements .., which are of minimal length in the{iG,,, G, )—double coset.

Proof. Observe thatZ,,+,+ = Z(_,)+(—.,)+. Therefore, ifd € %,+,+ then the signed
composition—u N d(—v) in the statement of the Corollary makes sense by Definitian 5.
(Note, however, that the two signed compositiensNd(—v) and—(uNdv) arenotequal

in general.)

By Proposition 5.6, we havé,, = {dr-: T € 7¢(u,v)}. Fix a row semistandard
u—tableadTl of typewv. Then, as in the proof of Proposition 5&;- = ¢ ... t%"d, where
d=d+| € y+,+ and, for allz € [p] if T*(z) = (*ii¢ thenT(x) = ¢k wherei? is
in row k of t”. In particular,c;; = 0if t; € T), orif ¢;a € T,. Thereforeq; > 0 only if
tieT_,Ndl_,d ' = _und(—v)- IFti € T qq(—) then the integer; can take any
value in{0,...,r — 1} provided that this is compatible with being row semistandard.
That is, we require that; < a; wheneveri¢ and;j¢ are in the same row of* and in the
same row oft”. This gives the decomposition &f,,, in the statement of Lemma.

For the final claim, suppose thétc Z,,+,+ and letT = v(t*d). By the last paragraph,
if t € T thenv(t'tdy-) = Tifand only ift € T_,~4_,). By the last paragraph again,
if t € T_,~q—v)d thentd is an element of minimal length in the double cosettdG,, .
Thats, né&,t =11,T _und(—v)d is now follows from the definition of row semistandard
tableaux O

5.8.Corollary. Suppose that, v € AF andd € Z,,+,+. ThenG,.,, contains|T_,~q(_.)|
elements of the forttd which are of minimal length in the(rGu, G, )—double coset, for
somew € Z". Moreover, ifT = v(t*d) then|T_ .| = r*(7, wherewt(T) is the
number of pairgi, j) such thatj appears in rowi of T andy; < 0 andv; < 0.

Proof. That|T_,~q(—nu)| counts number of elements of the fotftd which are of min-
imal length in their(G,, G, )—double coset is immediate from Lemma 5.7. The second
claim follows from the observation that the tableaut'td : t € T_,~4(—, } differ only

in that any of the numbers appearing in rowf t*d and row; of ¥ can be multiplied by
arbitrary powers of whenever; < 0 andy; < 0. O

5.9.Example Suppose that > 2 andn = 5 and lety = (3, —2) andv = (-2, -2,1).
Then the set of row semistandardtableauxT of typev, together with the corresponding
row standard tableal* and the coset representatives € &, = &3, _2)(—2,—2,1), IS as
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follows (we setd = dt-)).

T T dr~ ‘Tﬂuﬁd(fu)‘ pNdv
1[1]2] 1]2]3] t4 r (-2, _13)
2¢7| 3 4¢e| 5
11 ]3] [1]2]s] thtesss4 r2 (—-2,1,-2)
2cblace 3cblace
1]2]2] 1]a]4] 95389 r (-1, _27_12)
1¢% 3 2¢%| 5
iloa] [a]s]s] 98535954 r? (—1%,1,-1%)
1¢°f2c® 2¢jac®
2(2]3 | 31415 | tgt5835284838182 r? (_23 1, _2)
1cblice 1ctface

where0 < a,b,c < r andb < c. We use exponentials in the signed compositions to
indicate consecutive repeated parts. Therefore, therzrare 3r (G,,, G, )—double cosets
in G,.,. When checking the entries in this table observe that theedigomposition: N
dv = pnNwvd~! can be computed by intersecting, with the ‘row stabilizer’ oft”d—*
as in the proof of Lemma 5.1. Note thidt_,,~q(—,)| can be computed without finding
—p N d(—v) by using Corollary 5.8. O
5.10.Remark.If  andv are compositions of thenZ,, = 2,, N 2,7! is a complete set
of minimal length(&,,, &, )—double coset representativesdn by (5.5). In contrast, it is
not hard to show that,, C &, N &, with &, N &, ! being strictly bigger tha),,, in
general. For example, if we take= (3, —2) andv = (—2%,1) then|&,N&, 1| = 3r2+2r,
whereagé),, | = 2r? + 3r by Example 5.9. S&),, C &, N &, ! sincer > 1.

6. THE CYCLOTOMIC SOLOMON ALGEBRA

Suppose thak is a commutative ring (with one) and I8, ,, be the group ring o7, ,,
over R. In this section we use the distinguished coset represesgadf the reflection
subgroups of+, ,, to define an analogue of Solomon’s descent algebra for theleam
reflection group, ,,.

Recall that for each reflection subgroG, of G,.,, we have a distinguished sé}, of
right coset representatives, forc A;-. Define

E, = Z e € RG, .
ecs,

The main aim of this paper is to understand the subalgebf()f,, which is generated
by these elements.

6.1.Definition. Suppose that > 1. Thecyclotomic Solomon algebra
Sol(G.,) = Solg(Gr.p)
is the subalgebra oRG,.,, generated by E,, : p € A }.

It is not yet clear thabol(G,.,,) is a subalgebra aRG,.,,; this will be established in
Theorem 6.8 below. We begin by taking advantage of the faettion of £, given by
Theorem 4.8. To do this, far=1,...,n and\ € A,, define

r—1
Fi:th and D, = Zd,
k=0

dED
ThenF; andD) are both elements &G, ,,.

6.2.Lemma. Suppose that < i,j < n andthatw € &,,. Then
a) FZF] = FjFl ande =rkF;.



CYCLOTOMIC SOLOMON ALGEBRAS 13

Proof. As T is an abelian group part (a) is true and part (b) is immediate the defini-
tions and[(2.1). O

Hence, ifl < i < n thenF; is a multiple of an idempotent if the characteristic®f
does not divide: and, otherwise, it is a nilpotent element®fs, ..
Suppose that € A*. In order to factorizeb,, set

Fou=I1 Fi= 11 B v1o Fa
tiET—u B <0
Then, by Lemma 6/2(a),f_,,)? = rlvl" F_ .
By Lemmd 6.2G,, acts on{F1, ..., F,,} by conjugation. Ifw € &,, andi € n then
we setF = w Fw = Fyw. Similarly, if u € A let
e = I B~
tiGT_#

ThenF_,w = wF"  forallw € &,, by Lemma 6.2(b).

6.3.Lemma. Suppose that € A is a signed composition af. Then:
a) E,=F_,D,+.
b) Ifwe&,+ thenFi”H =F_,, sothatF_ ,w = wF_,.
Proof. Part (a) is an immediate consequence of the factorizatios 7, x Z,,+ of &,

given by Theorer 4.3. For part (b), use Lemima 6.2(b) and tteHat the elements of the
two subgroupss,, and7_,, commute. O

Definition[6.1 is motivated by Solomon’s [27] definition ofetiescent algebra of a
finite Coxeter group. As an important special case3blmon descent algebr&ol(&,,)
of &,, is the subalgebra okRS,, generated by D, : A € A,, }. The next result, due to
Solomon, shows thgtD) : A € A, } is basis ofSol(&,,).

6.4 (Solomon [27, Theorem 1])
a) These{ D, : n € A, }is linearly independent i6ol(&,,).
b) Suppose that andv are composition ofi. Then

D/LDV: Z D/Lﬂdv-
d€EDyv

By the remarks before Lemma 5.1, part (b) is equivalent tddhewing formula:

DMDV = Z duyaDaa
o€,
whered,,,. = #{d € 2, : 6, =6, Nd *S,d}. Infact, Solomon proved an analo-
gous result for an arbitrary finite Coxeter grodp, where the Young subgrougs,, are
replaced with the parabolic subgroupdBfandD,, by the sum of the ‘distinguished’ (left)
coset representatives which are of minimal length in theset.

As we now recall, part (a) of Solomon’s theorem is easy to @roRecall thatS =
{s1,...,8n—1}. FOr each compositiop € A, letS,, =1I_,, so thatS, C S. Now define
Y;4 € RG’!L C RGT',n by

Y, = Z w.

weG,
Des(w)=S,

By (6.4) the descent sets partiti@h,, so the se{ Y, : u € A,, } is linearly independent in
RG,,. By (6.4) again, we can write

Dp= > Y,

vEA,
S, CS=Sy,
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Hence{ D, : 1 € A, } is alinearly independent subset®&,,, as claimed.
We build upon this idea to prove that tli&,’s are linearly independent.

6.5.Proposition. The sef{ E,, : u € A } is linearly independent iSol(G.. ,,).
Proof. Suppose that there exist scalafse R such that

> auE,=0.

neEAE
By Lemma 6.3F, = F_,D,+. Therefore, the last displayed equation becomes

0= > auF ,Dyx= > aF, > Y,

AE AL vEA,
e e s, C5M%
> (Y wr)wn
veA, ,u,GAi:
S,+CS-S,

Now, RG.., = @, tRG,, as ankR—module, and Y, : v € A, } is a linearly indepen-
dent subset oRS,,. Therefore, for any compositiane A,, we must have

(6.6) 0= Y auF,.
uEAf
S,+CS=5,
We use this equation to argue by inductionoto show that, = 0 for all u € A,
First suppose that = (n). ThenS, = S and the summation if6.6) becomes a sum
over those signed compositiopswith S+ = . Henceyu™ = (1) and (6.6) becomes

0= > aF_,= >  aF_,
HEA, pEA
pt=am) I C{t1,eestn}
Each monomiat;, ...t;, , wherel < i; < ... < i, < n, occurs in a uniqué_, when
pt = (1"). Hencega, = 0 for all u € A with u* = (1), as claimed.
Now suppose that # (n). By induction we may assume thaj, = 0 whenever
S+ € S —S,. Therefore, by| (6.6) we have

0= Y  aF,= > auF_ .
;LEA:f HEA:*:
S, +=S-5, 0, —(5—5,)C{t1, tn}
So, by exactly the same argument as befafe= 0 wheneveru* = v. Hencea, = 0,
forall € AL, and{ E, : u € A} is linearly independent as required. O

The next result that we need amounts to a proof of part (b) fron’s theorend (6.4).
Once again, we state the result only for the symmetric greep ¢hough it is valid for an
arbitrary finite Coxeter group. All of the results quoted@n?) follow easily from the fact
that&,gny = d'6,dN G, ford € 9,,,.

If n,v € A, andG, C &, then we writev C 1 and set?)! = 2, N G,,. Itis easy to
check thatz¥ is a complete set of coset representativesSpiin G,,.

6.7 (Bergeron, Bergeron, Howlett and Taylor [5, Lemmas 2@ 2.4]) Suppose that
andv are compositions af. Then
a) Ifo Cvthen?, = 2°9,.
b) 2, = Hde@w d‘@;l;dﬂu'
c) If d € 9, andud is a composition of. (thatis,d'&,d = &, for somes € A,,),
then?,, = d%,.a.

We can now establish one of the main results of this paper.
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6.8.Theorem. Suppose that > 1 and thaty andv are signed compositions ef Then

E.E, = Z ‘T—uﬂd(—u)‘Euﬁdv-

de@;ﬁ’lﬁ’

Proof. We use most of the results in this section to compiér, :

E,E,=F_,D,+F_,D,+, by Lemma 6.3(a)

= Y FudDYl i FouD,e, by Lemma 6.7(b),
de@;ﬁ’xﬁ’

= > FdF_ DY, Dy by Lemma 6.3(h)
dE_@“+V+

= Z F,MFf;ldDwdmﬁ, by Lemma 6.7(h)
de@u+u+

_ Z F_F% Dyt raye by Lemma 6.7(c)
de@u+u+

Fixd € 9,+,+ and consideF,#FE;l. Now FZ? =rF, = |T;|F;, for1 <i<n. So,

F_F' =|T_,ndl_,d}| 11 F,.
t,€T_,NdT_,d~1

First, T_, NdT_,d™' = T_,n4(—y) SiNCd € D+ + = D(_p)+(—)+- Next, the sub-
group of T’ generated by"_,, andd7_,d ' is T_(undv) SiNCet; € T_(ynavy = T/Tpnav
if and only if ¢; ¢ T, andt; ¢ dT,d". Therefore,F_MFﬁl;1 = |T_ynda(—) | F=(undv)-
Hence, using Lemma 6.3 once more,

EuEu = Z ‘Tﬁuﬁd(fu)‘ ‘Ff(uﬁdu)-D(uﬁdl/)Jr = Z |T7,uﬁd(71/)‘ Euﬁdu>

d69u+u+ d€@u+u+

as required. O

Corollary 5.8 gives a combinatorial interpretation of threisture constantd™_,nq(—.) |
of Sol(G,.,). This shows that Theorem 6.8 is a direct generalizatioh @f)(6). A second
combinatorial interpretation of the structure constdfits,nq(—,)| is given in Proposi-
tion[10.3 below.

Combining Theorem 6.8 and Proposition 6.5 we obtain thefadhg.

6.9. Corollary. Suppose that > 1. The cyclotomic Solomon algeb&!(G.,. ;) is a
subalgebra ofRG,. , which is free as ak—module of rank - 37~

6.10.Example Suppose that > 1. Then, by Example 5|9, we have
E(3,_2)E(_2271) = 27’2E(_271,_2) + ’I"E(_27_13) + TE(_17_2,_12) + T‘2E(_12,17_12).

See Example 1014 for a second way of computing this produietjuroposition 10.3.
Notice that by[(6.4) and Theorém 6.8 we can recover the nlighijion in Sol(&,,) by
settingr = 1 and identifyingu and ™, for all u € A, so that

D3.2yD 22,1y = 2D(2,1,2) + D(2,13) + D(1,2,12) + D(15)-
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7. THE GENERIC CYCLOTOMICSOLOMON ALGEBRA

By Theorem 6.8, ifr > 1 then the structure constants of the algeBef(G,.,,) are
polynomials inr. Consequently, these algebras admit a simultaneous dafiornm

Recall that ifr > 2 andp, v € AZ then|T_,~4(—,,)| = r**(T) by Corollary 5.8.

Let z be an indeterminate ovéf and suppose that, v, € AF. Define polynomials

duvo(x) € Niz] by
dyvo () = Z pWt(Ta)
de-@;ﬁq,Jr
o=pNdv
We abuse notation and considgy, . (x) to be a polynomial oveR. Forgq € R we let
d,v0(q) be the evaluation of this polynomial @t Then, by Theorem 6.8,

EuE, = duvo(r)E,.

cEAE

7.1. Definition. Suppose that > 1 and thatR is a commutative ring. Theyclotomic
Solomon algebra with parameteg € R is the R—algebraSol,(n) = Solg 4(n) with
generating sef E,, : u € A } and relations

EMEV = Z d;wa(Q)an

UGAf

for u,v € AX. Thegeneric cyclotomic Solomon algebria the Z[z]-algebraSol, (n),
wherez is an indeterminate ovef.

We are abusing notation slightly in Definition 7.1 becausenfhere onward®),, is a
generator obol,(n) and not necessarily the element defined in the previousosecthis
abuse is justified by the following result.

7.2.Corollary. Suppose thag = r - 1z, wherer > 1. ThenSol,(n) andSol(G, ,,) are
canonically isomorphi&z—algebras where the isomorphisul, (n) — Sol(G,.,,) is given
by E,, — E,, forp € AF.

Proof. By Theorem 6.8 there is a natural surjecti®sl,(n) — Sol(G,.,,). By Corol-
lary[6.9 this map is an isomorphism. O

The explicit description of the algebB|(G,.,,) as a subalgebra of the group algebra
RG,, makes the algebrol(G, ) slightly easier to work with than the more general
algebrasSol,(n). For example, we know thaf, = F_,D,,+ in RG,,, but we have no
such factorization in general. As we will soon see, howeslenpst all of the properties of
the algebra$ol(G,.,,) hold for the algebraSol, (n).

7.3.Proposition. Suppose that > 1 and thatg € R. Then
a) Sol,(n) is free as ank—module with basi§ £, : 1 € A }. In particular, Sol,(n)
has rank2 - 371,
b) Soly(n) = Sol.(n) ®z,) R, whereR is considered as d@[x]-module by letting:
act onR as multiplication byy (and1 € Z acts as multiplication by r).
¢) Sol,(n) is a unital associativé?—algebra with multiplicative identityz,,.

Proof. First consider the generic Solomon algebra &/fr. Suppose that

Z fu(x)Eu =0,

peEAFE

for somef,(z) € R[z]. Thenf,(r) = 0, forr = 2,3,4... and ally € A, by Corol-
lary[7.2 and Propositidn 6.5. As non—zero polynomials hanfg finitely many roots, we
conclude thaff,, (z) = 0, for all . € A;*. ConsequenthSol, (n) is free as &[x]-module
with basis{ E,, : p € A }.
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Now fix ¢ € R and consideR as aZ[x]-module by lettinge act onR as multiplication
by ¢ (and1 € Z act as multiplication bylr). Then theR-algebraSol.(n) ®z(,] R
is free as anR-module with basi§ £, ® 1 : u € A} and it satisfies the relations of
Sol,(n). AsSol,(n) is spanned by the elemerfts,, : 1 € AL} C Sol,(n) it follows that
Soly(n) = Sol,(n) ®z[5 R. This proves (a) and (b).

To prove (c) it is now enough to prove the corresponding states for the generic
Solomon algebr&ol,.(n). We first show that,,) is the identity element dol, (n). This
is equivalent to the polynomial identities

du(—n)a<$) = 5#& = da(—n)u(x)a
for all u,a € AX. All of these identities follow directly from the definitisnbecause
T(_n)ﬂd(_y) =1= T—uﬂd’(—n)r for all yu,v € Aflt, d e .@(n)p‘ﬁ» andd’ e 91/+(n)-
Similarly, the associativity ofol,,(n) is equivalent to the polynomial identities

Z d,ul/oz (x)dozoﬂ (I) = Z d,uozﬂ(x)dua'oz (x)7
a,BeEAE a,BeAE
forall u,v,o € AX. Asin the first paragraph of the proof, by Corollary 7.2 thigemtities
hold whenz = 2,3, ...since the algebraSol (G, ,,) are associative for > 2. As these

identities hold for infinitely many values af they lift to the required polynomial identities.
O

Part (b) of the Proposition justifies our calling ti¢r]—algebraSol,(n) the generic
cyclotomic Solomon algebra.
As we next describe, the algebi®d,(n) have many interesting subalgebras.

7.4.Lemma. Suppose that,,,,(q) # 0, for u,v,o € A . Thenll, = 11, Ndll,d~?, for
somed € D+ ,+

Proof. By definition, the polynomiali,,,.,(x) is non—zero only ifG, = G, N dG,d™!
for somed € %,,+,+. Consequently, itl,,,.,(q) # 0 thenIl, = II, N dll,d—t, for some
d € Dyty+. O

Notice, in particular, that this implies that the poset stinee onA:F given by defining
p = v whenevedI, C II, is compatible with the ideal structure $6l,(n).

7.5. Proposition. Suppose that > 1 and thatg € R. ThenSol,(n) has a filtration by
two-sided ideals

Soly(n) = >---D>, D0
where.7; is the R—submodule o$ol,(n) with basis{ E,, : u € A such thatu|* > i},
fori =0,...,n.

Proof. By Lemma 7.44,,,,(q) # 0 only if II, = I, N dII,d~*, for somed € Z,,+,+.
Consulting the definitionsy|* = [II, N T'|. Therefore,d,.,(q) # 0 only if |o|T <
min{|p|T, |v|T}. Hence,¥; is a two—sided ideal dbol(G, ,,), for 0 < i < n, and the
Proposition follows. O

7.6.Proposition. Suppose that > 1 and thatg € R. Let
Solf (n)= > RE,

HEAR
Sol;(n)= > RE,
+peA,
Solj(n)= Y RE,.
/LGA:*:

pi>0fori>1
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ThenSol.} (n), Soly (n) andSol;(n) are all subalgebras ool, (n). MoreoverSol (n) is
naturally isomorphic t&ol(S,,) via the R-linear mapE,, — D, for u € A,,.

Proof. All of these results can be proved directly using the debnitf the polynomials
dyve (), for p,v,0 € AZ. Note thatSol} (n) = .#, in the notation of Propositidn 7.5, so
in this case the result is already known. The isomorpfﬁsﬂg‘r(n) = Sol(&,,) is trivial
because ifu € A, thenT_,, = 1, so thatE,, = D,, by Lemma 6.3.

8. THE REPRESENTATION THEORY OfSol,(n)

In this section we construct all of the irreducible repréagons of the algebresol, (n)
over an arbitrary field. Even thoudvl,(n) is, in general, not commutative, it turns out
that every irreducibléol, (n)—module is one dimensional — so th&dl,(n) is a basic
algebra for alln andg. As an application of these results we give a basis for thieahdf
Soly(n) whenR is an arbitrary field.

Let ~ be the equivalence relation on the set of signed compositidrere two signed
compositions are-—equivalent if one can be obtained by reordering the partiseobther.
More explicitly, if A = (A1, ..., Ax) andp = (p1, ..., ) thenh ~ pifand only ifk =1
and\; = p;v, for somev € Gy.

8.1.Lemma. Suppose thak, u € A, Then the following are equivalent:
a) A~ p;
b) G\ = w™ G ,w, for somew € &,,;
c) Gy =g 'G,g, forsomey € G, ,.

Proof. We leave the proof for the reader. O

8.2.Lemma. Suppose thak, u € A, Then

a) If p ¢ Xthend,,»,(g) # 0 only if |IL| > |IL,|.
b) If i ~ Athend,q,(q) = drax(g), forall a € A

Proof. By Lemma 7.4d,,,,,(¢q) # 0 only if II, = II,, N dIL,d~*, for somed € Z,,+ »+.
Hence, part (a) follows since % .

Consulting the definition of the polynomiads,, (), to prove (b) it is enough to show
that if » > 2 then in the groug-, ,, we have

(T) Z |T,)\md(,a)‘ = Z |T7uﬁd(fa)|'

dE€EDy+ + de@“_;_n_;_
A=ANda p=pNda

We prove this by showing that the ‘obvious’ bijection + .+ — Z,,+,+ preserves each
of the summands in this equation.

First note that by Lemma 8.1 we can find an element &,, such thaG, = w™'G ,w
sinceA ~ pu. Thatis, TG+ = w’lTMw . w716u+w, so thatT), = wilT#w and
S+ = w 'S+ w. Consequently, the map,+\S,/S,+ — 6,+\6,/6,+ given by
C — w(C defines a bijection since if € Z,+,+ then&,+d& .+ = w*16N+wd6a+.
Letd — d’' be map fromZ,: .+ 10 Z,,+ .+ determined bYS,,+ wd&,+ = &,,+d'S,,+.

Now fix d € Z,+,+ such thath = A Nda. Then

T znd(—a) = T-AxNdT_qd ™"
=w ' ,wNdT_,d*

=w! (T—u N wdT_a(wd)*l)w.
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Write wd = ud'v, foru € &,,+ andv € &,+. Then we have
T znd(—a) = 0" (T,H N (ud'v)T,av_l(d’)_lu_l)w7

= wilu(T_“ N d'T_a(d’)fl)uflw,

w_lu(T_M N Td/(,a)>u_1w,

where the second equality follows beca@g normalizesl’_,, and the last equality fol-
lows becaus&,, normalizesI”_,. Hence, we have shown that_nq(—a)| = [T- und/(-a)
forall d € 2y+,+. This establishe§}), so the Lemma is proved.

8.3.Theorem. Suppose thaR is a field,g € R andn > 0.
a) If A € A thenSol,(n) has a unique one dimensional representatign) upon

which E,, acts as multiplication by, (q), for o € AFE.

b) Every irreducible representation &bl,(n) is isomorphic tol(\), for some\ €
AE,

c) If A~ pthenI(X\) = I(u).

Proof. Choose a total order on A such thafIl,| > |II,,| whenever\ > y, for A, u €
Af. Let.#) be the R—submodule ofSol,(n) with basis{ E, : A > u € A} and let
#{ be the R—submodule with basi§ £, : A > u € A*}. Then.#) and.#{ are both
right Sol,(n)-modules by Lemma 7.4. Hence the quotient modyle) = .7, /.y =
R(E\ + .#¥) is one dimensiondol, (n)-module. By definition, itv € A thenE, acts
onI(\) as multiplication byl (g). Hence,I(\) is the one dimension&bl, (n)—-module
described in part (a).

Now suppose that® = {\; > A\; > -+ > Ay}, whereN = 2-3"~! = dim Sol,(n).
Then

Solq(n) :y)\l DyAQ Do Dy,\N 20

is a filtration ofSol,(n) by two—sided ideals with quotient®’, /.#,,, = I()\;), since
Sy = 7%, As every irreducibleSol, (n)-module arises as a composition factor of
Soly(n) part (b) now follows.

Finally, if A ~ p thenI()\) = I(1) by Lemma 8.2(b). Hence, part (c) holds. O

8.4.Corollary. Every field is a splitting field fogol, ().

Proof. Suppose thab is an irreducibleSol,(n)-module. TherD is one dimensional by
the Proposition, and hence absolutely irreducible. O

If Ais an algebra over a field then Bid A be itsradical. Thus,Rad A is the unique
maximal nilpotent ideal oA and A is semisimple if and only iRad A = 0. Recall that
a € Ais nilpotent if a* = 0, for somek > 0, whereas an ideal of A is nilpotent
if I* = 0 for somek > 0.

8.5.Corollary. Suppose thaR is a field. TherRad Sol,(n) is the set of nilpotent elements
in Soly(n).

Proof. By definition every element dRad Sol,(n) is nilpotent. To prove the converse
let M be the number of irreducibl®ol, (n)—modules. By Theorem 8.3 every irreducible
Sol,(n)-module is one dimensional. Therefase,(n)/ Rad Sol,(n) = R by the Wed-
derburn Theorem. In particul&Bpl,(n)/ Rad Sol,(n) contains no nilpotent elements, so
the result follows. O

8.6.Corollary. Suppose thak is a field andg € R. ThenSol,(n) is semisimple if and
onlyifn =1 andq # 0.
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Proof. If n > 2 thenSol,(n) is not semisimple because there exist distinct signed com-
positions\,v € AF such that\ ~ u. Therefore,E\ — E,, € RadSol,(n), so that
Rad Sol,(n) # 0. If n = 1 then a quick calculation verifies thatl) = I(—1) if and only

if ¢ = 0 which implies the result. O

Each~—equivalence class of" contains a unique signed compositjor= (u1, .. ., jix)
such thatu; > -+ > pg. If p € Aff andp, > --- > ui then we cally a signed par-
tition of n. Let AY be the set of all signed partitions of By the remarks above, the
S, —conjugacy classes of reflection subgroupéef, are indexed by the signed partitions
of n. We note that\? is naturally in bijection with the set of bipartitions of however,
for us the signed partitions are more natural because wedieeady defined a reflection
subgroupG,, for each\ € AY.

8.7.Theorem. Suppose thaR is a field of characteristic zero and thatZ 0. Then
{IN): A e AP}
is a complete set of pairwise non—isomorphic irreducsé, (n)—modules.

Proof. As the ~—equivalence classes df are indexed by the signed partitions of
{I(\): X e AD } is a complete set of irreducibBl, (n)-modules by parts (b) and (c) of
Theorem 8.3. It remains then to show that,if. € AP thenZ(\) 2 I(u)if A # p. Now, R
is a field of characteristic zero ant 0, sody,x(q) # 0 if and only if dy,x(z) # 0, for
A\, v € Af. Howeverdya(z) € 1+2N[z] sincel € 2,1+ andlly =T, N1-My-171.
Thereforedx(g) # 0and so, using Lemma 8.2(a) again\if£ pthenI(\) % I(pn). O

8.8.Corollary. Suppose thar is a field of characteristic zero angd+# 0. Then
{Bx—E,: e AP pe Af N~ pand) # p}
is a basis oRad Sol,(n). Consequentlylim Sol,(n)/ Rad Sol,(n) = |[AD].

Proof. Suppose thak ~ p wherel € A®, € A+ and\ # p. Then, by Theorem 8.7
and Lemma 82F, — E, acts as multiplication by zero on every irreduciSiel, (n)—
module. ThereforeF, — E,, belongs toRad Sol,(n) wheneverA = ;. Consequently,
dim Sol,(n)/ Rad Soly(n) < [A?|. However,dim Sol,(n)/ Rad Sol,(n) = [A2| by The-
orem 8.7, so the result follows. O

Suppose thakr is a field of characteristic zero and thatt 0. Define thecharacter
table of Sol,(n) to be the matrix

Cy(n) = (dair (@) 5 epe-

ThenC,(n) is the character table &ol,(n)/ Rad Sol,(n), by Theorem 8.7, so it com-
pletely determines the maximal semisimple quotier@f (n). The character table,(n)

is explicitly known for allg # 0 and alln > 1 since the polynomialgy ., () are explicitly
known for all\, u, ¢ € A by Corollary 5.8.

8.9.Example Suppose thak is a field of characteristic zero and that= 2 = n. Then
Solz(2) = Sol(Gs,2) and the character tabi@,(2) of Sol2(2) is the following matrix.

| @ @) @.-1) (=2) (=1%)

(2) 1
(12) 12

1L,-1n]1 2 2

(-2) 1 4

(=13 [ 1 2 4 4 8
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As all of the diagonal entries df,(2) are powers of it follows that if R is any field of
characteristidifferent from2 then{ I(\) : A € A? } is a complete set of pairwise non—
isomorphic irreducibl&ol, (2)-modules. IfR is a field of characteristig then(2) is the
only irreducibleSol,(2)-module. This is in agreement with Theorem 8.11 below.

By comparing the character table&fl (G 2 ) with the character table of the groGp »
(the Coxeter group of typ8s) it is easy to see that there cannot be a ring homomorphism
from Sol(G,2) into the character ring af 2. This is in marked contrast with the Solomon
algebras of Coxeter groups for which such a homomorphisrayaexists. %

8.10.Remark. As discussed in Remark 4/10, Mak has shown that the coseteakt
flection subgroups of7,.,, have a unique element of minimal length with respect to the
Bremke—Malle length functiofy, (see Remark 2.4). For eaghe A let &, be Mak's set

of distinguished coset representatives@r and letz;, = Zeeg}i e € RG, ,. Define

S'(Grn) = Y RE,.

peAFE

If » > 2 thenX'(G, ) is not, in general, a subalgebra Bf7,.,,. The smallest counter
example occurs when= n = 3.

Now suppose that = 2. ThenG,,, is a Coxeter group of typés,, and Bonna#
and Hohlweg[9] have shown th&l'(G,,,) is a subalgebra oRG, , and, moreover,
that X'(Gs,,,) is isomorphic to the Mantaci-Reutenauer algebra [23]. Nbwe,algebras
Sol(Ga,n) andy’(G2,,) are both free of rank - 3"~1, so it is natural to ask whether these
algebras are isomorphic. In fa®ol(G2 ) # ¥'(Gs,,) if n > 1. This can be proved by
induction onn starting from the following observation. Bonigadnd Hohlweg have shown
in [9, Table V] that the following matrix is the character l@lof the semisimple quotient
of Z/(GQ’Q).

| @ (@*) @d.-1) (=2) (=1%)

(2) 1
(12) 12

1L-1n]1 2 2

(-2) 1 . . 2

(-1 |1 2 4 4 8

Observe that thé¢(—2), (—2))—entry in this character table is different to the correspon
ing entry in the character table 66I(G> ) given in Example 8.9. Therefor8pl(Gs 2)
and X'(G42) are not isomorphic algebras because they have non—isomargximal
semisimple quotients.

We close this section by classifying the irreducibtg, (n)—modules over an arbitrary
field. This classification is a direct generalization of tlmresponding results for the
descent algebra of the symmetric groups [2] — although auofprare necessarily different
because there is no homomorphism fréef, (n) into the character ring o, ,,.

ForA € A, letNg, (6)) = {w e &, : 6, =w & w} be the normalizer o6,
inS,,.

8.11. Theorem. Suppose thaf is field,q € R and X € AP. Then the following are
equivalent:

a) da(q) = 0;

b) q‘/\r [NGTL(G)\Jr) : 6,\+} =0in R;

C) E\ € Rad Sol,(n);

d) E, is nilpotent; and,

e) I(\) = I(p), for somey € AP with [II,,| > [II,].
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Proof. By definition,

doa@ =Y Toananl= D, " =¢* [Ns, (61): 65],
d69>\+)\+ de@k_*_k_*.
A=Andx A=Andx

since|T_»| = ¢ andT_,ng—x) = T-» if A = AN dX. Hence, (a) and (b) are
equivalent. Further, (c) and (d) are equivalent by Corgl&b.

To complete the proof it is enough to show that {&}- (c) = (e) = (a). In order
to do this letSol,(n) = S, D S, D -+ D F, D 0 be the filtration ofSol,(n) by
two sided ideals which was constructed in the proof of Thed8e3 using a total ordes
onA:. Recall thatll,| > |II, | whenevep > v, for u,v € A, Then, is a subalgebra
of Sol, (n) which is also a quotient &ol, (n) since.”y, = Sol,(n)/#,,,,forl <i < N.
Therefore, by Theorem 8.3, every irreducibta, —module is isomorphic té(.) for some
pw e AP with p > )\, for 1 < ¢ < N. In particular, every irreducible”,—module is
isomorphic tol (i) for somey > .

We can now return to the proof of the Theorem.

First, suppose (a) holds, so that,\(q) = 0. By definition, if x € AP thenE) acts
on I(x) as multiplication byd,,,(¢). By Lemma 8.2(a), ifx > A thenE), acts onl(u)
as multiplication by, whereasF acts onl (\) as multiplication by0 sincedxxx(¢) = 0.
Therefore £y € Rad % and (c) holds becaud®ad ., C Rad Sol,(n).

Next, suppose that (c) holds. Thé&h belongs to the radical of’\. Now, ., C .#,_,
so, as vector spaceRad.”\ = RE) + Rad.¥,_,. On the other handdim ., =
dim.#,_, + 1, so it follows that the algebrag’, and.#,,_, have the same number of
irreducible modules. Hencé(\) = I(u) for some signed partitiop > A. That is, (e)
holds.

Finally, assume that (e) holds. Thé@\) = I(u), for some signed partitiop > A.
Therefore,E) acts on these modules as multiplication dy»(¢) = duxu(g). Conse-
quently,dxxa(q) = 0 by Lemma 8.2, so (a) holds.

This completes the proof of the Theorem. d

In the following Corollaries note that the integéa (¢) = ¢ [Ne, (Gx+) : G+ ]
is explicitly known by Theorem 8.11 (and Corollary 5.8).

8.12.Corollary. Suppose thak is a field andg € R. Then
{I(/\) AE A;‘? andd,\A,\(q) 75 0}
is a complete set of pairwise non—isomorphic irreducdé, (n)—modules.

Proof. This follows from Theorem 8.11 and Theorem]8.3. O

Similarly, combining the Theorem 8.1 with Corollary B.5laorollary 8.8, we obtain
the general description of the radicalSfl,(n) whenR is a field.

8.13.Corollary. Suppose thak is a field andy € R. Then
{Ex—E,:XeAY peAf X~ pand) # p}| J{E\: A€ AY anddyaa(q) =0}
is a basis oRad Sol, ().

Finally, we can use Theorem 8/11 to describe the radical madticible modules for
each of the subalgebras $61,(n) described in Proposition 7.6. For brevity we state only
the following result.

8.14. Corollary. Suppose thaR is a field,n > 1 andgq € R. Let A be one of the
subalgebra§olj;(n), Solj(n), Sol(ll(n) of Soly(n). ThenRad A = A N Rad Soly(n).
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9. THE HOPF ALGEBRA OF CYCLOTOMICSOLOMON ALGEBRAS

In this section we fix» > 1 and show that the direct sum of cyclotomic Solomon
algebrasd,,~., Sol(G,.,,) is a concatenation Hopf algebra, whe&rg, = {15, ,} is the
trivial group. Further, this Hopf algebra is a Hopf subalgetf the Hopf algebra of colored
permutations introduced by Baumann and Hohlweg [3].

Most of the results in this section hold over an arbitrarggnal domain, however, the
main results of this section (Theorém 9.7 and Corollary,%h8)d only in characteristic
zero. Consequently, for this section we fix a fikldf characteristic zero and we work only
over this field. Thus, all tensor products are okearll modules aré-vector spaces and
all algebras ar&-algebras. In particular, the cyclotomic Solomon algebrasG, ,,) =
Solk (G, ,,) arek—algebras.

We first recall some general facts about bialgebras and Hgpbeas.

A k—coalgebrais a triple (A, J, ) consisting of &-vector spacel together with two
linear maps): A— A ® A (comultiplication) and : A—k (the counit) such that

(6®ida)0d = (ida®3)od and (e®ids)od = (ids®e) o4,

whereid 4 is the identity map o.

A k—bialgebra is a coalgebrd A, §,¢) such thatA is ak—algebra and the structure
mapsi: A — A ® A ande: A — k are algebra homomorphisms. Hopf algebra is
a quadruplg 4,4, ¢, S) where(A, d,¢) is a bialgebra and': A — A (the antipode) is a
linear map such thai(S ® id4)d = ne = u(1 ® S)o. Herep: A A— A : (a,b) — ab
is the multiplication map angl: k— A;1 — 14 is the unit map for the algebra.

Finally, agraded bialgebrais a triple (4,4,¢) where A = @, . An is N—graded
bialgebra and the mapsande are graded (degree zero) vector space homomorphisms. A
graded Hopf algebra is a graded bialgebra which is equipped with an esiipvhich is a
graded vector space homomorphism of degree zero. A grad&gkbra, or a graded Hopf
algebraA = @, -, An is connectedif 4y = k.

Following Baumann and Hohlweg [[3], we next define the (gradednected) Hopf
algebra of coloured permutations. This will require someppration. As a graded vector
space this Hopf algebra is the direct sum of the group algetfrgroups, ,:

G(r) = PkGyn.

n>0

We need some more notation before we can describe the Hagifralgtructure o7 ().

First, suppose that: andn are non—negative integers. Thén ,,, x G, , is naturally
isomorphic to the reflection subgrodqy,,, .y of G, ,1,. By identifyingG,. ., x G,.,, and
G (m,n) We have an embedding, .., x G, — Gr.min. Explicitly, this embedding sends
the generatorgso, . .., Sm—1} Of Gy t0 {50, ..., Sm—1} IN Gy 4, and the generators
{50, y8n—1} OFf Gy, 1O {tst1, Smt1s-- -, Smin—1]}, respectively.

By Proposition 4.7 there is a natural bijection between €5, .,y = %, ) Of right
coset representatives 6f,, ) in G, and the set of row standaceh, n)-tableau. The
productx on the Hopf algebré (r) is the bilinear map determined by

U*xv = Z (u X ’U)@ = (U X 'U>E(7n,n)7
€EE(m,n)

foru € G, v € G, and whereu x v is multiplication insideG,. ,,,+,, (theinternal
producton ¢(r)). The product on ¢(r) is called theshuffle product, or theexternal
product on ¢(r) because, by Proposition 4.%(,, ., is in bijection with the ways of
shuffling the two set§1,...,m} and{m + 1,...,m + n} together. It is easy to check
thatEg) = 1g,, € Sol(G.,0) is the unit for the shuffle product.

To define the coproduct of(r) observe that forn = 0,...,n any elemeny € G, ,
can be written uniquely in the form = e;.' (g(m) X g(n)), Wheregi,y € Grom, gn) €
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Grn ande,, € &, ). Using this notation, theoproduct A on¢(r) is the linear map
determined by

A(g) = Z 9m) D 9(n)>
m=0

forg € Gy .
9.1.Example In order to better distinguish between the eleméhts for different values
of n recall from the end of section 2 that there is a natural bigpedbetweernss, ,, and the
set of wordsG,,, = {w=w;...w, :w; € n¢cand{|wi|,...,|wy|} =n}. To give an
example of the shuffle product and the coproduc¥@n) we identifyG,. ,, andg,. ,, using
this bijection.
Suppose thal < a, b, ¢, d < r. Then, using the identification above,
1¢ 2¢° % 2¢° 1¢% = 1¢22¢%4¢°3¢ + 1¢*3¢P4¢e2¢ + 1¢4¢b3¢e2¢?
+2¢3¢P4¢e1¢ + 2¢74¢03¢e1¢ + 3¢eactace1e
and
A(263¢P1¢°4¢Y) = 0 © 2¢*3¢P1¢°4¢ 4+ 1¢° ® 1¢*2¢° 3¢ + 2¢°1¢° © 1¢"2¢7
+2¢*3¢°1¢° @ 1¢7 + 2¢3¢"1¢°4¢? @ 0,
wheref) is the empty word irG,. . O

As remarked abovey ) = 1¢, , is the multiplicative unit for the shuffle product. The
counit of¢(r) is the linear map : 4(r) — k defined by

E( )_ 1 iwaE(o)EGno
10 otherwise.

9.2. Theorem (Baumann and Hohlweg [3, Theorem 1JJhe triple (4(r),A,¢) is a
graded connected bialgebra.

Infact, (¢ (r), A, ) is a Hopf algebra at least whéris a field because every connected
N-gradedk-bialgebra is a Hopf algebra; see [28, EX. 1, page 238].
We remind the reader that> 1 is fixed throughout this section.

9.3.Definition. Thecyclotomic Hopf algebrds the graded vector space

Sol(r) = @D Sol(Gy.n)-
n>0
The cyclotomic Hopf algebra is naturally graded wébi(r),, = Sol(G,.,,) and, as a
vector spaceSol(r), is finite dimensional with basi§ E,, : 1 € A }. For convenience,
we setl, = E(,, forn € Z.
Our next aim is to show th&ol(r) is a Hopf subalgebra o¥(r). We begin with a
Lemma which generalizes 6.7(a).

9.4.Lemma. Suppose that, 5 € Aff with G, C Gg. Then&? = &, N G is acomplete
set of minimal length right coset representatives@rin Gz and &, = &2&5.

Proof. It is clear that&? is a complete set of right coset representativesdgrin G .
Moreover, by definition, it € &7 thene is the unique element of minimal length in the
cosetG,e. To prove the second statement observe that

Grn= [I God =TT (] Gae)d
de&s d€Es  cesf

So,cf(f &3 is a complete set of coset representativegipin G, ,. Therefore£, = cffé"g
since the elements of both sides are of minimal length irr lespective cosets. O
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9.5.Proposition. Suppose that € AE andv € A*. Then

EM * B, = uly € So'(Gr,n+7n)
wherep Uv = (p1, ..., 1, v1, .- . ., vg) is the concatenation of two signed permutations.
Proof. By definition, £, « E, = (E, x E,) E, ) Where, as above, we interpig}, x £,
as an element okG,, ) € kG,,. Therefore, it is enough to prove th&}, , =

éﬁ’f;,")g(mm). However, this follows immediately from the previous Lemimecause

Guu,j = GH x G, C G(m’n). O
Notice that the Proposition says thadl(r) is a subalgebra o¥(r) and that, as an
algebraSol(r) is freely generated by the elemeft&,, : n € Z }.

9.6.Proposition. Suppose that is a positive integer. Then
m=0

b) A(E)= 3 E_p® .

m=0
Proof. Part (a) follows directly from the definitions. This resustwell known because
E, = 1g,,, is the identity element dfG,. ,, so we omit the details.
For part (b), observe thdt_,, = F{,,) = >, t. Therefore,

A(E_,) = > ALSr .. to)

a=(a1,...,an)ELT,

n

3 Zn: e @t e
En: Z e Pm @t

m=0 pBeZ,
YEL;,

n—m

- i E—m ® Em—na

m=0

as required. O

We henceforth adopt the unusual convention Eé,;:a flm)=3% _, f(m)ifb < a.
This allows us to write the Proposition 9.6 more compactiy\d#,,) = "m’;o E,®
E,,—m,forneZ.

As the coproduct is an algebra homomorph&ifr) — ¢(r) ® ¢(r) it follows from
the last two Propositions thbl(r) is a sub-bialgebra o¥ (r).

Let P be a set of non-commuting indeterminates dkerThe concatenation Hopf
algebraonP is the free associativie-algebrak(P) on P with counite, wheres(f(P)) =
f(0) is the constant term of(P) € k(P), coproducti(p) = p® 1+ 1®pforanyp € P,
and antipodeS determined byS(py ...px) = (=1)*pi...p1, forpy,...,pr € P. Any
functiondeg : P — N extends to a degree function on the monomialg(R) by setting
deg(p1...pr) = deg(p1) + - - - + deg(px). In this way,k(P) = ,,~,k(P), becomes
a graded connected Hopf algebra, whie(P),, is the space of homogeneous polynomials
p1...pr In P with deg(py ...px) = n.

We can now prove the main result of this section. Up until nosvhave not used the
assumption thak is a field of characteristic zero. This assumption is necgshawever,
for the proof of the following Theorem.

9.7. Theorem. Suppose thak is a field of characteristic zero. Thefbol(r), A, ¢) is
isomorphic to the graded connected concatenation Hopfbalgk(P) on a set of non-
commuting indeterminatd® = { P, : n € Z \ {0} } wheredeg P,,, = n, forn > 0.
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Proof. Our argument is modeled on the proof of [22, Theorem 2.1].

Let = be a formal variable and consider the algebskr)[z] of formal power series in
x overSol(r), wherex commutes wittSol(r). For each positive integer define elements
P, € Sol(r)[z] using the generating series

ZPJC =log(1+4 Eyx + Eyz® 4 --+)
n>0

and

Y Pt =log(l+ E_jz+ E g’ +---).
n>0
A straightforward calculation using Proposition 9.5 and ffaylor series expansion of
log(1 + t) shows that
_1)15(@)—1 _1)£(a)—1

( (
P, = E, and P_, = E,.
agﬁ (o) ,aze:An ()

(Recall that/(«) is the number of non-zero partsdn) Therefore P, P_,, € Sol(G, )
are homogeneous of degregin particular, P.,, € Sol(r), for all n > 0. Consequently,
the elementg P, : n > 0} generate a subalgebra®sl(r).

Similarly, since} , -, E1n2™ = exp(d_,,-, P+nz"), another completely formal cal-
culation using the Taylor series expansioneab(z) and Proposition 9.5 shows that if

n > 0then
E—Zz P, and E_, = Z E 'a,
aEN, —a€N,
where we seP, = P,, x--- % P,,,fora = (aq,...,a;) € £A,,. Therefore, by the last

paragraph, thes& = { P, : n € Z \ {0} } freely generateSol(r) as an algebra. That s,
Sol(r) = (P1, | n > 0) as an algebra.

We claim thatA(P,) = P, ®1+1® P,, forn € Z\ {0}. This will complete the proof
because it shows that these elements generate a conaatedapf algebre(P) inside
Sol(r). Starting from the definition oP..,, we have that

Z A(Pypa™) = Z log( Z Einx" = log ( Z A(Ein)x"),

n>0 n>0 n>0 n>0
where the last equality follows by the linearity of Taylompaxsions sincé\ is an algebra
homomorphism. Using Propositidn 9.6 to expand the righthside of the last equation,
exactly as in the proof of [22, (2.9)], shows th&atP.,) = P, ® 1 + 1 ® P,. This proves
our claim and so completes the proof. O

9.8.Corollary. Suppose that > 1. Then the graded vector spaSel(r) equipped with
the product«, coproductA, unit £, and counite, is a graded connected Hopf subalgebra
of G (r).

10. ASECOND BIALGEBRA STRUCTURE ONSol(r)

In this section we show that the cyclotomic Hopf algebe ) has a second bialgebra
structure with the same coprodufit as in section 9, but where the product is inherited
from multiplication in the groupss,. ,,, for r,n > 0. More precisely, thénternal product
is the unique bilinear map ¢ (r) — ¢(r) such that ifw € G,.,,, andv € G,.,, then

wv, ifn=m,
w-v = .
0, otherwise

We frequently abuse notation and writg = = - y, for z,y € ¢(r). Itis straightforward
to check thatSol(r), A, ¢, -) is a bialgebra.
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As each of the group algebras;,. ,, are associative algebras it follows tii&t(r), -) is
an associative algebra. Note, however, t#(r), -) does not have a multiplicative unit,
S0 we cannot expect to obtain a second Hopf algebra struatiffel () in this way. Note
also that the internal productioes not respect the grading @iir) = @, kG, ..

By Theorem 6.85ol(r) is a subalgebra of the algeb(&(r),-). We will show that
(Sol(r),-,A) is a sub-bialgebra ¥ (r). To prove this we need only show thatis an
algebra homomorphism with respect to the internal prodlibe argument that we give
generalizes that used by Malvenuto [21, Remark 5.15] togtbe analogous statement
for the descent algebra of the symmetric group. We start sathe new definitions.

A pseudo signed compositionf n is an element = (c1,co, ..., c;) € Z*, for some
k > 0, such thatc| = |c1| + |c2| + - - - |ex| = n. A pseudo compositionis an element of
N*, for somek > 0. The difference between (signed) compositions and psesigogd)
compositions is that pseudo (signed) compositions camagozeros. Ifc is a pseudo
signed composition lat be the signed composition obtained by omitting the zeras fto
For example, it = (—2,0,3,0,1) thenc = (—2,3,1).

If ¢ € Z* is a pseudo signed composition then 8gt= Es. If c,c¢’ € Z* are two
pseudo signed composition of the same length there’ € Z*, where addition is defined
componentwise. We extend the operation of concatenatipagodo signed compositions
in the obvious way so that i € Z* andc’ € Z! thenc U ¢’ € ZF*,

Two integersc and¢’ aresign equivalent and we writec ~sgn ¢/, if ¢ andc’ are both
non—negative, or both non-positive. Similarly, two (psgudigned compositions =
(c1,...,cp)andc’ = (cf,. .., c,) are sign equivalent if; ~sqnc;, fori = 1,..., k. Again,
we writec ~ggnc’.

10.1.Proposition. Suppose that € A and that/(u) = k. Then
A(EN) = Z Eo @ Egr.

c’ ngnC”EZk
M:C/+CN

Proof. We argue by induction ok. As A(Ey) = Ey ® Ey the casék = 0 is clear. So
we may assume that > 0. Letv = (ug,...,pux—1) SO thaty = v U (ug). Then, by
Proposition 9.5 and Proposition 9.6,

A(E,) = A(E, x E,,) = A(Ey) x A(E,)

(Y BesEa)s S B, ® By )

<! ngnc//ezk—l m=0

v=c'+c"’

by induction onk. (If ux < 0 then recall our unusual convention for summations from
after Proposition 9.6.) Therefore, using Proposition 8r5fie second equality,

Mk

A(EN) = E E EC' * E’rn X Ec// * Eﬂk_m
< ngnc/lezk—l m=0
v=c'+¢"

223
> > Eertim) ® Eertiug—m)

<! ngnc//ezk—l m=0
v=c'+c"

= Z Eo ® Egr

C/ ngnc//ezk
;L:C/+c”

as required. O
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Letk,! > 0 be positive integers and Idtat;; (Z) be the set ok x [ integer matrices. If
M € Maty(Z) letrow(M) = (rq, ..., r) be the pseudo composition wheres the sum
of the absolute entries in rowof M, for 1 < ¢ < k. Similarly, letcol(M) = (c1,...,cx)
be the pseudo composition whetgis the sum of the absolute values of the entries in
columnj of M. Finally, if M € Maty(Z) let comp(M) be the signed composition
obtained by listing the non—zero entriesif in order, from left to right and then top to
bottom; thus, ifM = (m;;) thencomp(M) = (m11,..., M1, Ma1, ..., ME1, .., Mi).

If c = (c1,...,cx) is apseudo signed composition then defifie= (|c1], ..., |ck|). In
the next definition we are most interested in the case wherdy are signed compositions.
We include pseudo signed compositions in the definition iseahey are needed in the
proof of Theorem 10.5 below.

10.2.Definition. Suppose that = (u1, ..., ux) andv = (v4,...,1;) are pseudo signed
compositions of.. Let
row(M) = pt, andcol (M) = v,
,/\/IW{M(mij)GMatkl(Z) mijSOif,ui<00rif1/j<0, }
andm;; > 0if y; > andy; >0
Suppose now that/ = (m;;) € N,,.. Theweightof M is the non-negative integer

Wt(M) = — Z Mg,
i <O
jv; <0
where in the sumh <7 < kand1 < j <[ (note thatm,; < 0 for all suchs, j5). If x andv

are signed compositions lat,; be the unique row semistandard tableausiy, ) such
thatj appearsim;;| timesinrowi of T, for1 <i < kandl < j <.

Note that if, andv are compositions and/ = (m;;) € N, thenwt(M) = 0 and
mi; > 0,forl <i </{(p)andl < j < {(v).

10.3.Proposition. Suppose that andv are signed compositions of Then

E,LLED = Z rWt(jw)Ecomp(M)
MEeN,.

Proof. By Theorem 6.8F,E, =" ;o s IT_ ind(—v)| Eunay- Therefore, to prove the
Proposition it is enough to show that there exists a bijechg, — Z,+,+: M — dy
such thatomp(M) = p N dpv andr™ ) = T g0 ).

First, observe that the may,, — 7 (i, v); M — T,y is a bijection because its inverse
is the map which sends the table@iuc 7 (p,v) to Mt = (m;;), where|m;;| is the
number of times thaj appears in row of T, and where the sign of;; is determined
by the constraints owV,,,. Next, by [(5.5), the maf (u,v) — Z+,+; T — dr- is a
bijection. Hence, the map

N,_w — 9H+V+; M — d]\/[ = dT}‘w
is a bijection.

Fix M € N,,. Thenwt(M) = wt(T,) in the notation of Corollary 5.8, so that
P M) =T 4., (-] Hence, it remains to prove thedmp(M) = p N dpsv. The per-
mutationd,, is determined by the row semistandard tabl€avhich, by the last paragraph,
also determined/ = (m;;). If m;; # 0 then|m,;| is equal to the number of times that
appearsinrowof T. Writing G,, = G, x---x Gy, andG, = G,, x---xG,,, and abus-
ing notation slightly, we see that;; computes the intersection 6f,,, with dMGyjd_l;
more precisely,

G(’I‘, 1,mij)’ if ™My > O7

G, Ndy Gy dif = .
Hi M S {6—7"@,‘7 if m;; < 0.
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Comparing this with the recipe given in the proof of Lenimafercomputingu N dsv
we see thatomp(M) = N dyv, as required. O

Garsia—Remmel [13, Prop. 1.1] (see also [§4)), proved the analogue of this result
for the Solomon algebras of the symmetric groups. This isvatpnt to special case of
Proposition 10.3 whep andv are both compositions ef. If 11, v € A,, then the bijection
Nuw = 2,., is well-known; see, for example, [19, Theorem 1.3.10].
10.4.Example As in Example 5.9, suppose that= (3, —-2) andv = (—22,1). The
following table lists all of the elements d¥,,,,, together with the associated signed com-
position and row semistandayd-tableau of typer and the weight of the matrix.

M comp(M) T wt(M)
CA0) (2o Bl

_02 72(1)) (_2715_2) 1j11s | 2

Sy (k-1 [fels| oo

(
(
(22 0) (-1,-2,-12) [lelo] 1
(
(

—92 _02(%) (7271572) 212 3| 2

The reader might like to compare this table with the one gimelaxample 5.9.
Combining the information above with Proposition 10.3 shdkat

E(g),g)E(722’1) = 2T2E(72)1,,2) + ’I"E(,Q’,]_:S) + TE(71,72,712) + ’I"ZE(,12}17,12).
This calculation agrees with Example 6.10, as it must. O

Suppose thad!” = (m;;), M" = (m];) € Maty(Z), for somek,! > 0. ThenM’ and
M" aresigned equivalenf and we writeM’ ~gsqn M, if m;j ngnmg’j, forl1 <i: < kand
1<j<l

We can now prove the main result of this section.

10.5.Theorem. Suppose that > 1. ThenSol(r) equipped with product coproductA
and counitz, is a bialgebra.

Proof. As remarked at the beginning of this section, it remains tmstihat the coproduct
A Sol(r) — Sol(r) ® Sol(r) is an algebra homomorphism with respect to the internal
product-. By linearity it is enough to show that

A(E,E,) = A(E,)A(B,),

for all signed compositiong andv. Further, we may assume that = |v| since otherwise
both sides of this equation are zero. lket= ¢(;) andl = ¢(v) and forM € N, let
(M) = £(comp(M)). Then, by Proposition 10.3 and Proposition 10.1,

A(E;LEV): Z TWt(A{)A(Ecomp(M))
MeN,.

§ E ,rwt(M)Ec, ® EC”y
MeN . ¢ ~sgnc” €25
comp(M)=c’'+c"’

For the moment, fix a matrid/ € N, andc’,c” € Z“M) such thatc’ ~sgnc” and
comp(M) = ¢’ + ¢”. Sincec’ ~sgnc” there exist unique matrice®’ = (m;;), M" =
(m;;) € Matkl (Z) SUCh thaM = M, + M”, M ngnM/ ngnM//, Comp(M/) - g and
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comp(M") = ¢’. Note thatwt(M) = wt(M’) + wt(M") sinceM’ ~sga M". Therefore,
the last equation becomes

A(EILEV) = Z Z TWt(MI)Ecomp(M’) ® TWt(M”)Ecomp(M”)
MENu, M’ ~sgnM"
M'+M"=M

For each paitM’ and M" in the second sum lgt’ = row(M’) and u”” = row(M").
Theny' andy” arepseudosigned compositions such that= p' + p/ and p’ ~ggnpt”.
Similarly, v/ = col(M') andv” = col(M") arepseudasigned compositions such that=
v + 1" andv’ ~ggav”’. By signed equivalencé/’ € N,,,,» andM” € N,,». Moreover,
M'" andM" run throughV,,,,» andN,,,, respectively, for all possible’, 1, v" andv”,
asM runs throughV,,,.. Observe thatif\/’ € N,,,,, andM"” € N, forp/, ;v and
V" as above, theR]’ ~sgn M sincep’ ~sgnp”” andy’ ~sgnr/”’. Therefore, we can reverse
the order of summation in the last displayed equation toinbta

wt(M’ wt(M"’
A(EMEU) = E § r ( )Ecomp(]VI’) r ( )Ecomp(]W”)
w ngn#” M/GN“/V/
'u,:p,,*i’#,,, M”EN’“HV//

4 ""sgnV/
V:l//Jrl/”
- Z ( Z TWt(M,)Ecomp(M’))(@( Z 7"Wt(M”)Ecomp(M//))
l"/ NSQHN’” ]\4’6./\/#/1,/ M EN[J.//V//
e
V' ~ggnl
V:V/_,’_V//
_ ( Y Bu® Eu”) ( Y Ese EV,,)
MI ngnli// v ngnV//
IL:#/‘H"” l/:l//-i-l/”
= A(E,)A(E,),
where the last two equalities follow by Proposition 10.3 &ndposition 10.1 respectively.
This completes the proof. O
ACKNOWLEDGMENTS

Many of the results in this paper were inspired by extensoraputer calculations us-
ing programs written using & [26]. We thank N. Bergeron and M. Aguiar for useful
conversations.

REFERENCES

[1] M. D. ATKINSON, Solomon’s descent algebra revisiteBull. London Math. Soc24 (1992), 545-551.
[Page]

[2] M. D. ATKINSON, G. PFEIFFER AND S. J. \AN WILLIGENBURG, The p-modular descent algebras
Algebr. Represent. Theor,(2002), 101-113 Hagek 1 arid 21.]

[3] P. BAUMANN AND C. HOHLWEG, A Solomon descent theory for the wreath prod@€tsS,,, Trans. AMS,
to appear.fages #, 23, and 24.]

[4] D. BAYER AND P. DIACONIS, Trailing the dovetail shuffle to its lairAnn. of Appl. Probab2, Number 2,
(1992), 294-313.Hagé 1]

[5] F. BERGERON N. BERGERON R. B. HOWLETT, AND D. E. TAYLOR, A decomposition of the descent
algebra of a finite Coxeter groygd. Alg. Comb. 1 (1992), 23—-44.Hageb 1 arid 14.]

[6] T. P. BIDIGARE, Hyperplane arrangement face algebras and their associbtatkov chains PhD thesis,
Univ. Michigan, 1997. fagé 1]

[7] D. BLESSENOHL, C. HOHLWEG, AND M. SCHOCKER A symmetry of the descent algebra of a finite
Coxeter groupAdv. Math.,193(2005), 416—437 Hagé 1.]



CYCLOTOMIC SOLOMON ALGEBRAS 31

[8] D. BLESSENOHL ANDH. LAUE, The module structure of Solomon’s descent algebraust. Math. Soc.,
72(2002), 317-333.Hagé 1]

[9] C. BONNAFE AND C. HOHLWEG, Generalized descent algebra and construction of irredecitharac-
ters of hyperoctahedral groupé&nn. Inst. Fourier (Grenobleh6 (2006), 131-181. With an appendix by
P. Baumann and C. Hohlwegapé 21.]

[10] C. BONNAFE AND G. PFEIFFER Around solomon’s descent algebrpreprint, 2006 , preprint, 2006.
Math.RT/0601317.Hagé 1]

[11] K. BREMKE AND G. MALLE, Reduced words and a length function (e, 1, n), Indag. Math.8 (1997),
453-469. pagé 3]

[12] A. GARsIA AND J. REMMEL, Shuffles of permutations and the Kronecker prod@taphs Combin.
1(1995), no. 3, 217-263pfge 29.]

[13] A. M. GARSIA AND C. REUTENAUER, A decomposition of Solomon’s descent algel#dv. Math., 77
(1989), 189262 Hages 1 and 29.]

[14] M. GEck AND G. PrEIFFER Characters of finite Coxeter groups and Iwahori-Hecke atgebOxford
University Press, New York, 200024gé 6.]

[15] I. M. GELFAND, D. KROB, A. LASCOUX, B. LECLERC, V. S. RETAKH, AND J.-Y. THIBON, Noncom-
mutative symmetric function8dv. Math.,112(1995), 218—-348 Hages 1 ard|2.]

[16] I. M. GESSEL Multipartite P-partitions and inner products of skew Schur functians€Combinatorics and
algebra (Boulder, Colo., 1983), Contemp. Mat4, Amer. Math. Soc., Providence, RI, 1984, 289-317.
[Pagé 2]

[17] J. FuLMAN, Descent algebras, hyperplane arrangements, and shuffiirdscProc. Amer. Math. Sod.29
(2001), no. 4, 965-973pPfgé 1]

[18] S.K. Hsiao AND T.K. PETERSEN The Hopf algebras of type B quasisymmetric functions an# fgec-
tions preprint 2006. math.CO/061097®agé 2.]

[19] G. AMES AND A. KERBERThe representation theory of the symmetric gremgyclopedia of Mathematics
and its Applications16, Addison-Wesley Publishing Co., Reading, Mass., 1984gé[29.]

[20] C. K. Mak, Quasi-parabolic subgroups @¥(m, 1, ), J. Algebra246(2001), 471-490.Fagé 8]

[21] C. MALVENUTO, Produits et coproduits des fonctions quasi-sygtnques et doe I'algbre des descentso.
16, Laboratoire de combinatoire et d'informatique néattatique (LACIM), Univ. du Qébeca Montieal,
Montréal, 1994. pagé 27.]

[22] C. MALVENUTO AND C. REUTENAUER, Duality between quasi-symmetric functions and the Solomon
descent algebral. Algebra177(1995), 967—982 Faget 1, 2, and 26.]

[23] R. MANTACI AND C. REUTENAUER, A generalization of Solomon’s algebra for hyperoctahedpaups
and other wreath product€omm. Algebra23(1995), 27-56.Hages 2 arid 21.]

[24] A. MAaTHAS, Hecke algebras and Schur algebras of the symmetric gromgv. Lecture Notes15, Amer.
Math. Soc., 1999 .Hages §,17.18, 9, ahd 10.]

[25] G. PFEIFFER A quiver presentation for Solomon’s descent algelmaprint 2007. Math.RT/0709.3914.
[Page]

[26] M. Schbnert et al.Gap: groups, algorithms, and programmingehrstuhl D fir Mathematik, RWTH
Aachen, 3.4.4 edition, 1997k4gé 30.]

[27] L. SoLomoN, A Mackey formula in the group ring of a Coxeter group Algebra41 (1976), 255—-268.
[Pages 1 arfd 13]

[28] M.E. SWeEDLER, Hopf algebrasMathematics Lecture Note Series W. A. Benjamin, Inc., NewkYt969
Vii+336 pp. Pagé 24]

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW 2006, AJSTRALIA.
E-mail addressa. mat has@syd. edu. au

DEPARTMENT OFMATHEMATICS, DARTMOUTH COLLEGE, HANOVER, NH 03755-3551, USA.
E-mail addressr osa. c. or el | ana@lar t nout h. edu



	1. Introduction
	2. Complex reflection groups of type G(r,1,n)
	3. Reflection subgroups
	4. Distinguished coset representatives.
	5. Double Coset representatives
	6. The cyclotomic Solomon algebra
	7. The generic cyclotomic Solomon algebra
	8. The representation theory of `39`42`"613A``45`47`"603ASolq(n)
	9. The Hopf algebra of cyclotomic Solomon algebras
	10. A second bialgebra structure on `39`42`"613A``45`47`"603ASol(r)
	Acknowledgments
	References

