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Abstract. We consider geometric decompositions of aspherical 4-
manifolds which fibre over 2-orbifolds. We show first that no such
manifold admits infinitely many fibrations over hyperbolic base
orbifolds. If E is Seifert fibred over a hyperbolic surface B and
either B has at most one cone point of order 2 or the monodromy
has image in SL(2, Z) then E it has a decomposition induced from
a decomposition of B.

An n-manifold M admits a geometric decomposition if it has a finite
collection S of disjoint connected 2-sided hypersurfaces such that each
component of M −∪S∈SS is geometric of finite volume, i.e., is homeo-
morphic to Γ\X, for some geometry X and lattice Γ. We shall call the
hypersurfaces S cusps and the components of M −∪S∈SS pieces of M .
The decomposition is proper if the set of cusps is nonempty.

We shall consider the possible geometric decompositions of aspherical
orbifold bundles in dimension 4. An orbifold bundle E is the total space
of an orbifold fibration p : E → B over a 2-dimensional base orbifold,
with regular fibre F an aspherical surface. (Here “surface” shall mean
closed 2-orbifold without exceptional points.) Let π = π1(E), φ =
π1(F ) and β = πorb

1
(B), and let θ : β → Out(φ) be the characteristic

homomorphism (or monodromy).
We show first that if χ(E) > 0 then E admits only finitely many orb-

ifold fibrations. In §2 we extend and correct some results on geometries
on bundle spaces from Chapter 13 of [4] to the case of orbifold bundles.
In §3 we constrain the possible geometries of pieces of a given orbifold
bundle. In §4 and §5 we introduce the notions of (algebraically) hor-
izontal and vertical decompositions. In particular, we show that no
decomposition can have both algebraically horizontal and algebraically
vertical cusps, and that if E is Seifert fibred and Im(θ) ≤ SL(2,Z) or
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B has at most one cone point of order 2 then E has a vertical decompo-
sition. The final section considers uniqueness of algebraically vertical
decompositions inducing a given splitting of π1(E).

If G is a group G′, ζG and
√
G shall denote the commutator sub-

group, centre and Hirsch-Plotkin radical of G, respectively. (In all the

cases considered here
√
G is the maximal normal nilpotent subgroup

of G, and in many cases
√
G is abelian.)

1. bounding the orbifold fibrations of a given 4-manifold

The orbifold bundles with flat fibre (χ(F ) = 0) are precisely the
Seifert bundles in 4 dimensions. Every torsion-free group which is
virtually an extension of a surface group by Z2 arises in this way,
and two such Seifert bundles are isomorphic if and only if their group
extensions are equivalent [12]. The extension is in turn determined
by the group π, since χ(B) < 0 implies that φ is the unique maximal
solvable normal subgroup of π. (Note that in [12] “Seifert bundle”
is used to mean a codimension 2 foliation with all leaves compact, in
other words, what we call an orbifold bundle here. He gives also a
corresponding result for orbifold bundles with χ(F ) < 0, subject to an
additional arithmetic hypothesis which implies that φ is a characteristic
subgroup.) Thus if E is Seifert fibred over a hyperbolic base the Seifert
fibration is essentially unique. If however E is an H2 × E2-manifold
it may fibre over the torus T in infinitely many ways, with fibre of
arbitrarily high genus [2]!

If π is a torsion-free extension of an aspherical 2-orbifold group β by a
PD2-group φ with χ(φ) < 0 then the extension is realized by an orbifold
bundle p, and the bundle is determined up to bundle isomorphism by
the group extension [12]. If moreover the action θ : β → Out(φ)
has infinite image and nontrivial kernel then φ is unique and so p is
determined by π. (See Theorems 5.5 and 7.3 of [4] and Theorem 5.3 of
[12].) If θ has finite image there is at most one other such subgroup,
and π is the group of an H2 × H2-manifold. (See Theorem 7.3 of [4].)
We shall show that any orbifold bundle space E with χ(E) nonzero has
only finitely many orbifold fibrations.

Theorem 1. Let π be a torsion-free group which has a normal PD2-
subgroup φ with quotient an hyperbolic 2-orbifold group. If χ(π) > 0
the set of such subgroups is finite.

Proof. Let B be the set of normal PD2-subgroups of π such that β =
π/φ is an hyperbolic orbifold group. Then |χorb(β)| ≤ χ(π), since
|χ(φ)| ≥ 1. Hence there are only finitely many possible isomorphism
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classes of quotients. For each φ ∈ B let dφ be the least index of a
torsion-free normal subgroup in π/φ. Then d = lcm{dφ | φ ∈ B} is
finite.

Let π̂ be the intersection of all subgroups of π of index dividing d.
This is a characteristic subgroup of finite index. If φ ∈ B then π̂/φ∩ π̂
is a PD2-group. There are finitely many such normal subgroups of π̂
[8]. (See also Corollary 5.6.1 of [4].) If ψ is another such group and
φ ∩ π̂ = ψ ∩ π̂ the image of ψ in π/φ is a finite normal subgroup, and
so is trivial. Thus ψ ≤ φ, and hence ψ = φ. Therefore B is finite. �

Note that if φ ∈ B then |χ(φ)| ≤ 42χ(π), since 1

42
= |χorb(S2(2, 3, 7))|

is the minimal area of any hyperbolic 2-orbifold.
If β = Z2 and π/π′ has rank 2 then φ is the unique normal PD2-

subgroup with quotient Z2. If however β = Z2 and π/π′ has rank at
least 3 there may be infinitely many such subgroups φ. (See Theorem
4.2 of [2].) In particular, an H2 × E2-manifold has an unique Seifert
fibration but may fibre over T in infinitely many ways.

A closed 4-manifold is a virtual bundle space if it has a finite regular
covering space which fibres over a surface. If a torsion-free group is
virtually an extension of one surface group by another is it the group
of an aspherical 4-manifold? We may assume that π has a normal
subgroup G which is an extension of a PD2-group G/K by a normal
PD2-subgroup K. If K is characteristic in G (and hence normal in π)
then π is the group of an orbifold bundle, by Theorem 7.3 of [4]. If
χ(π) > 0 and π is virtually a product then it has an index-2 subgroup
which is an orbifold bundle group, but need not itself be such a group.
(See Corollary 9.8.1 of [4].) Is it nevertheless realizable (by an H2×H2-
manifold )? Suppose that χ(φ) < 0 and θ : β → Out(φ) is injective
(type III of [7]). Does π have a characteristic PD2-subgroup?

2. Geometries on orbifold bundles with hyperbolic fibre

Suppose that F is hyperbolic (χ(F ) < 0). The next result extends
Theorem 13.5 of [4], and corrects the assertion regarding decomposi-
tions. (See the subsequent counter-example.)

Theorem 2. Let E be the total space of an aspherical F -bundle over
a 2-orbifold B with χ(B) = 0 and χ(F ) < 0. Then

(1) E admits the geometry H
2×E

2 if and only if θ has finite image;
(2) E admits the geometry H3 × E1 if and only if Ker(θ) has two

ends and Im(θ) contains the class of a pseudo-Anasov homeo-
morphism of F ;

(3) otherwise E is not geometric.
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If Ker(θ) 6= 1 then E has a finite covering space with a geometric
decomposition.

Proof. The arguments of Theorem 13.5 of [4] extend to this situtation.
The only point that needs explanation is in showing that the algebraic
conditions of part (2) suffice. Suppose (2) holds. Then Im(θ) has a
normal subgroup generated by the image of a pseudo-Anasov homeo-
morphism ψ. Let N be the mapping torus of ψ and ν = π1(N). Then
N is an H

3-manifold and π has a normal subgroup of finite index of the
form ν × Z. Hence

√
π ∼= Z, since

√
ν = 1 and π is torsion-free. Since√

φ = 1 the image of
√
π in β is an infinite cyclic normal subgroup.

Flat 2-orbifold groups are 2-dimensional crystallographic groups. Since
β has an infinite cyclic normal subgroup its holonomy group has expo-
nent 2. Therefore it has at least one other independent infinite cyclic
normal subgroup. Thus there is a homomorphism λ : π → Isom(E1)
with λ(

√
π) ∼= Z, and the construction of the cited theorem may be

carried through. �

Let N = X(31) ∪ X(41) be the union of the exteriors of the trefoil
and figure-eight knots, with boundaries identified so that the meridians
and longitudes match. Then E = N × S1 fibres over T with fibre of
genus 2. This manifold is not geometric, but is the union of an H2×E2-
manifold X(31)× S1 with an H3 ×E1-manifold X(41)× S1. (Thus the
argument involving splitting π/φ over σ/σ ∩ φ at the end of p253 of
[Hi] is wrong.)

If B is also hyperbolic then χ(E) > 0 and π1(E) has no solvable sub-
groups of Hirsch length 3. No such bundle space admits the geometry
H

2(C), by Corollary 13.7.2 of [4]. Hence the only possible geometries on
E are H2 ×H2 and H4. There are no known examples of H4-manifolds
which are also bundle spaces.

Theorem 3. Let E be an aspherical orbifold bundle space with χ(E) >
0. Then the following are equivalent:

(1) E admits the geometry H2 × H2;
(2) E is finitely covered by a cartesian product of surfaces;
(3) θ has finite image.

If E is a H
4-manifold then θ is injective.

Proof. The argument of Theorem 13.6 of [4] applies almost without
change. �

See [3] for examples of bundle spaces with B hyperbolic and θ injec-
tive. Are there infinitely many such with given base and fibre? In [1] it
is shown that for any given surfaces B and F there are at most finitely
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many bundles for which π has no abelian subgroup of rank > 1. (For
such groups θ must be injective.) See also [10].

Are there any examples with B hyperbolic, F of genus 2 and θ in-
jective? The genus 2 mapping class group is commensurable with the
pure braid group P6(S

2), and hence with (F (4) ⋊F (3)) ⋊F (2), and so
this seems unlikely. On the other hand, it is easy to see that P5(S

2)
and the genus 2 mapping class group each contain Z2.

Such bundle spaces need not be geometric. Let B = F = T#T .
Then B retracts onto S1 ∨ S1. Mapping one generator of F (2) to the
involution τ which swaps the summands of F and the other to cτc−1

where c is a Dehn twist gives rise to a bundle with base and fibre of
genus 2 and Im(θ) ∼= D.

3. the possible pieces

If χ(B) = χ(F ) = 0 then E has geometry E
4, Nil3 × E

1, Nil4 or
Sol3 × E1, and has no proper geometric decomposition. Thus we may
assume henceforth that F or B is hyperbolic.

Theorem 4. If an aspherical orbifold bundle space E has a proper
decomposition then either

(1) χ(B) = 0, the pieces are H3×E1- or H2×E2-manifolds and the
cusps are flat; or

(2) χ(F ) = 0, the pieces are H2 × E2-manifolds and the cusps are
flat; or

(3) χ(F ) = 0, the pieces are F4-manifolds and the cusps are Nil3-
manifolds; or

(4) χ(E) > 0, the pieces are reducible H2 × H2-manifolds and the
cusps are H2 × E1-manifolds.

Proof. This follows from Theorem 7.1 of [4], with the following observa-

tions. Firstly, nonuniform S̃L×E1-manifolds are also H2×E2-manifolds,
and vice versa [6].

Secondly, if χ(F ) = 0 then
√
φ ∼= Z2 is an abelian normal subgroup.

Hence
√
φ is contained in the group of every cusp, and hence of every

piece. Thus there can be no pieces of type H3 × E1.
Thirdly, if Γ\X is a piece of a geometric decomposition then c.d.Γ =

3 and so φ ∩ Γ 6= 1. Hence if χ(F ) < 0 we must have φ ∩
√

Γ = 1, and

so φ ∩ Γ centralizes
√

Γ. It follows that Γ\X cannot have type F
4 if

χ(B) = 0.
Finally, if χ(E) 6= 0 then π has no poly-Z subgroups of Hirsch length

3, and so we may eliminate pieces with geometry H4, H2(C) or irre-
ducible H

2 ×H
2. Moreover, no reducible H

2 ×H
2 piece can be finitely
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covered by the product of two punctured surfaces, since the inclusions
of the cusps must be π1-injective. Thus the cusps must be H2 × E1-
manifolds. �

Each of the possibilities allowed by this theorem may be realized by
some closed 4-manifold which fibres over a surface. The conclusions of
this theorem apply equally well to virtual bundle spaces.

4. horizontal and vertical cusps

A cusp S of a geometric decomposition of E is horizontal if it is
transverse to all the fibres Fb = p−1(b). If the base is a surface then
p|S is a submersion, and the leaf space of the foliation of S by the
components of S ∩ Fb (for b ∈ B) is a surface which finitely covers B.

The following example shows that S ∩ Fb need not be connected.
Let M(τ) be the mapping torus of the involution τ which swaps the
summands of F = T#T . Then E = M(τ)×S1 fibres over T with fibre
F . Let C be a non-separating essential simple closed curve in To, and
let D = c ∪ τ(C). Then M(τ |D) × S1 is a cusp in E which meets each
fibre in two circles.

A cusp S is vertical if it is a union of fibres. Thus S = p−1(A) for
some 1-dimensional suborbifold A ⊂ B. Since S is connected A must
be either a circle S1 or a reflector interval I. Let D = Z/2Z ∗ Z/2Z =
πorb

1
(I) be the infinite dihedral group.

Lemma 5. Let S be a cusp and σ = π1(S). Then

(1) φ ≤ σ ⇔ p∗σ has two ends;
(2) if S is horizontal then σ ∩ φ ∼= Z, and [β : p∗σ] is finite;
(3) if S is vertical then φ ≤ σ, p∗σ ∼= Z or D and β splits over p∗σ.

Proof. If S is flat or is a Nil3-manifold then σ is virtually poly-Z and
so h(σ ∩ φ) + h(p∗σ) = h(σ) = 3. Hence either σ ∩ φ ∼= Z and p∗σ is
virtually Z2, in which case χ(B) = 0, or σ ∩ φ is virtually Z2 and p∗σ
has two ends. In the latter case [φ : σ ∩ φ] is finite and χ(F ) = 0.

If S is an H2 × E1-manifold then F and B are hyperbolic, and so
centralizers in φ are cyclic, while centralizers in β are finite or have two
ends. If

√
σ ∩ φ = 1 then σ ∩ φ is a PD2-group. Hence [φ : σ ∩ φ]

is finite. If
√
σ ∩ φ 6= 1 then

√
σ ∩ φ ∼= Z and so p∗σ is virtually a

PD2-group. Since p∗σ can have no non-trivial finite normal subgroup
we must have σ ∩ φ =

√
σ ∩ φ ∼= Z.

If [φ : σ ∩ φ] is finite then φ ≤ σ, since φ is a normal subgroup of a
free product (or HNN extension) with amalgamation over σ.

The other two implications are clear. �
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If σ∩φ ∼= Z and [β : p∗σ] is finite we shall say that S is algebraically
horizontal. If φ ≤ σ, p∗σ ∼= Z or D and β splits over p∗σ we shall
say that S is algebraically vertical. It is clear from the lemma that
these possibilities are disjoint and exhaustive. Are there cusps which
are neither horizontal nor vertical (up to isotopy)?

Lemma 6. Let S be an algebraically horizontal cusp. Then the bun-
dle projection induced over some finite covering of the base admits a
section.

Proof. Since S is an algebraically horizontal cusp it is flat (if χ(E) = 0)
or is an H2 × E1-manifold (if χ(E) 6= 0). After passing to a finite
covering, if necessary, we may assume that B is a surface, S ∼= B × S1

and p|S is homotopic to the projection pr1 : S → B. Since pr1 has an
obvious section, there is a section s : B → E with image contained in
S, by the HLP. �

In particular, π is virtually a semidirect product. (A more trans-
parent necessary condition is that π/φ′ must be virtually a semidirect
product.) If χ(φ) < 0 then ζφ = 1 and so π is a semidirect product if
and only if θ factors through Aut(φ).

Lemma 7. Let S be an algebraically vertical cusp. If S is not a Nil3-
manifold then Ker(θ) 6= 1.

Proof. After passing to the covering induced by a finite covering of B
we may assume that S ∼= F × S1, and hence that p∗σ ≤ Ker(θ). �

Let π be the group with presentation

〈a, b, c, d, e, f, x, y | [a, b][c, d][e, f ] = 1, xax−1 = ab, ycy−1 = cd,

[x, y] = e, xc = cx, ya = ay, x, y ⇌ b, d, e, f〉.
Then π is the group of an orientable 4-manifold E which fibres over T
with fibre of genus 3. Since θ is injective E is not geometric. The cusps
in any geometric decomposition of a bundle space with flat base are in-
frasolvmanifolds, and so cannot be algebraically vertical. Since no sub-
group of finite index in β = Z2 admits a section E has no algebraically
horizontal cusps, and hence E has no geometric decomposition.

5. horizontal and vertical decompositions

A geometric decomposition of an orbifold bundle space E is horizon-
tal or vertical if all the cusps are horizontal or vertical, respectively.
Some bundle spaces (such as direct products B × F ) may admit both
horizontal and vertical decompositions. However no decomposition can
involve both types.
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Lemma 8. No geometric decomposition of an aspherical bundle space
E has both algebraically horizontal and algebraically vertical cusps.

Proof. If χ(E) = 0 then either χ(B) = 0 and every cusp is algebraically
horizontal or χ(F ) = 0 and every cusp is algebraically vertical. Suppose
that χ(E) > 0 and S is an algebraically horizontal cusp. Then S is an
H2 × E1-manifold. After passing to a finite covering, if necessary, we
may assume that there is a section s : B → E with image contained
in S, by Lemma 4. Clearly s(B) ∩ Fb = s(b), for all b ∈ B and so
s∗[B] • [F ] 6= 0. (Here it suffices to use F2 coefficients.) Thus it is
not possible to homotope F off s(B). In particular S must meet every
algebraically vertical cusp. �

I am grateful to Peter Scott for the argument for the following lemma.

Lemma 9. Let G be a finite graph of groups and θ : β → πG a
homomorphism. Then B has a corresponding decomposition along a
codimension-1 suborbifold.

Proof. Let M be a finite regular covering of B which is a closed surface,
and let H = Aut(M/B). Then there is a β-equivariant map from

M̃ = B̃ to a β-tree T corresponding to the splitting. This induces
a H-equivariant map from M to π1(M)\T . Using Stallings’ method
of “binding ties”, we may construct a H-equivariant homotopy of this
map to one for which the preimage of each edge of π1(M)\T is a single
closed curve in M . This projects to a 1-orbifold in B which induces
the given splitting. �

If E has a horizontal decomposition with set of cusps S then {S∩F |
S ∈ S} is a compact 1-manifold, and is invariant (up to isotopy) un-
der the action θ. Does E have a horizontal decomposition iff φ has a
β-equivariant splitting? If S has an algebraically horizontal decompo-
sition and Im(θ) ∼= Z is Im(θ) generated by the image of a reducible
self-homeomorphism of F ?

6. seifert fibred 4-manifolds

All Seifert fibred 4-manifolds over flat bases are geometric, of type
E4, Nil4, Nil3 × E1 or Sol3 × E1 [9, 11]. Torus bundles over hyperbolic
surfaces need not be geometric. (See the examples in §3 of Chapter 13
of [4].) However they all have vertical decompositions, as do “most”
Seifert fibred 4-manifolds over hyperbolic bases. Let Kb be the Klein
bottle.

Theorem 10. Let E be Seifert fibred over an hyperbolic base. Then
E is an H

2 × E
2-manifold if F = Kb, and otherwise has a vertical
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decomposition with pieces of type H2 × E2 unless B has at least two
cone points of order 2, at which the action has one eigenvalue −1.

Proof. If F = Kb then φ ∼= Z ×−1 Z and so Out(φ) is finite. Hence E
is an H2 × E2-manifold. (See [9, 11] or Chapter 9 of the 2007 revision
of [4].) Moreover all pieces in any proper geometric decomposition are
of type H

2 × E
2.

If F = T then Out(φ) = GL(2,Z) is virtually free. Conversely,
if Im(θ) is virtually free then Im(θ) = πG where G is a finite graph
of finite groups. If Im(θ) is finite then E has the product geometry.
Otherwise B has a proper decomposition along a 1-dimensional sub-
orbifold into pieces on which θ has finite image, by Lemma 9. We may
clearly assume this decomposition is minimal, and that B has at most
one cone point of order 2, at which the action has one eigenvalue −1.
Since adjoining D(p) to a contiguous suborbifold of B merely adds a
relation to the orbifold fundamental group, there are no such pieces in
the decomposition of B. Since χ(B) < 0 and there are no pieces of
type D(p, p) we may thus assume that every piece is hyperbolic. The
corresponding pieces of E have the product geometry.

The argument simplifies if Im(θ) ≤ SL(2,Z). For if p∗g ∈ β has finite
order n then gn is a nontrivial element of φ which is fixed by θ(p∗g).
Since θ(p∗g) has determinant 1 both eigenvalues are 1, and since it has
finite order θ(p∗g) = I. Hence θ factors through the fundamental group
of the (possibly bounded) surface underlying the base orbifold B. �

The following example shows that the condition on cone points is
needed. Let

π = 〈a, b, u, v, x, y | ab = ba, u2 = v2 = a, ubu−1 = b−1, vbv−1 = b−1,

xax−1 = ab, xbx−1 = b−1, ya = ay, yb = by, [x, y]uv = 1〉.
Then π = π1(E), where E is a Seifert manifold with base B = T (2, 2)
and regular fibre T . The subgroup φ is generated by a, b and Im(θ) is
generated by ( 1 0

0 −1 ) and ( 1 0
1 −1 ). Hence Im(θ) ∼= D is infinite and has

infinite index in GL(2,Z). Thus E has no pieces of type F4. On the
other hand in any decomposition of B into hyperbolic pieces the action
corresponding to at least one piece has infinite image, and so E has no
geometric decomposition at all.

If θ(πorb
1

(S2(p, q, r)) = πG is a finite graph of finite groups then
consideration of normal forms shows that if x, y and xy all have finite
order then they must all belong to the same vertex subgroup, and so
this image is finite. If E is an H2 × E2-manifold and B is a closed
hyperbolic orbifold with orientation cover not of the form S2(p, q, r)
then E has a proper vertical decomposition.
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If a Seifert manifold has a decomposition with all pieces of type F4

then Im(θ) has finite index in GL(2,Z). It seems unlikely that this
condition characterizes such decompositions. (Let B = F = T#T .
Then B retracts onto S1 ∨ S1. Mapping one generator of F (2) to the
involution ( 0 1

−1 0 ) and the other to ( 0 1
−1 1 ) gives rise to a T bundle with

base of genus 2 and Im(θ) = SL(2,Z). This bundle surely has no
decomposition into pieces of type F4 .)

No Seifert fibred 4-manifold has an algebraically horizontal cusp.
Must every cusp be isotopic to one which is vertical?

7. uniqueness up to s-cobordism?

Suppose that two algebraically vertical splittings of E induce the
same splitting of β. Must they be isotopic? We shall explore some
aspects of this question.

Our first reduction is to assume the splittings each have just one
cusp, S and S ′, say. Since they are 2-sided, a necessary condition
that they be isotopic is that we may isotope one off the other. We
shall assume this, and show S and S ′ together bound a codimension-0
submanifold of E which is an s-cobordism.

Lemma 11. Let (G; σ, τ : H → G) be a PDn-triple with τ = cg ◦σ for
some g ∈ G. Then H = G.

Proof. The HNN extension G∗ = G∗H = 〈G, t | tσ(h)t−1 = gσ(h)g−1〉
is a PDn-group. The element g−1t centralizes H , and so 〈H, g−1t〉 ∼=
H ×Z. Since this has cohomological dimension n it has finite index in
G∗. Hence [G : H ] <∞ and so G is a PDn−1-group. Hence G = H . �

We might hope to generalize this as follows. Let M be an n-manifold
with two boundary components. Suppose that these are homotopy
equivalent, and the inclusions are freely homotopic. What additional
assumptions imply that M is an h-cobordism? The following exam-
ple shows that something else is needed. Let ∆ be a contractible n-
manifold with π1(∂∆) 6= 1. Let M = ∆#∆. The two inclusions of ∂∆
as boundary components of M are freely homotopic, since M ≃ Sn−1

and so maps from (n−1)-manifolds into M are detected by the degree.
However M is clearly not an h-cobordism.

Lemma 12. Let j, j′ : S →M be freely homotopic π1-injective 2-sided
embeddings of an aspherical 3-manifold into an aspherical 4-manifold.
If j(S) ∩ j(S ′) = ∅ then there is a codimension-0 submanifold N with
boundary j(S) ∪ j(S ′) and which is an s-cobordism. Moreover, N is
s-cobordant (rel ∂) to S × [0, 1]
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Proof. If j(S) separates M then so does j′(S), and M − j(S) − j′(S)
has three components, one with boundary j(S) ∪ j′(S) and the others
with connected boundary. If j(S) and j′(S) do not separate M then
M − j(S) − j′(S) has two components, each with boundary j(S) ∪
j′(S). In either case a group-theoretic argument using normal forms in
generalized free products shows that for one of these complementary
components with disconnected boundary, N say, the two inclusions
of S into ∂N are freely homotopic. These inclusions are homotopy
equivalences, by Lemma 11, and so N is an h-cobordism from S to
itself. It is an s-cobordism since Wh(π1(S)) = 0 for all aspherical
3-manifolds S.

Since N is an h-cobordism from S to itself, N×S1 is an s-cobordism
from S×S1 to itself. If S is a geometric 3-manifold then S×S1 has the
corresponding product geometry, and the Strong Novikov Conjecture
holds for π1(S) × Z. Hence N × S1 ∼= S × S1 × [0, 1], and so N is
s-cobordant (rel ∂) to S × [0, 1]. �
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