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Abstract. We give constraints on the Seifert invariants of ori-
entable 3-manifolds which admit fixed-point free circle actions and
embed in R4. In particular, the generalized Euler invariant ε of
the orbit fibration is determined up to sign by the base orbifold
B unless H1(M ; Z) is torsion free, in which case it can take at
most one nonzero value (up to sign). No such manifold with base
B = S2(α1, . . . , αr) with r odd and ε = 0 embeds in R4.

The question of which closed 3-manifolds M embed in R4 has re-
ceived surprisingly little attention. (The relevant papers known to
us are [1–7].) In particular, it is not yet known which Seifert fibred
3-manifolds embed, although in many other respects this is a well-
understood class of spaces, with natural parametrizations in terms of
Seifert data. It was shown early that if M embeds in R4 it must be ori-
entable, and the torsion subgroup T (M) of H1(M ; Z) must be a direct
double: T (M) ∼= U ⊕U for some finite abelian group U [5]. Moreover,
the linking pairing ℓM on T (M) must be hyperbolic [7]. Most of the
work to date has focused on smooth embeddings, but these conditions
must also hold if M embeds as a TOP locally flat submanifold.

In §2 we shall observe that T (M) being a direct double imposes
strong constraints on the Seifert data of orientable 3-manifolds which
admit fixed point free S1-actions and which embed in R4. The present
simple argument does not work for Seifert fibred 3-manifolds with
nonorientable base orbifold; in [1] we use the Z/2Z-Index Theorem
to constrain the Euler invariants in the latter case. In §3 and §4 we
describe the linking pairing and the Blanchfield pairing (for infinite
cyclic covers).

When the Seifert data is “skew-symmetric”, i.e., is a set of comple-
mentary pairs the corresponding Seifert manifold embeds smoothly [1].
(Such manifolds have Euler invariant ε = 0 and an even number of
exceptional fibres.) In §5 we show that no Seifert manifold with base
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B = S2(α1, . . . , αr) with r odd and ε = 0 embeds in R4. Here we use
a result of [6] on the Alexander polynomial associated to the canonical
infinite cyclic cover of 3-manifolds M with β1(M) = 1 and which em-
bed in R4. It is not known whether skew-symmetry of the Seifert data
is a necessary condition. In the final sections we consider further the
cases with r = 4 or ε 6= 0 and r = 3.

1. Notation and some remarks on embeddings

An orientable 3-manifold admits a fixed-point free S1-action if and
only if it is Seifert fibred over an orientable base orbifold. Let Tg be
the orientable surface of genus g. We shall assume henceforth that
M = M(g; S) is an orientable 3-manifold which is the total space of
a Seifert bundle over the orbifold B = Tg(α1, . . . , αr), with Seifert
invariants S = {(αi, βi) | 1 ≤ i ≤ r}, where 1 < αi and (αi, βi) = 1,
for all i ≤ r. (We do not assume that 0 < βi < αi). If r = 1 we allow
also the possibility α1 = 1. Let ε = −Σi=r

i=1(βi/αi) be the generalized
Euler invariant of the Seifert bundle, and let Π = Πi=r

i=1αi. (Replacing
each βi by ηβi + ciαi where η = ±1 and Σci = 0 gives a homeomorphic
manifold.)

As B is the connected sum of Tg and S2(α1, . . . , αr) we have M =
M(0; S)♯fM(g; ∅) = M(0; S)♯f(Tg × S1), where ♯f denotes fibre sum.
In particular, if M embeds in R4 then so does M♯f (Tg×S1), by Lemma
3.2 of [1]. In some of our arguments we shall need to assume that g = 0.
Thus it would be very convenient to have a converse to this stabilization
result. (The analogous implication in the case of nonorientable base
orbifolds is not reversible. See [1]).

Let L = L+ ∐ L− be a link which is partitioned into two disjoint
slice links. If we attach 2-handles along L+ to the unit ball D4 in R4

and delete 2-handles embedded in D4 along L− the boundary of the
resulting region of R4 is the result of 0-framed surgery on L. Thus 3-
manifolds with such surgery descriptions embed smoothly in R4. It is
easy to see that any Seifert manifold M(0; S) may be obtained by Dehn
surgery on a link whose components are fibres of the Hopf fibration,
and with framings 6= 1. Are there natural surgery presentations for
Seifert manifolds in terms of 0-framed surgery on links?

2. The torsion subgroup

In this section we shall describe the torsion subgroup of H1(M ; Z)
in terms of the Seifert invariants of M .

Theorem 1. Let M = M(g; S) be an orientable 3-manifold which

is Seifert fibred over an orientable base orbifold B = Tg(α1, . . . , αr).
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Then H1(M ; Z) ∼= Z2g ⊕ (
⊕

i≥0(Z/λiZ)), where λi is determined by

{α1, . . . , αr} and is nonzero, for all i > 0, while |ε|Π = λ0Πj≥1λj.

Proof. The fundamental group π1(M) has a presentation

〈a1, . . . bg, q1, . . . , qr, h | (Π[ai, bi])(Πqj) = 1, qαi

i hβi = 1, h central〉.

Hence H1(M ; Z) ∼= Z2g ⊕ Cok(A), where A is the matrix

A =




0 1 . . . 1
β1 α1 . . . 0
... 0

. . .
...

βr 0 . . . αr




Let Ei(A) be the ideal generated by the (r + 1 − i) × (r + 1 − i)
subdeterminants of A, and let ∆i be the positive generator of Ei(A).
Then ∆0 = |det(A)| = |ε|Π, while as the elements of each row are
relatively prime ∆i is the highest common factor of the (r− i− 1)-fold
products of distinct αjs, if 0 < i < r, and ∆i = 1 if i ≥ max{r − 1, 1}.
(In particular, if r > 2 then ∆r−2 = hcf(α1, . . . , αr)). Thus ∆i depends
only on {α1, . . . , αr} and is nonzero, for all i > 0. If we set λi =
∆i/∆i+1, for i ≥ 0, then Cok(A) ∼=

⊕
i≥0(Z/λiZ), by the Elementary

Divisor Theorem. In particular, |ε|Π = λ0Πj≥1λj. �

Note that T (M) ∼= T (M(0; S)) and h ∈ T (M) if and only if ε 6= 0.

Corollary. If ∆1 = 1 then T (M) is cyclic, and T (M) = 0 if and only

if ε = 0 or ±1/Π. If ∆1 > 1 then T (M) 6= 0. Given {α1, . . . , αr} such

that ∆1 > 1, there is at most one value of |ε| for which the group T (M)
is a direct double.

Proof. As ∆1 = Πi≥1λi divides the order of T (M), this group is nonzero
unless ∆1 = 1. If ε = 0 then T (M) ∼=

⊕
i≥1(Z/λiZ), and so is a direct

double if and only if λ2i−1 = λ2i for all i > 0. If ε 6= 0 then T (M) ∼=⊕
i≥0(Z/λiZ), and so is a direct double if and only if λ2i = λ2i+1 for

all i ≥ 0. In particular, ε = (∆1)
2/Π∆2. Clearly these two systems of

equations can both be satisfied only if λi = 1 for all i > 0 and λ0 = 0
or 1, in which case T (M) = 0. �

The elementary divisors λi may be determined more explicitly by
localization. If p is a prime, an integer α has p-adic valuation v if
α = pvq, where p does not divide qi.

Corollary. Let p be a prime and let vi ≥ 0 be the p-adic valuation of

αi. Assume that the indexing is such that vi ≥ vi+1 for all i. If ε = 0
and T (M) is a direct double then v2j−1 = v2j for all j ≥ 1.
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Proof. The condition v1 = v2 follows immediately from the fact that
pv2ε is an integer. The p-adic valuation of λj is vj+2, for all j ≥ 1, and
so v2j−1 = v2j for all j ≥ 2, if

⊕
i≥1(Z/λiZ) is a direct double. �

If S = {(2, 1), (3,−1), (6,−1)} or S = {(2, 1), (2, 1), (2,−1), (3,−1),
(6,−1)} then T (M(0; S)) = 0 or (Z/2Z)2, respectively, and so the
hypotheses do not imply that r must be even. However in Theorem 2
we shall show that this must be so if ε = 0 and M(0; S) embeds in R4.

Although the βis only contribute to the structure of T (M) via ε, they
play a more substantial role in the linking pairing. (See §4 below).

It follows immediately that M(g; S) is an homology 3-sphere if and
only if g = 0 and εΠ = ±1. In particular, hcf{αi, αj} = 1 for all
i < j ≤ r. If M(0; S) is a Z-homology sphere it embeds as a TOP
locally flat submanifold of R4 [2]. Hence M(g; S) embeds also.

Similarly, M(g; S) is an homology S2 × S1 if and only if g = 0,
ε = 0 and hcf{αi, αj, αk} = 1 for all i < j < k ≤ r. If M is an
homology S2 × S1 there is an (essentially unique) degree-1 map f :
M → S2 × S1. If, moreover, f induces an isomorphism on homology
with local coefficients then M embeds in R4 [4]. However, this is not a
necessary condition for embedding, and it shall follow from Theorem 2
below that if r ≥ 3 no such map with domain M(0; S) is ever a Z[Z]-
homology equivalence. It is not known in general which (Seifert fibred)
homology S2 × S1s embed.

When M is Seifert fibred over a nonorientable base orbifold T (M)
is again largely determined by the set {α1, . . . , αr}, but ε is not con-
strained at all by the condition that T (M) be a direct double [1].

3. Bilinear pairings

A linking pairing on a finite abelian group N is a symmetric bilinear
function ℓ : N × N → Q/Z which is nonsingular in the sense that

ℓ̃ : n 7→ ℓ(−, n) defines an isomorphism from N to Hom(N, Q/Z).

If L is a subgroup of N then ℓ̃ induces an isomorphism L⊥ = {t ∈
N | ℓM(t, l) = 0 ∀l ∈ L} ∼= N/L. Such a pairing splits uniquely as
the orthogonal sum (over primes p) of its restrictions to the p-primary
subgroups of N . It is metabolic if there is a subgroup P with P = P⊥,
split [7] if also P is a direct summand and hyperbolic if N is the direct
sum of two such subgroups. If ℓ is split N is a direct double.

If M is a closed oriented 3-manifold Poincaré duality determines a
linking pairing ℓM : T (M) × T (M) → Q/Z, which may be described
as follows. Let w, z be disjoint 1-cycles representing elements of T (M)
and suppose that mz = ∂C for some 2-chain C which is transverse to
w and some nonzero m ∈ Z. Then ℓM(w, z) = (w.C)/m ∈ Q/Z. It
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follows easily from the Mayer-Vietoris theorem and duality that if M
embeds in R4 then ℓM is hyperbolic. (If X and Y are the closures of the
components of R4 − M and TX and TY are the kernels of the induced
homomorphisms from T (M) to H1(X; Z) and H1(Y ; Z) (respectively)
then T (M) ∼= TX ⊕ TY and the restriction of ℓM to each of these
summands is trivial [7]).

There are analogous pairings on covering spaces of M . In partic-
ular, if φ : π1(M) → Z is an epimorphism with associated covering
space Mφ the homology modules H∗(Mφ; R) are RΛ modules, where
Λ = Z[Z] = Z[t, t−1] and RΛ = R ⊗ Λ = R[t, t−1], for any coefficient
ring R. There is a Blanchfield pairing on the QΛ-torsion submodule of
H1(Mφ; Q) with values in Q(t)/QΛ which is nonsingular and hermitean
with respect to the involution sending t to t−1. Such a pairing is neutral

(or null-cobordant [6]) if the underlying QΛ-torsion module has a sub-
module which is its own annihilator, and is hyperbolic if the underlying
module is the direct sum of two such self-annihilating submodules. If
M embeds in R4 then H1(M ; Z) ∼= H1(X; Z)⊕H1(Y ; Z). Thus if also
β1(M) = 1 the epimorphism φ is unique up to sign, and extends to an
epimorphism on one of the complementary regions. The Blanchfield
pairing of M is then neutral, by Theorem 4.2 of [6]. In particular, the
characteristic polynomial of the automorphism t of the torsion sub-
module of H1(Mφ; Q) is a product g(t)g(t−1) for some g ∈ QΛ − {0}.

4. Pairings on Seifert manifolds

Assume now that M = M(g; S). Then T (M) is a subgroup of the
group generated by the images of h and q1, . . . qr. (We shall use the
same symbols to denote homology classes and representative cycles.)
The Seifert structure gives natural 2-chains relating these 1-cycles. For
let Ni be a torus neighborhood of the ith singular fibre, with meridianal
disc Di, and let Bo be a section of the restriction of the Seifert fibration
to M − ∪i≥1Ni. Then ∂Di = αiqi + βih and ∂Bo = Σqi. Moreover
h.Bo = 1, h.Di = 0 = qj.Bo, qi.Di = βi and qi.Dj = 0 if i 6= j, for all
1 ≤ i, j,≤ r. As these intersection numbers are independent of g, it is
clear that ℓM

∼= ℓM(0;S).
If g = 0 and ε = 0 there is an essentially unique epimorphism φ :

π → Z, and h /∈ T (M). The manifold M is the mapping torus F ×θ S1

of a periodic self homeomorphism θ of a closed orientable surface F ,
and φ is the homorphism induced by the bundle projection. Then
Mφ

∼= F × R, and so H1(Mφ; Q) ∼= H1(F ; Q) as a vector space. Hence
it is a torsion QΛ-module. The Blanchfield pairing is determined by
the intersection form IF on H1(F ; Q) and the isometry θ∗ = H1(θ)
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[9]. In particular, it is neutral if and only if H1(F ; Q) = A ⊕ B where
β1(F ) = 2dimQA, θ∗(A) = A and IF (A, A) = 0.

For small values of r we can compute ℓM explicitly. If r = 1 and
ε = 0 then T (M) = 0, while if ε 6= 0 then T (M) = (Z/εαZ)h and
ℓM(h, h) = −α/β. If r = 2 let x, y be such that xα1 − yβ1 = 1, and
let k = yq1 + xh and k′ = α1q1 + β1h = ∂D1. Then q1 = −β1k + xk′

and h = α1k − yk′, and εα1α2k = ∂(α2Bo − (xα2 + yβ2)D1 − D2). If
ε = 0 then T (M) = 0, while if ε 6= 0 then T (M) = (Z/εα1α2Z)k and
ℓM(k, k) = (xα2 + yβ2)/εα1α2.

In particular, if r ≤ 2 and T (M) is a direct double εΠ = 0 or ±1,
and so M(0; S) ∼= S3 or S2 × S1. (This also follows immediately from
Theorem 1.) More generally, if r ≤ 2 then M = M(g; S) embeds in
R4 if and only if T (M) = 0, in which case M is a circle bundle over Tg

with Euler invariant 0 or ±1.

5. H2 × E1-manifolds with g = 0 and r odd

If S = {(αi, βi), (αi,−βi) | 1 ≤ i ≤ t} (so that the Seifert data
occurs in opposite pairs) a fibre sum construction shows that M(0; S)
embeds smoothly in R4, by Lemma 3.1 of [1]. In this case ε = 0 and
r = 2t is even. In this section we shall show that when ε = 0 and r is
odd M(0 : S) does not embed. It remains an open question whether
“skew-symmetry” of the Seifert data is also necessary for embedding
when ε = 0. Our argument uses the fact that if ε = 0 then M(0; S)
has an essentially unique infinite cyclic cover, and does not appear to
extend easily to the case g > 0.

If r ≥ 3 and ε = 0 then M(g; S) is an H2×E1-manifold, with three ex-
ceptions: M(0; (2, 1), (4,−1), (4,−1)), M(0; (2, 1), (3,−1), (6,−1)) and
M(0; (2, 1), (2, 1), (2,−1), (2,−1)) are flat manifolds.

Theorem 2. Let M = M(0; S), where S = {(αi, βi) | 1 ≤ i ≤ r} is

such that ε = −Σi=r
i=1(βi/αi) = 0. If M embeds in R4 then r is even.

Proof. We may assume that r > 2, and hence that αi > 1 for all i ≤ r.
The group π = π1(M) has a presentation

〈q1, . . . , qr, h | q1 . . . qr = 1, qαi

i hβi = 1, h central〉,

and H1(M ; Z)/T (M) ∼= Z, by Theorem 1, since g = 0 and ε = 0.
Hence there is an essentially unique epimorphism φ : π → Z. Let
ni = φ(qi), for i ≤ r, and µ = φ(h). Choose t ∈ π such that φ(t) = 1.
Then t = whe for some exponent e and some word w in the qis. After
modifying our choice of t, if necessary, we may assume that w = Πi<rqi

fi

for some exponents fi. Let ri = qit
−ni, for i ≤ r and s = ht−µ. Then
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φ(ri) = φ(s) = 0 and π has an equivalent presentation

〈r1, . . . , rr, s, t | Πi≤rrit
ni = 1, se(Πi<r(rit

ni)fi)teµ−1 = 1,

(rit
ni)αi(stµ)βi = 1, stµri = rist

µ, ts = st〉.

On applying the homomorphism φ we see that

(1) Σi≤rni = 0;
(2) eµ + Σi<rnifi = 1;
(3) niαi + µβi = 0 for i ≤ r.

Hence hcf(nifi, µ) < µ for some i < r, hcf(ni, µ) < µ for all i ≤ r and
µ = lcm{α1 . . . , αr}. Let mi = µ/αi, for i ≤ r. We see also that T (M)
is generated by the images of the ri and s, and Σri = 0, αiri + βis = 0
and es + Σfiri = 0. (We may choose e and the fi subject only to the
condition (2). In particular, we may assume that 0 ≤ fi < αi for i < r.
The fi cannot all be 0, since µ > 1. On the other hand, if µ = α1, say,
then we may assume fi = 0 for i > 1.)

We may use the free differential calculus to find a (2r + 3)× (r + 1)
presentation matrix for the Λ-module H1(Mφ; Z). Let ν0(y) = 0 and
νk(y) = (yk − 1)/(y − 1) for k > 0. Then H1(Mφ; Z) = Cok(P ), where

P =




1 tn1 . . . tΣk<rnk 0
νf1

(tn1) tn1f1νf2
(tn2) . . . 0 e

να1
(tn1) 0 . . . 0 tn1α1νβ1

(tµ)
...

. . . 0
...

...
0 0 . . . ναr

(tnr) tnrαrνβr
(tµ)

tµ − 1 0 . . . 0 0
...

. . . 0
...

...
0 0 . . . tµ − 1 0
0 0 . . . 0 t − 1




.

(Here the columns correspond to the generators r1, . . . , rr, s and the
rows to the relations. This can be simplified by row operations, corre-
sponding to Tietze moves on the presentation).

This matrix clearly has maximal rank, and so H1(Mφ; Z) is a torsion
Λ-module. We may tensor over Λ with Q[ζµ] = Q[t, t−1]/(φµ(t)), the
field of µth roots of unity, via the homomorphism sending t ∈ Λ to the
primitive root ζµ. The powers ζni

µ are αth
i roots of unity, and are not

1, since hcf(ni, µ) = mi < µ. Therefore ναi
(ζni

µ ) = 0 for all i. On
the other hand, if hcf(nifi, µ) < µ then νfi

(ζni

µ ) 6= 0. The resulting
matrix has rank 3, and so Q(ζµ) ⊗Λ H1(Mφ; Q) has dimension r − 2
over the field Q(ζµ). Thus if r is odd the characteristic polynomial of
the automorphism t of H1(Mφ; Q) is not a product g(t)g(t−1) for any
g ∈ QΛ − {0}, and so no such manifold can embed in R4. �
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If M, φ, h, s, t, µ are as in the theorem then φ−1(µZ) ∼= Ker(φ) × Z,
since h = stµ is central. Therefore the µ-fold covering space associated
to the subgroup φ−1(µZ) is a product F × S1, where F is a closed
surface, and Mφ

∼= F ×R. Moreover, M ∼= F ×θ S1, where θ has order
µ, and so the base orbifold B = S2(α1, . . . , αr) is the quotient of F by an
effective action of Z/µZ. Hence χ(F ) = µχorb(B) = (2−r)µ+Σi≤rmi.

In particular, H1(Mφ; Z) is never 0, if r ≥ 3. (This is also clear
from the proof of Theorem 2.) Hence there are no Z[Z]-homology
equivalences f : M(0; S) → S2 × S1.

6. H2 × E1-manifolds with g = 0 and r = 4

If M = M(0; S) with r even and ε = 0, and M embeds in R4, must
the Seifert invariants occur in complementary pairs? In this section we
shall examine the simplest nontrivial case, when r = 4. Let δ = ∆2 =
hcf(α1, α2, α3, α4) and let α′

i = αi/δ, for i ≤ r. Since ε is an integer
it follows that each α′

i divides the product of the other three. We
assume henceforth that T (M) is a direct double. Then λ1 = λ2 = δ,
since ∆i = 1 for i > 2. Hence T (M) ∼= (Z/δ)2 and ∆1 = δ2. It
follows that no three of the α′

is have a common factor > 1. Hence
αi = δΠj 6=iaij , where aij = aji = hcf(α′

i, α
′
j), and the aij are otherwise

pairwise relatively prime.
The second corollary of Theorem 1 implies that if α1 = α2 then

α3 = α4. If moreover β1 = −β2 then β3 = −β4, since ε = 0. This is
the case if α1 = α2 and δ = 1 (i.e., hcf(α1, α3) = 1) or if α1 = α2 = 2
or if the αis are all 3 or 6. To go further we need to consider invariants
beyond the group T (M).

The easiest case to consider first is when αi = δ for all i. Here we
may assume that eδ − f1β1 = 1 and f2 = f3 = 0. Then

r1 = q1(q
f1

1 he)β1 = q1+f1β1

1 heβ1 = (qδ
1h

β1)e = 1.

It follows that se = 1 and sβ1 = 1, and so s = 1. Hence the presentation
for π1(M) used in Theorem 2 simplifies to

〈r2, r3, t | tδr2 = r2t
δ, tδr3 = r3t

δ, tβ2δ = (tβ2r−1
2 )δ, tβ3δ = (tβ3r−1

3 )δ,

tβ4δ = (t−β1r2t
−β2r3t

−β3)δ〉.

The torsion group T (M) is generated by the images of r2 and r3. If Di

is the meridianal disc for a regular neighbourhood of the ith exceptional
fibre (as in §4) then δri = ∂(Di+βif1D1) for i = 2, 3. Hence the matrix
of ℓM with respect to these generators is

δ−1

(
β2 − β2

2f1 −β2β3f1

−β2β3f1 β3 − β2
3f1

)
.
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The first case not already settled has S = {(4, 1), (4, 1), (4, 1), (4,−3)}

and δ = 4. In this case ℓM has matrix 1
4

(
2 1
1 2

)
, and is not hyperbolic.

If δ is an odd prime ℓM is hyperbolic if and only if the “discriminant”

(δ)2(ℓM(r2, r3)
2 − ℓM(r2, r2)ℓM(r3, r3)) = β2β3((β2 + β3)f1 − 1)

is a square mod (δ). Since eδ − f1β1 = 1 this reduces mod (δ) to
f 2

1 β1β2β3β4, and so β1β2β3β4 must be a square mod (δ). Although this
a rather weak criterion, it is enough to confirm that if δ ≤ 6, αi = δ
for all i and ℓM is hyperbolic then the Seifert data is skew-symmetric,
and so M(0; S) embeds smoothly.

The next invariant to consider is the homology of the infinite cyclic
cover Mφ, considered as a Λ-module. The above presentation gives a
5 × 2 presentation matrix



tδ − 1 0
0 tδ − 1

νδ(t
β2) 0

0 νδ(t
β3)

νδ(t
β4) νδ(t

β4)




.

It is easy to see that if hcf(β, δ) = 1 then νδ(X
β)−νδ(X) is divisible by

Xδ − 1, while Xδ − 1 = (X − 1)νδ(X). Thus we may further simplify
this matrix, and we find that H1(Mφ; Z) ∼= (Λ/(νδ(t)))

2. In particular,
χ(Mφ) = 4 − 2δ = 4 − 2µ, as observed after Theorem 2.

How does the Blanchfield pairing depend on the βi?

7. S̃L-manifolds

The situation is less clear when ε 6= 0. The manifold M = M(0; S) is

then a Q-homology 3-sphere, and is a S̃L-manifold unless Σ 1
αi

≥ r− 2,

in which case r ≤ 4. The group T (M) = H1(M ; Z) is generated by
the images of q1, . . . qr and h. If εΠ = 1 then M is an homology
3-sphere and so M(g; S) embeds in R4 for all g ≥ 0. It is easy to
find examples with εΠ = 1 for any r ≥ 1 and g ≥ 0. Thus there is no
reason to expect a parity constraint on r for embedding such manifolds.
However, the question of which such homology spheres embed smoothly
is still open. (For instance, the Poincaré homology 3-sphere S3/I∗ =
M(0; (2, 1), (3,−1), (5,−1)) does not. See Problem 4.2 of [8]).

Let δ = hcf(α1, . . . , αr) and let α′
i = αi/δ, for i ≤ r. Then

εΠαiqi = ∂(εΠDi + βi(Σ(Π/αj)Dj) − βiΠBo)

and
εΠh = ∂(ΠBo − Σ(Π/αi)Di),
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where Di and Bo are the 2-cycles defined in §4. Hence

ℓM(qi, qi) = βi(αiεΠ + βiΠ)/εΠα2
i ,

ℓM(qi, qj) = βiβjΠ/εΠαiαj, if i 6= j,

ℓM(h, qi) = −βiΠ/εΠαi and ℓM(h, h) = Π/εΠ.

Since ℓM is nonsingular h = 0 if and only if εΠ divides Π and each
βiΠ/αi, i.e., εΠ = hcf(Π/α1, . . . , Π/αr). In this case T (M) is generated
by any r− 1 elements of {q1, . . . qr}. In particular, T (M) ∼= (Z/δZ)r−1

if and only if εΠ = δr−1. It may not always be so easy to find a minimal
generating set for T (M).

The simplest nontrivial case is when r = 3. We then have ∆0 = |ε|Π,
∆1 = δ = hcf(α1, α2, α3) and ∆j = 1 for j > 1. If T (M) is a direct
double then T (M) ∼= (Z/δZ)2 and εΠ = ηδ2, where η = ±1. Therefore
α′

1α
′
2β3 + α′

1β2α
′
3 + β1α

′
2α

′
3 = −η, and so the α′

is must be pairwise
coprime. (That is, δ is also the highest common factor of any two of
the α′

is). The discriminant of ℓM is ηβ1β2β3. Thus if δ is an odd prime
ℓM is hyperbolic if and only if εΠ = ηδ2 and ηβ1β2β3 is a square mod

(δ).
If αi = δ for all i then β1 + β2 + β3 = ±1. When δ ≤ 4 or δ = 6

we have {β1, β2, β3} = {1,−1}, and there are no further restrictions on
embeddability. For M(0; (δ, 1), (δ, 1), (δ,−1)) embeds smoothly in R4,
since it may be obtained by 0-framed surgery on the (2, 2δ)-torus link.
(See the Appendix to [1].) The cases δ = 2 and 3 give the quaternionic
space S3/Q(8) and a Nil3-manifold, respectively. (If δ > 3 then M

is an S̃L-manifold.) The one case with δ ≤ 6 not covered by this
construction and not excluded by the discriminant condition is when
M = M(0; (5, 1), (5, 2), (5,−2)). (Can Theorem 2.1 of [3] be applied
here to show that M does not embed? On the other hand this manifold
has a fairly simple Dehn surgery model, as in Fig. A2 of [1]. Is there
a corresponding simple 0-framed surgery model?)

If r ≥ 4 then M(g; S) is an S̃L-manifold, unless g = 0, r = 4 and
αi = 2 for all i, in which case M is a Nil3-manifold and does not embed.
(The only 3-manifolds not already mentioned which are Seifert fibred
over orientable bases, have virtually solvable fundamental group and
embed in R4 are the flat manifolds M(0; (2, 1), (2, 1), (2,−1), (2,−1))
and M(1; (1, 0)) = S1 ×S1 ×S1, and the Nil3-coset space M(1; (1, 1)),
which each embed smoothly [1].)

[This is a revision of the University of Sydney Research Report 98-10,
of March 1998.]
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