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Abstract

The minimal faithful permutation degree µ(G) of a finite group G is
the least non-negative integer n such that G embeds in the symmetric
group Sym(n). Work of Johnson and Wright in the 1970’s established
conditions for when µ(H×K) = µ(H)+µ(K), for finite groups H and
K. Wright asked whether this is true for all finite groups. A counter-
example of degree 15 was provided by the referee and was added as
an addendum in Wright’s paper. Here we provide a counter-example
of degree 12.

1 Introduction

The minimal faithful permutation degree µ(G) of a finite group G is the
least non-negative integer n such that G embeds in the symmetric group
Sym(n). It is well known that µ(G) is the smallest value of

∑n
i=1 |G : Gi| for

a collection of subgroups {G1, . . . , Gn} satisfying
⋂n

i=1 core(Gi) = {1}, where
core(Gi) =

⋂

g∈G Gg
i .

We first give a theorem due to Karpilovsky [2] which will be needed later.
The proof of it can be found in [3] or [6].

Theorem 1.1. Let A be a non-trivial finite abelian group and let A ∼= A1 ×
. . . × An be its direct product decomposition into non-trivial cyclic groups of

prime power order. Then

µ(A) = a1 + . . . + an,
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where |Ai| = ai for each i.

One of the themes of Johnson and Wright’s work was to establish condi-
tions for when

µ(H × K) = µ(H) + µ(K) (1)

for finite groups H and K. The next result is due to Wright [8].

Theorem 1.2. Let G and H be non-trivial nilpotent groups. Then µ(G ×
H) = µ(G) + µ(H).

Further in [8], Wright constructed a class of groups C with the property
that for all G ∈ C , there exists a nilpotent subgroup G1 of G such that
µ(G1) = µ(G). It is a consequence of Thereom (1.2) that C is closed under
direct products and so (1) holds for any two groups H, K ∈ C . Wright
proved that C contains all nilpotent, symmetric, alternating and dihedral
groups, however the extent of it is still an open problem. In [1], Easdown
and Praeger showed that (1) holds for all finite simple groups.

The counter-example to (1) was provided by the referee in Wright’s pa-
per [8] and involved subgroups of the standard wreath product C5 ≀ Sym(3),
specifically the group G(5, 5, 3) which is a member of a class of unitary re-
flection groups. We give a brief exposition on these groups now.

Let m and n be positive integers, let Cm be the cyclic group of order m
and B = Cm × . . . × Cm be the product of n copies of Cm. For each divisor
p of m define the group A(m, p, n) by

A(m, p, n) = {(θ1, θ2, . . . , θn) ∈ B | (θ1θ2 . . . θn)m/p = 1}.

It follows that A(m, p, n) is a subgroup of index p in B and the symmetric
group Sym(n) acts naturally on A(m, p, n) by permuting the coordinates.

G(m, p, n) is defined to be the semidirect product of A(m, p, n) by Sym(n).
It follows that G(m, p, n) is a normal subgroup of index p in Cm ≀ Sym(n)
and thus has order mnn!/p.

It is well known that these groups can be realized as finite subgroups of
GLn(C), specifically as n×n matrices with exactly one non-zero entry, which
is a complex mth root of unity, in each row and column such that the product
of the entries is a complex (m/p)th root of unity. Thus the groups G(m, p, n)
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are sometimes referred to as monomial reflection groups. For more details
on the groups G(m, p, n), see [4].

2 Calculation of µ(G(4, 4, 3))

Recall that G(4, 4, 3) = A(4, 4, 3) ⋊ Sym(3), where

A(4, 4, 3) = {(θ1, θ2, θ3) ∈ C4 × C4 × C4 | θ1θ2θ3 = 1}

which is isomorphic to a product of two copies of the cyclic group of order
4. Hence

G(4, 4, 3) ∼= (C4 × C4) ⋊ Sym(3).

From now on, we will let G denote G(4, 4, 3). A presentation for this group
can be given thus

G = 〈x, y, a, b|x4 = y4 = b3 = a2 = 1, xy = yx, xa = y, xb = y, yb = x−1y−1, ba = b−1〉.

Since 〈x, y〉 ∼= C4×C4 is a proper subgroup of G we have by Theorem 1.1, that
8 = µ(〈x, y〉) ≤ µ(G). Moreover since G is a proper subgroup of the wreath
product W := C4 ≀ Sym(3), for which µ(W ) = 12, we have the inequalities

8 ≤ µ(G) ≤ 12.

We will prove that in fact µ(G) = 12 by a sequence of lemmas.

Lemma 2.1. 〈x2, y2〉 is the unique minimal normal subgroup of G.

Proof. Observe by the conjugation action of a and b on x2 and y2 that M =
〈x2, y2〉 is indeed normal in G. Let N be a non-trivial normal subgroup of G
so there exists an

α = xiyjbkal

in N where i, j ∈ {0, 1, 2, 3}, k ∈ {0, 1, 2}, l ∈ {0, 1} are not all zero. It
remains to show that M is contained in N .

Case (a): k = l = 0.

Subcase (i): i = j so α = xiyi.

Then ααb = xiyiyix−iy−i = yi ∈ N , so y−iα = xi ∈ N . But i 6= 0, so
M ⊆ 〈xi, yi〉. Hence M ⊆ N , as required.
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Subcase (ii): i + j 6≡ 0 mod 4.

Then ααa = xi+jyi+j and we are back in Subcase (i).

Subcase (iii): i + j ≡ 0 mod 4.

Then ααb = xi−jyi. If 2i − j 6≡ 0 mod 4, then we are back in Subcase
(ii), so suppose 2i ≡ j mod 4. Then together with i + j ≡ 0 mod 4 it follows
that i = 0. Therefore j is zero and α is trivial. This completes case (a).

Case (b): k 6= 0 or l 6= 0.
Subcase (i): l = 0 so k 6= 0

Then αα−b = xiyjbk(x−jyi−jbk)−1 = xi+jy2j−i. If i + j 6≡ 0 or 2j − i 6≡ 0
mod 4, then we are back in Case (a) so suppose i + j ≡ 2j − i ≡ 0 mod 4.
Solving gives i = j = 0 and so α = bk, whence 〈b〉 ∈ N . Hence

b−1bx = b−1x−1bx = y−1x ∈ N

and we are back in Case (a).

Subcase (ii): l 6= 0 and k 6= 0.

Then αα−a = xiyjbkal(xjyib−kal)−1 = xiyjbkala−lbkx−jy−i = xpyqb2k

where p, q ∈ {0, 1, 2, 3} and we are back in Subcase (i), replacing k by 2k.

Subcase (iii): k = 0 so l = 1
Then

αα−b = xiyja(xiyja)−b = xpyqb2

for some p, q ∈ {0, 1, 2, 3} and again we are back in Subcase (i).

This completes the proof.

It is worth observing at this point that Lemma 2.1 tells us that any
minimal faithful representation of G is necessarily transitive. That is, any
minimal faithful collection of subgroups {G1, . . . , Gn} is just a single core-free
subroup.

Lemma 2.2. Elements of 〈x, y〉b and 〈x, y〉b2 have order 3. All other ele-

ments of G have order dividing by 8.
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Proof. It is a routine calculation to show that any element of the form α =
xiyjbk for k nonzero has order three. Now suppose α = xiyjbkal where l is
nonzero. Then l = 1 and we have

α2 = xpyq(bka)2 = xpyq,

for some p, q, which has order dividing 4. Therefore α has order dividing
8.

It is an immediate consequence that G does not contain any element of
order 6.

Lemma 2.3. If L is a core-free subgroup of G then |G : L| ≥ 12.

Proof. Suppose for a contradiction that core(L) = {1} and |G : L| < 12.
Since |G| = 96, |L| > 8. However, if |L| > 12 then |G : L| < 8 and so
µ(G) < 8 contradicting that µ(G) ≥ 8. Therefore |L| = 12 and so by the
classification of groups of order 12, see [5], L is isomorphic to one of the
following groups

L ∼=































C12

C6 × C2

A4

D6

T = 〈s, t | s6 = 1, s3 = t2, sts = s〉

Notice that the groups C12, C6 × C2, D6 and T each contain an element
of order 6 and so cannot be isomorphic to L by Lemma 2.2.

Hence L is isomorphic to A4 and so we can find two non-commuting
elements α = xiyjbk and β = xsytbr of order three that generate it such that
αβ has order two. Now

αβ = xpyqbk+r

for some p, q ∈ {0, 1, 2, 3} and so k + r ≡ 0 mod 3 by Lemma 2.2. Without
loss of generality let k = 1. Now

αβ =











x2

y2

x2y2
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and upon conjugation by α = xiyjb, we get respectively,

(αβ)α =











y2

x2y2

x2.

So in each case we get 〈x2, y2〉 ⊆ L, contradicting that L is core-free.

Combining the above lemmas we find that any minimal faithful represen-
tation of G is necessarily transitive and that any faithful transitive represen-
tation has degree at least 12. Therefore we have 12 ≤ µ(G). But µ(G) ≤ 12.
Therefore we have proved the following:

Theorem 2.4. The minimal faithful permutation degree of G(4, 4, 3) is 12.

3 G(4,4,3) forms a Counter-Example of De-

gree 12

Let W = C4 ≀ Sym(3) be the wreath product of the cyclic group of order 4
by the symmetric group on 3 letters. Observe at this point that since the
base group of W is C4 × C4 × C4, and µ(C4 × C4 × C4) = 12 by Theorem
1.1, µ(W ) = 12. Let γ1, γ2, γ3 be generators for the base group of W and let
a = (23), b = (123) be generators for Sym(3) acting coordinate-wise on the
base group. It follows that γ := γ1γ2γ3 commutes with a and b and thus lies
in the centre of W . Let H = 〈γ〉, so µ(H) = 4.

Set x = γ−1
1 γ2

2γ
−1
3 and y = γ−1

1 γ−1
2 γ2

3 . Then it readily follows that

xa = xb = y, ya = x, yb = x−1y−1,

so that G = 〈x, y, a, b〉 is isomorphic to G(4, 4, 3). Moreover with a little
calculation, it can be shown that G ∩ H = {1}.

It now follows that W is an internal direct product of G and H . Therefore
by Theorem 2.4, we have

12 = µ(G × H) < µ(G) + µ(H) = 16

and so G and H form a counter-example to (1) of degree 12.
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Finally, we remark that using the result from [7] that µ(G(p, p, p)) = p2

for p a prime, it follows that µ(G(3, 3, 3)) = 9. However the centralizer,
CSym(9)(G(3, 3, 3)) in Sym(9) is a proper subgroup of G(3, 3, 3). So it is not
possible to get a counter-example to (1) of degree 9 in this case, by this
method.

Similarly by realizing G(2, 2, 3) as Sym(4), it is immediate that µ(G(2, 2, 3)) =
4 and again a counter-example to (1) of degree 4 is impossible by this method.
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