Symmetries and invariants of twisted quantum
algebras and associated Poisson algebras
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Abstract

We construct an action of the braid group By on the twisted quantized
enveloping algebra U;(o ~) where the elements of By act as automorphisms.
In the classical limit ¢ — 1 we recover the action of By on the polynomial
functions on the space of upper triangular matrices with ones on the diagonal.
The action preserves the Poisson bracket on the space of polynomials which
was introduced by Nelson and Regge in their study of quantum gravity and re-
discovered in the mathematical literature. Furthermore, we construct a Poisson
bracket on the space of polynomials associated with another twisted quantized
enveloping algebra Uy (sps,,). We use the Casimir elements of both twisted
quantized enveloping algebras to re-produce some well-known and construct
some new polynomial invariants of the corresponding Poisson algebras.
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1 Introduction

Deformations of the commutation relations of the orthogonal Lie algebra o3 were
considered by many authors. The earliest reference we are aware of is Santilli [24].
Such deformed relations can be written as

gXY -YX =2 qYZ-2Y=X, qZX-XZ=Y. (1.1)

More precisely, regarding ¢ as a formal variable, we consider the associative algebra
U; (03) over the field of rational functions C(g) in ¢ with the generators X,Y, 7
and defining relations (1.1). From an alternative viewpoint, relations (1.1) define a
family of algebras depending on the complex parameter q. The same algebras were
also defined by Odesskii [22], Fairlie [7] and Nelson, Regge and Zertuche [19]. Putting
g =11in (1.1) we get the defining relations of the universal enveloping algebra U(o3).
The algebra U] (03) should be distinguished from the quantized enveloping algebra
U,(03) = U,(slz). The latter is a deformation of U(o3) in the class of Hopf algebras;
see e.g. Chari and Pressley [4, Section 6].
Introducing the generators

r=(q—q¢ "X, y=@-q¢"YY, z2=(q-q¢"HZ,

we can write the defining relations of Uy (03) in the equivalent form

qry —yr = (¢ —q ")z,
qyz — 2y = (¢ —q ")z,
gzo —az=(¢—q ")y

Note that the element z* 4+ ¢~ y* + 2° — xyz belongs to the center of Uy (03). This
time, putting ¢ = 1 into the defining relations we get the algebra of polynomials
Clxz,y, z]. Moreover, this algebra can be equipped with a Poisson bracket in a usual
way
_Jg—gf
{f7 g} - 1 _ q q:l.

Thus, Clz,y, z] becomes a Poisson algebra with the bracket given by

These formulas are contained in the paper by Nelson, Regge and Zertuche [19]. In the
classical limit ¢ — 1 the central element 22 + ¢~2 4% + 22 — 2yz becomes the Markov
polynomial x?+y?+ 2% — xyz which is an invariant of the bracket. The Poisson bracket



(1.2) was re-discovered by Dubrovin [6], where z,y, z are interpreted as the entries of
3 x 3 upper triangular matrices with ones on the diagonal (the Stokes matrices)

1 z vy
01 =
0 01

For an arbitrary N the twisted quantized enveloping algebra U, (ox) was introduced
by Gavrilik and Klimyk [8] which essentially coincides with the algebra of Nelson and
Regge [16]. Both in the orthogonal and symplectic case the twisted analogues of
the quantized enveloping algebras were introduced by Noumi [20] using an R-matrix
approach. In the orthogonal case this provides an alternative presentation of U;(o N)-

In the limit ¢ — 1 the twisted quantized enveloping algebra U (ox) gives rise to
a Poisson algebra of polynomial functions Py on the space of Stokes matrices. The
corresponding Poisson bracket was given in [16]. The same bracket was also found by
Ugaglia [25], Boalch [1] and Bondal [2, 3]. This Poisson structure was studied by Ping
Xu [26] in the context of Dirac submanifolds, while Chekhov and Fock [5] considered
it in relation with the Teichmiiller spaces. It was shown by Odesskii and Rubtsov [23]
that this Poisson bracket is essentially determined by its Casimir elements.

Automorphisms of both the algebra U;(o ~) and the Poisson bracket on Py were
given in [17, 18], although the explicit group relations between them were only dis-
cussed in the classical limit for N = 6. An action of the braid group By on the
Poisson algebra Py was given by Dubrovin [6] and Bondal [2].

In this paper we produce a “quantized” action of By on the twisted quantized
enveloping algebra Uj (o), where the elements of By act as automorphisms. Since
U (on) is a subalgebra of the quantized enveloping algebra U,(gly), one could ex-
pect that Lusztig’s action of By on U,(gly) (see [12]) leaves the subalgebra Uj (o)
invariant. However, this turns out not to be true, and the action of By on Uj(ox)
can rather be regarded as a g-version of the natural action of the symmetric group
Gy on the universal enveloping algebra U(oy).

The relationship between U; (o) and the Poisson algebra Py can also be exploited
in a different way. Some families of Casimir elements of Uj (oy) were produced by
Noumi, Umeda and Wakayama [21], Gavrilik and Iorgov [9] and Molev, Ragoucy
and Sorba [15]. This gives the respective families of Casimir elements of the Poisson
algebra. We show that the Casimir elements of [15] specialize precisely to the coef-
ficients of the characteristic polynomial of Nelson and Regge [18]. This polynomial
was re-discovered by Bondal [2] who also produced an algebraically independent set
of invariants of the Poisson algebra Py.

In a similar manner, we use the twisted quantized enveloping algebra U} (sp,,)
associated with the symplectic Lie algebra sp,, to produce a symplectic version of
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the above results. First, we construct a Poisson algebra associated with U] (sp,,) by
taking the limit ¢ — 1 and thus produce explicit formulas for the Poisson bracket on
the corresponding space of matrices. Then using the Casimir elements of U (spy,)
constructed in [15], we produce a family of invariants of the Poisson algebra analogous
to [2] and [18]. We also show that some elements of the braid group Bs, preserve
the subalgebra U] (sp,,,) of U,(gly,). We conjecture that there exists an action of the
semi-direct product B,, x Z™" on Uj (sp,,,) analogous to the By-action on U (oy). We
show that the conjecture is true for n = 2.

This work was inspired by Alexei Bondal’s talk at the Prague’s conference ISQS
2006. We would like to thank Alexei for many stimulating discussions. The financial
support of the Australian Research Council is acknowledged. The second author is
grateful to the University of Sydney for the warm hospitality during his visit.

2 Braid group action

We start with some definitions and recall some well-known results. Let ¢ be a formal
variable. The quantized enveloping algebra U,(gly) is an algebra over C(q) generated
by elements t;; and ¢;; with 1 <4, j < N subject to the relations

tij:tﬂ:O, 1<Z<]<N,
tiitis = titiy = 1, 1<i<N, (2.1)
RT1T2 - TQTlR, RT T T2T1R RTlTQ == TQTlR.
Here T and T are the matrices
T = Ztij ® Eij, T = Zzz’j ® Eij, (2.2)
i ij

which are regarded as elements of the algebra U,(gly) ® End C¥, the E;; denote the
standard matrix units and the indices run over the set {1, ..., N}. Both sides of each
of the R-matrix relations in (2.1) are elements of U,(gly) ® End CY ® End C" and
the subscripts of 7' and T indicate the copies of End C", e.g.,

Ti=) t;®E;®1, Th=)» t;®11E;,
i i
while R is the R-matrix
—qZEM@EwZE“@EJﬁ ¢—q¢")) E;®E; (2.3)

i#] i<y



In terms of the generators the defining relations between the ¢;; can be written as
qgij tiatjp — Q(s“b tivtia = (¢ — q_l) (Op<a — 5z‘<j) tja tib, (2.4)

where 0,; equals 1 if i < j, and 0 otherwise. The relations between the #;; are
obtained by replacing t;; by ¢;; everywhere in (2.4), while the relations involving
both t;; and ¢;; have the form

" iatip — @ tiptia = (@ — 1) (Oyey tja tin — Oicj Ljatin)- (2.5)

The braid group By is generated by elements (1, ..., Gy_1 subject to the defining
relations

Bi Biv1 Bi = Biv1Bi Biva, i=1,...,N=2
and
BiBj = Bj Bis i — gl > 1.
The group By acts on the algebra U,(gly) by automorphisms; see Lusztig [12].

Explicit formulas for the images of the generators are found from [12] by re-writing
the action in terms of the presentation (2.1). For any i = 1,..., N — 1 we have

Bi t tii = tiy1it1, tit1i41 — Lis, Uk > i it k#4141,

. —-1r 2
Biitivii = @ gty

ik — qlik tiv1itii — iv1 g, tivin — @tk it k<i—1
t = ¢ ettty — tui, trit1 — qly, it [>i+2
t — tu in all remaining cases,
and
Bittiien > qtg tivay
tei = ¢ i tiiate — thiyt, thit1 — qlgi, it k<i—1
ti — qtitutivr; — tiviy, tiig— q it [>142
L — i in all remaining cases.

Following Noumi [20] we define the twisted quantized enveloping algebra U (ox)
as the subalgebra of U,(gly) generated by the matrix elements s;; of the matrix

S =TT so that N
Sij = Z tik k-

k=1



Equivalently, U/ (o) is generated by the elements s;; subject only to the relations

Sij = 0, 1<i<y <N, (26)
RSlRtSQ - SQR SlR, (28)

where R! := R" denotes the element obtained from R by the transposition in the
first tensor factor:

_quzz®Ezz+ZEm® q_q Z (29>
i#j 1<j
In terms of the generators, the relations (2.8) take the form

djkt+0; d51+04 — =1y dji
IO S5 Sl — q Skl Sij = (q—q ) q" (5z<j - 5z‘<k) Skj Sil

+(qg—q") (Q(Sjl Oy Ski S1j — ¢ Oicp siksj) (2.10)
+(q—q")? (O1<jci = Ojcich) Ski il
where 9, or 0, ;. equals 1 if the subscript inequality is satisfied, and 0 otherwise.
Equivalently, the set of relations can also be written as

q

Sij Sk — Sk Sij = 0 if i>j5>k>1

Sij Skl — Sk Sij = 0 if i>k>10>7

Sij Skl — Sk Sij = (¢ — ¢~ 1)(sk]szl SikS;ji) if i>k>7j5>1 (2.11)
qsijsjl_sjlsij:<q_ql) Sil if i>j5>1 '
qij s — susiy=(q—q ") sy if i>0>7
qSij Skj — Skj Sij = (@ — ¢ Y sk if k>i>j.

In this form the relations were given by Nelson and Regge [16]. An analogue of the
Poincaré-Birkhoff-Witt theorem for the algebra U} (oy) was proved in [10]; see also
[13, 15] for other proofs. This theorem implies that at ¢ = 1 the algebra U (oy)
specializes to the algebra of polynomials in N(N — 1)/2 variables. More precisely,
set A = C[g,q7'] and consider the A-subalgebra U’y of U,(oy) generated by the
elements s;;. Then we have an isomorphism

U,®4C =Py, (2.12)

where the action of A on C is defined via the evaluation ¢ = 1 and Py denotes the
algebra of polynomials in the independent variables a;; with 1 < 7 <4 < N. The ele-
ments a;; are respective images of the s;; under the isomorphism (2.12). Furthermore,
the algebra Py is equipped with the Poisson bracket {-,-} defined by
f h hf
{f.h} = : (2.13)

—q l¢=1



where f,h € Py and f and h are elements of U’y whose images in Py under the
specialization ¢ = 1 coincide with f and h, respectively. Indeed, write the element
fﬁ — }VL]}V € U’ as a linear combination of the ordered monomials in the generators
with coefficients in 4. Since the image of fﬁ — %}vin Pn is zero, all the coefficients
are divisible by 1 — ¢. Clearly, the element {f, h} € Py is independent of the choice
of fand h and of the ordering of the generators of U’,. Obviously, (2.13) does define
a Poisson bracket on Py. By definition,

Sij Skl — Skl Sij

{aij, an} = 1—¢ —

Hence, using the defining relations (2.11), we get

{aij,am} =0 if i>j>k>1

{aij,au} =0 if i>k>1>;

{aij, amt = 2(amaj — arjan) if 1>k>75>1 (2.14)
{aij, a} = aijaz — 2aq it 1>75>1

{aij, aq} = a;jay — 2, if 1>0>7

{aij, akj} = aijar; — 2ak; it k>1>7.

This coincides with the Poisson brackets of [2], [17], and [25], up to a constant factor
if we interpret a;; as the ji-th entry of the upper triangular matrix.

We shall also use the presentation of the algebra Ul (oy) due to Gavrilik and
Klimyk [8]. An isomorphism between the presentations was given by Noumi [20],
a proof can found in lorgov and Klimyk [10]. Set s; = s;49,; for i = 1,..., N — L.
Then the algebra U;(o ~) is generated by the elements sy, ..., sy_1 subject only to
the relations

2 1 2 —1 —1\2
S Ska1 — (g+q )8k+1 SkpSk41 T Sk415k = —4¢ (¢—gq ) Sks
2 1 2 1 “1\2
Sk Spr1 — (@ +q ) SkSp18k tSpp1sk = —¢ (@ —q ) 841,

for k =1,..., N — 2 (the Serre type relations), and
Sk S| = S| Sk, ’k—” > 1.

It is easy to see that the subalgebra U, (ox) C U,(gly) is not preserved by the
action of the braid group By on U,(gly) described above. Nevertheless, we have the
following theorem.



Theorem 2.1. Fori=1,...,N — 1 the assignment

1
q—dq

1
q—q!
S; = —8;

Sk — Sk Zf ]{?7&2—1,2,24—1,

Bi: Sit1 1 (q Si+1 5i — 5 5i+1)

Si—1 (Si Si—1 — (¢ Si—1 Si)

defines an action of the braid group By on U;(ON) by automorphisms.

Proof. We verify first that the images of the generators sy, ..., sy_; under [3; satisfy
the defining relations of U, (ox). A nontrivial calculation is only required to verify
that the images of the pairs of generators [3;(s;) and [5;(sg1) with k =i—2,i—1,4,i+1
satisfy both Serre type relations, and that the images (;(s;_1) and (;(s;41) commute.
Observe that by (2.11), the image of s,,1 can also be written as

Bi: Si+1 F Si+2,4-

Hence, for k =17+ 1 we need to verify that

2 -1 2
Si+2,iSi+3,i+2 — (¢+q )3i+3,i+2 8i42iSi+3.i42 T Sit3i+25i42,
| “14\2
=—q (4—q ) 842,

We shall verify the following more general relation in U (ox),
Sij sp— (g + qil)skisij Ski + Sk Sij = —q (g — q71)25ij7 (2.15)
where k£ > ¢ > j. Indeed, the left hand side equals
—(q Ski Sij — Sij Ski) Ski + qg! Ski(q Ski Sij — Sij Ski)- (2.16)
However, by (2.11) we have
G Ski i — Si ki = (@ — ") sny
so that (2.16) becomes
—q7 (a0 — ) (g 5k5 Ski — 5wi 15)

which equals —¢~" (¢ —¢~')?s;; by (2.11) thus proving (2.15). The second Serre type
relation for the images (;(s;+1) and [;(s;12) follows from a more general relation in

U/q<0N)>
Stk — (00558055 + susy; = —a (@ =) sy,
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where k > i > 7, and which is verified in the same way as (2.15). Next, the Serre
type relations for the images (;(s;) and 3;(s;41) follow respectively from the relations

Sipsny — (@ + @) siysisi + sy = =0 (@ —q7)sy

and

S?j Sgj — (g + q_1>8ij SjSij T Skj S?j =—q '(¢— q_l)QSkja
where k > i > j, which both are implied by (2.11). The Serre type relations for the
pairs [;(s;—1), Bi(si) and F;(s;—2), Bi(s;—1) can now be verified by using the involutive
automorphism w of U;(o ~) which is defined on the generators by

Sk SN_k&, k=1,...,N—1. (2.17)
We have
w : Bi(si-2) = By-i(Sn—it2),
5@'(51'71) = _5N71(5N7i+1)7
Bi(si) ﬂN—i(SN—i)a
and so the desired relations are implied by the Serre type relations for the pairs of

the images 3;(s;), Bj(s;+1) and B;(s;j+1), Bj(Sj42) with j = N — .
Now we verify that the images (5;(s;_1) and (;(s;11) commute, that is,

(Sz‘ Si—1 — {4 Si—1 Si)(q Si+1 S — S5 Si-i-l) = (q Si+1 S — S 5i+1)(5i Si—1 — {4 Si—1 Si)- (2-18)

By the Serre type relations we have

2 ~1 2 ~1 —142
i Siv1 — (@ +q 7 )88i18 T 818 = ¢ (@—q ) 811

and
312 s, —(q+ qil)sisifl 5; + 51'71312 =—q! (q — 971)25171-

Multiply the first of these relations by s;_; and the second by s;;; from the left.
Taking the difference we come to

2 1 _ 2 1
Si—18;Sit1 — (@+aq )51 5 Sit18; = Si115:Si—1 — (¢+q )Si+1 S;8i—15;-

Now repeat the same calculation but multiply the Serre type relations by s;,_; and
Si+1, respectively, from the right. This gives

2 ~1 o 2 1
i 1881 — (@ +q )88 1851 =515 81— (q+q )8;5,158 1

Hence,

Si—18i8i415; 7 Si415:5i—15; = S 8i—15iSi11 — SiSi415: Si—1

%



and (2.18) follows.
Thus, each §; with i = 1,..., N — 1 defines a homomorphism U} (oy) — U} (o).
Now observe that 3; is invertible with the inverse given by

1

Bt s — — (Sit18i — q5iSit1)
q9—4q
Si—1 _1 T \45iSi—-1 — Si-15;
qa—4q
S; — —8§;
Sk — Sk if k#l—l,Z,Z—Fl,

and so 3; and (3; ' are mutually inverse automorphisms of U (on).
Finally, we verify that the automorphisms (; satisfy the braid group relations. It
suffices to check that for each generator s, we have

BiBi1 Bi(sk) = Biv1 Bi Bir1(sk) (2.19)
fori=1,...,N —2, and

BiBj(sk) = B;Bi(sk) (2.20)
for |t — j| > 1. Clearly, the only nontrivial cases of (2.19) are k =7 — 1,4, + 1,7+ 2
while (2.20) is obvious for all cases except for j =i+2and k =i+ 1. Take k =i—1

in (219) We have ﬁi—l—l(si—l) = S;—1 while

1

q—q

Bi i Si—1 1 (Si Si—1 — {4 Si—1 5i> =4 Si+1,i—1 — 4 Si+1,i Sii—1,

where we have used (2.11). Furthermore, using again (2.11), we find
) 2 2
Biv18i : Si—1 —q Si+2,i—1 — @ Si42,i+1 Si+1,i—1
2 2
— Q" Si42,iSii—1 T " Sit2,it1 Sit1,i Siji—1-

It remains to verify with the use of (2.11) that this element is stable under the action
of B;. The remaining cases of (2.19) and (2.20) are verified with similar and even
simpler calculations. O]

Corollary 2.2. In terms of the generators sy of the algebra U;(ON), for each index
1=1,...,N —1 the action of (; is given by

Bi: Si+1,i Y —Sit+1,

Sik 7> G Six1,k — q Sit1, Sik, Sit1,k F Sik, if k<i—1
-1 . .

S1i 7 q Sii+1 — SiiSit1,i SlLi+1 7 Slis if 1>142

Skl > Skl m all remaining cases.
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Proof. This follows from the defining relations (2.11). Indeed, the elements sy can

be expressed in terms of the generators sy,...,sy_1 by induction, using the relations
1 )

Sp = pra— (q515 55— S0 5%5) k>j>1L (2.21)

This determines the action of ; on the elements si; and the formulas are verified by

induction. O]

Remark 2.3. Tt is possible to prove that the formulas of Corollary 2.2 define an action
of the braid group By on Uj(oy) by automorphisms only using the presentation
(2.11). However, this leads to a slightly longer calculations as compared with the
proof of Theorem 2.1.

Note also that the universal enveloping algebra U(oy) can be obtained as a spe-
cialization of Ul (oy) in the limit ¢ — 1; see [15] for a precise formulation. In this
limit the elements s;;/(¢ — ¢~') with i > j specialize to the generators Fj; of oy,
where Fj; = Ej; — Ej;. Hence the action of By on U (o ~) specializes to the action of
the symmetric group Sy on U(oy) by permutations of the indices of the F;. O

The mapping (2.17) can also be extended to the entire algebra U] (oy) as an anti-
automorphism. This is readily verified with the use of the Serre type relations. We
denote this involutive anti-automorphism of U} (ox) by w'.

Proposition 2.4. The action of w' on the generators sy is given by
W't Sk SN_141, N—kt 15 1<l<k<N. (2.22)
Moreover, we have the relations
WG W = By, i=1,...,N—1, (2.23)
where the automorphisms 3; of U, (on) are defined in Theorem 2.1.

Proof. The defining relations (2.11) imply that the mapping (2.22) defines an anti-
automorphism of U (oy). Obviously, the images of the generators s, are found by
(2.17). The second part of the proposition is verified by comparing the images of the
generators s under the automorphisms on both sides of (2.23). O

Observe that the image of the matrix S under w’ is given by ' : S +— S’ where
the prime denotes the transposition with respect to the second diagonal.

Now consider the involutive automorphism w of Uj (oy) defined by the mapping
(2.17).
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Proposition 2.5. The image of the matriz S under w is given by

w:S—(1-—g"HYI+q¢'DS YD (2.24)
where I is the identity matriz and D = diag (—q, (—q)?,...,(—q)"). In terms of the
generators, this can be written as

w sy (—g)" ! Z (=1)P SN—ig1,m Srirg - - Sep N—kt1, K >,
N—=l+1>r1>->rp>N—k+1
summed over p = 0 and the indices 1, ...,1,.
Proof. The elements s;; can be expressed in terms of the generators si,...,sy_1 by

(2.21). The formula for w(sy;) is then verified by induction on k£ —I. The matrix form
(2.24) is implied by the relation

S M= Y. (D" Spr Seir o Snpas k> (2.25)

k>r1>->rp>l1
summed over p > 0 and the indices ry,..., 7). Il

For any diagonal matrix C' = diag (cy,...,cn) the relation (2.8) is preserved by
the transformation S +— C'SC. Indeed, the entries of S are then transformed as
Sij v sij ¢; ¢; and the claim is immediate from (2.10). This implies that if ¢? =1 for
all i then the mapping ¢ : S+ C'SC defines an automorphism of Uj (o). Therefore,
Propositions 2.4 and 2.5 imply the following corollary.

Corollary 2.6. The mapping
p:S—1—-q¢HI+qg'HSTH, (2.26)
where H = diag (q,¢%,...,q"), defines an involutive anti-automorphism of U (o).

Proof. We obviously have p = ¢ o w’ o w for an appropriate automorphism ¢. Hence
p is an anti-automorphism. We have

p Sk —Sg, k=1,....,N—1,
and so p is involutive. O

We can now recover the braid group action on the algebra Py; see Dubrovin [6],

Bondal [2].
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Corollary 2.7. The braid group By acts on the algebra Py by

Bi: Qiy15 — —Ait1,

Qi 7 A1k — iy Qiks Ait1k > Qik, if k<i-—1

ag; — A1 — A1 Qig g, Qg1 > g, if 1>142

Qpl — QK in all remaining cases,
wheretv=1,..., N —1. Moreover, the Poisson bracket on Py in invariant under this
action.
Proof. This is immediate from Corollary 2.2. O

We combine the variables a;; into the lower triangular matrix A = [a;;] where we
set a; = 1 for all ¢ and a;; = 0 for i < j.

Corollary 2.8. The mapping
0: Ars A1 (2.27)

defines an anti-automorphism of the Poisson bracket on Py. Ezplicitly, the image of
ag; under o is given by

1
0 ay — Z (=) gy Ay - - - ar, 1, k> 1,

k>r1>>rp>l1
summed over p = 0 and the indices 11, ...,7,.

Proof. This follows from Corollary 2.6 by taking ¢ = 1. O

3 Casimir elements of the Poisson algebra Py

Using the relationship between the twisted quantized enveloping algebra U} (oy) and
the Poisson algebra Py, we can get families of invariants of Py by taking the classical
limit ¢ — 1 in the constructions of [15], [9] and [21]. First, we recall the construction
of Casimir elements for the algebra U] (ox) given in [15]. Consider the g-permutation
operator P? € End (CV @ C¥) defined by

Pq:ZEii®Eii+quij®Eji+qileij®Eﬂ' (3.1)

i>j 1<j

Introduce the multiple tensor product Ul(ox) ® (EndCV)®". The action of the
symmetric group &, on the space (CV)®" can be defined by setting o; — Pl .= qul 41
for i = 1,...,7 — 1, where o; denotes the transposition (i,7 + 1). If 0 = oy, - - - 0y, is
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a reduced decomposition of an element o € &, we set P = Pl --- P/ . We denote

iy

by A? the g-antisymmetrizer

Al = Z sgno - Pl (3.2)

Now take r = N. We have the relation

A(]JV S1(u) Rﬁ T RfN SZ(UQ_Q) R§3 o 'REN SS(UQ_4)

X o Ry gy Sn(ug™ )

(3.3)
= Sn(ug ) Ry, -~ Ss(ugq™") Ry - - Riy Sa(ug™?)

X Riy -« Riy Si(u) AR,
where the following notation was used. The matrix S(u) is defined by
Stu)=S+q'u'S,

where u is a formal variable and S is the upper triangular matrix with ones on the
diagonal whose 7j-th entry is 5;; = ¢ sj for 7 < j. Furthermore,

thj — thj (U—Iqu—Q7 uq—2j+2)

with
Rt(u, ’U) = (u — U) Z Eii & Ejj -+ (qilu — CI'U) Z Ez'z' & E@'i
B 7 » : (3.4)
+(q —q)uZEﬂ@)Eﬂ—i—(q —Q)UZEJ@@Eﬁ.
i>j i<j

The subscripts in (3.3) indicate the copies of End C" in U/ (o) ® (End CY)®" which
are labelled by 1,...,N; cf. (2.1). The element (3.3) equals A% sdet S(u), where
sdet S(u) is a rational function in u (the Sklyanin determiant) valued in the center
of U;(on); see [15, Theorem 3.8 and Corollary 4.3].

Recall that the Poisson algebra Py is the algebra of polynomials in the variables
a;; with ¢ > j. which are combined into the matrix A = [a;;] with a; = 1 for all
and a;; = 0 for 7 < j. The following theorem was proved in different ways by Nelson
and Regge [18] and Bondal [2].

Theorem 3.1. The coefficients of the polynomial
det(A+MAY) = fo+ A+ -+ fu AV

are Casimir elements of the Poisson algebra Py .
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Proof. We use the centrality of the Sklyanin determinant sdet S(u) in U (oy). Note
that at ¢ = 1 the g-antisymmetrizer A% becomes the antisymmetrizer in (CV)®V | the
element R'(u—v) becomes u — v times the identity. Since the images of the elements
si; in Py coincide with a;;, the image of the matrix S(u) is A + u~tA". Hence, at
q = 1 the Sklyanin determinant sdet S(u) becomes v(u) det(A + u~'A?), where

y(u) = (u™t — u)N(N_IW. (3.5)

Therefore, replacing u with A= we thus prove that all coefficients of det(A + \A?)
are Casimir elements for the Poisson bracket on Py . O

Note that, as was proved in [2] and [18], the polynomial det(A + AA") is invariant
under the action of the braid group By.

Now we recall the construction of Casimir elements given in [9]. For all ¢ > j
define the elements s}; of U/ (oy) by induction from the formulas

1

s = -1 (53541 8015 = 485015 5050),  E> T+
and S;‘:—l,j = 8;41,; for j =1,..., N — 1. A straightforward calculation shows that

these elements can be equivalently defined by

S;; = _qi_j_l (S_l)ija 1> j7

where the entries of the inverse matrix are found from (2.25). Let k be a positive
integer such that 2k < N. For any subset [ = {i; < ia < -+ < g} of {1,...,N}
introduce the elements ®; and ®; of U (oy) by

_ _\~¥)
o= Z ( Q) Sia(z) lo(1) * " Sia(zk) io(2k—1)
0ESok

and
+ _ _ N\(o) + +
(I)I - Z ( q) 8ia(2) lo(1) Sia(zk) lo(2k—1)

oESy
where ((o) is the length of the permutation o, and the sums are taken over those
permutations ¢ € Sy, which satisfy the conditions
lo(2) > lo(1), -+ lo(2k) > lo(2k—1) and  iy(2) <o) < 0 < lo(2k)-
Then according to [9], for each k the element
¢k — Z qi1+i2+~~+i2k (I);‘(DI
I,|1|=2k

belongs to the center of U;(o ~). Moreover, in the case N = 2n both elements @
and &} with Iy = {1,...,2n} are also central.
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Remark 3.2. Our notation is related to [9] by
siy=—a"la—a VI, si=—aPla-a ), P>
Note also that the elements ¢ are g-analogues of the Casimir elements for the or-
thogonal Lie algebra oy constructed in [14]; see also [11]. O
Now return to the Poisson algebra Py. Recall that the Pfaffian of a 2k x 2k skew
symmetric matrix H is given by

1

PtH = % Fl

Z sgno - Ho(1),0(2) - - - Ho(2k-1),0(2k)-

0ESo

Given a lower triangular N x N matrix B and a 2k-element subset I of {1,..., N}
as above, we denote by Pf;(B) the Pfaffian of the 2k x 2k submatrix (B* — B) of
B! — B whose rows and columns are determined by the elements of I.

Theorem 3.3. For each positive integer k such that 2k < N the element

= (—=1)F Y Pf(A)Pf (AT (3.6)
1,|11=2k
is a Casimir element of Py. Moreover, in the case N = 2n both Pf; (A) and
Pf, (A™Y) with Iy = {1,...,2n} are also Casimir elements.

Proof. Observe that in the limit ¢ — 1 the elements ®; and ®7 specialize respectively
to the Pfaffians
®, — Pf;(A), Of — (1) Pf (A7),

Hence, the central element ¢, specializes to cy. Il

Example 3.4. As the matrix elements of the inverse matrix A~! are found by the
formula of Corollary 2.8, we have the following explicit formula for ¢y,

C1 = E (_1)p Q5 Airy Qpypg - - - (l,,«pj.

P> > >Tp>)
For N = 3 it gives the Markov polynomial. O

Corollary 3.5. The algebra of Casimir elements of Py is generated by cy, ..., c, for
N =2n+1, and by cy,...,cq1, Pt (A) if N = 2n. In both cases, the families of
generators are algebraically independent. Moreover, Pf; (A™') = (—1)" Pf; (A).
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Proof. Since
det(A + AAY) = AV det(A + A1 AY,

we have the relations fy_; = fi. Moreover, fo = fy = 1 since det A = 1. It was
proved in [2] that if N = 2n+1 is odd then the coefficients fi, ..., f, are algebraically
independent generators of the algebra of Casimir elements of Py. If N = 2n is even
then

det(A — A") = Pf;, (A)2. (3.7)

In this case, a family of algebraically independent generators of the algebra of Casimir
elements of Py is obtained by replacing any one of the elements fi,...,f, with
Pf; (A). The claim will be implied by the following identity

n

det(A + AA") =) (= N1+ 1)V ey (3.8)

k=0
Indeed, by the identity, the elements fi,..., f, can be expressed as linear combina-
tions of ¢y,...,¢,. In order to verity (3.8), we use the observation of [2] that the

Casimir elements of Py are determined by their restrictions on a certain subspace H
of matrices. If N = 2n then H consists of the matrices of the form

( zly (])) | (3.9)

where I and O are the identity and zero n x m matrices, respectively, while D =
diag(dy,...,d,) is an arbitrary diagonal matrix. If N = 2n+ 1 then H consists of the
matrices obtained from (3.9) by inserting an extra row and column in the middle of
the matrix whose only nonzero entry is 1 at their intersection. So, by Theorems 3.1
and 3.3, we only need to verify (3.8) for the matrices A € H. However, in this case
the element ¢; coincides with the elementary symmetric polynomial

= Y 4.,

r1<--<rg

while .

det(A+ A" = (1 +X) = Ad})
i=1

if N =2n, and

det(A+AA") = (L+ N [ (0 +X)? = Adp)
i=1
if N =2n+ 1. This gives (3.8). To verify the last statement of the corollary, put
A = —1into (3.8) with N = 2n. Together with (3.7) this gives ¢, = Pf; (A)?, so that
the statement follows from (3.6) with k£ = n. O
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Finally, we consider the invariants of the Poisson bracket on Py which can ob-
tained from the construction of the Casimir elements of U (o) given in [21],

Theorem 3.6. The elements
tr (A7t AN, k=1,2,...,
are Casimir elements of Py.

Proof. This follows by taking the classical limit of the Casimir elements of [21]. Al-
ternatively, this is also implied by Theorem 3.1 and the Liouville formula

> (=N B = % Indet(1 + \H)
1

k=
which holds for any square matrix H. We apply it to the matrix H = A~'A’ and
observe that det(A + AA") = det(1 + A\H) since det A = 1. O

4 A new Poisson algebra

Here we use the symplectic version of the twisted quantized enveloping algebra in-
troduced by Noumi [20] to define a new Poisson algebra and calculate its Casimir
elements.

The twisted quantized enveloping algebra U;(ﬁp%) is an associative algebra gener-
ated by elements s;;, 4,5 € {1,...,2n} and si_ﬂ-il, i=1,3,...,2n—1. The generators
si; are zero for j = ¢ + 1 with even ¢, and for j > ¢ + 2 and all . We combine the s;;
into a matrix S as in (2.2),

S=> s;®Ey;, (4.1)
3

so that S has a block-triangular form with n diagonal 2 x 2-blocks,

S11 S12 0 0 0 0
Sa21 S92 0 0 0 0
S31 32 533 534 0 0
S = S41 S42 543 S44 0 0
Son—1,1 S2n—12 S2n—1,3 S2n—14 " S2n—12n—-1 S2n—1.2n
Son,1 S2n,2 S2n,3 Sona S2n,2n—1 S2n,2n

The defining relations of U} (sp,,,) have the form of a reflection equation (2.8) together
with

e | _
Siit1 Siitl = Siit1 Siip1 = 1 (4.2)
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and

Sit1,i+1 Sii — ¢ Sit1iSiit1 = q’ (4.3)
for i = 1,3,...,2n — 1. More explicitly, the relations (2.8) have exactly the same
form (2.10) as in the orthogonal case.

Recall the quantized enveloping algebra U,(gl,,) defined in Section 2. Introduce
the block-diagonal 2n x 2n matrix G by

0 ¢ 0 0
10 0 0
G= s
0 0 0 g
0 0 -~ —10

We can regard Uj(spy,) as a subalgebra of Ugy(gly,) by setting S = TGTt, or in
terms of generators,

5y =q Zti,%—l tok — Z tiok tj2k—1; (4.4)
=1 =1

see [20] and [15] for the proofs.

Define the extended twisted quantized enveloping algebra U; (sp,,) as follows. This
is an associative algebra generated by elements s;;, 4,5 € {1,...,2n} where s;; = 0
for j =4+ 1 with even 7, and for 5 > ¢+ 2 and all <. The defining relations are given
by (2.8) or, equivalently, by (2.10). We use the same symbols as for the generators
of U} (sp,,); a confusion should be avoided as we indicate which algebra is considered
at any moment. This definition essentially coincides with the original one due to
Noumi [20]. Note that, in comparison with U} (sp,,, ), we neither require the elements
8;4+1 With odd @ be invertible, nor we impose the relations (4.3).

An analogue of the Poincaré-Birkhoff-Witt theorem for the algebra ﬁ; (spy,) fol-
lows from [13, Corollary 3.4]. As with the algebra U (on), thiSA theorem implies that
at ¢ = 1 the extended twisted quantized enveloping algebra U;(sp%) specializes to
the algebra Ps,, of polynomials in 2n? + 2n variables. We denote the variables by
a;; with the same restrictions on the indices 7, j as for the elements s;;, so that s;;
specializes to a;;. We shall combine the variables a;; into a matrix A which has a
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block-triangular form with n diagonal 2 x 2-blocks,

a1 a2 0 0 0 0
921 929 0 0 0 0
asy azo ass azy 0 0
A= 41 42 43 (44 0 0
a2n—11 @2pn—12 A2p—-1,3 A2p—14 *°° A2p—12n—1 A2n—12n
Aon,1 A2n,2 (2n,3 (2,4 T A2n,2n—1 A2n,2n

Theorem 4.1. The algebra Pa, possesses the Poisson bracket defined by
{CLU, akl} = (5116 + 6jk; - 61 — 5j ) Q5 Akl
-2 (5l<j — 6i<k) Qg Qi) — 2(Sl<z‘ Qi Al + 25j<k Aif; g

Proof. We define the Poisson bracket on Py, by the same rule (2.13) as in the or-
thogonal case. The explicit formulas for the values {a;;, ay;} follow from (2.10). O

Remark 4.2. Both in the orthogonal and symplectic case, the Poisson brackets of

P=PyorP= 752n can be written in a uniform way in a matrix form. Introducing
the elements of P ® End CY ® End C¥ by

A1:Z(lz’j®Eij®la Azzzazj@l@Ez‘ja

,J 2¥)
we have
{A1, A} = [, Ay As] + Ayt Ay — Agr' Ay,
where
r= ZEii®Eii+2 ZEij ® Eji, rt = ZE’L’L ® By +2 ZEji ® Lj;.
i i<j i i<j
This follows from (2.8) and the observation that
R—I®I
r=— .
g—1 l¢=1
Theorem 4.3. The elements
Qit1,i41 Qg — Qi1 Qg g1 1=1,3,...,2n— 1, (4.5)

and the coefficients of the polynomial
det(A+XA") = fo+ fir+ -+ fan A"

are Casimir elements of the Poisson algebra Pan.
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Proof. For any i =1,3,...,2n — 1 the element

2
Sit1,i+1Si — 4 Six1 Sijit1

belongs to the center of the algebra U;(sp%); see [15, Section 2.2]. This implies the
claim for the elements (4.5).

We proceed as in the proof of Theorem 3.1. The relation (3.3) holds in the same
form with the matrix S(u) now given by

S(u)=S8+qu'S,

where the matrix elements 5;; of S are defined as follows. For any i =1,3,...,2n—1
we have
5 = —q % sii, Sit1,i+1 = —q? Sit1,i+1s
Sit1i = —q! Siit1s Siiv1 = —q " Siy1i+ (1 — q %) Siit1s
while
Sw=—q" s

for k < [ except for the pairs k =4, =7+ 1, with odd 7, and the remaining entries
of S are equal to zero. The element (3.3) equals A% sdet S(u), where sdet S(u) is the
Sklyanin determiant of the matrix S(u). This is a rational function in u valued in the
(extended) twisted quantized enveloping algebra. When the values are considered in
the algebra U] (sp,,,), they are contained in the center of Uy (sp,,), as proved in [15,
Theorem 3.15 and Corollary 4.3]. The same property holds for the algebra U} (sp,,),
that is, when the values of the function sdet S(u) are regarded as elements of the
extended algebra U;(ﬁp%), they belong to the center of Ug(sp%) (see the proof in
the Appendix).

At ¢ = 1 the matrix S(u) becomes A — u~tA’. Hence, the Sklyanin determinant
sdet S(u) becomes y(u) det(A — u~t A?), where v(u) is defined in (3.5) with N = 2n.
Therefore, replacing u with —A™! we thus prove that all coefficients of det(A + \A?)
are Casimir elements for the Poisson bracket on 752n. O

As in the orthogonal case, we have fs,_; = f; for all « = 0,1,...,2n. Note also
that fo = fo, = det A and so we have the following relation between the Casimir
elements

n
Jo= H (a2kz,2k QAop—12k—1 — ok 2k—1 a2k—1,2k)-
k=1

Conjecture 4.4. The algebra of Casimir elements of Py, is generated by the family
of elements provided by Theorem 4.3 and the Pfaffian Pf(A — A?).
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In the rest of this section we work with the twisted quantized enveloping algebra
U (spy,). Recall the action of the braid group By, on the quantized enveloping
algebra U, (gl,,); see Section 2.

Proposition 4.5. The subalgebra U, (sp,,) C Ugy(gly,) is stable under the action of
the elements 31,33, ..., Pan_1 of Bay,.

Proof. Observe that the algebra U} (sp,,) is generated by the elements

Siis Sitlitls  Siitls S;ilﬂ for i=1,3,...,2n—1 (4.6)

and
Sit24y  Si424+1s Si43,i Sit3441 for i=1,3,...,2n—3. (4.7)
Indeed, s;41; for odd i can be expressed in terms of the elements (4.6) from (4.3).

Furthermore, the remaining generators can be expressed in terms of the elements
(4.6) and (4.7) by induction from the relations

Skl = # s;ilﬂ (Skyit1 Sit — Sit Skyi+1)s kE>i+1, i>1, 1odd,
which are implied by the defining relations (2.10).

Hence, it suffices to verify that the images of the elements (4.6) and (4.7) under the
action of By, B3, ..., f2n—1 are contained in U (sp,,). These images can be explicitly
calculated from (4.4). For any odd j the elements (4.6) with ¢ # j are fixed by the
action of (3;, while

. — -2 2 —1
Bt 857 85541 5541541 Sit14+1 4 Sjj Sjg+1 T 4S540

Moreover, the elements (4.7) with ¢ # j — 2, j are fixed by the action of 3;, while

. -1 -1 .
Bjt8j 00 Sjj 085415511501 ~ Sjt1,j-2

Sjgmt 7 47851 Sihj0 St — Sjxot

Stz 4 Siga Sjpago @ S50
and

Bt Sita 7 07 Sipa Sij Sie1g0 — Sita 4

Sj435 7 45435 Sj41,5+1 5;;+1 — Sj43,5+1

Siv2gi1 = 0@ Siyag Sjwage 4 Siysg
All these relations are verified by direct calculation with the use of the defining
relations of U,(gl,). O
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In particular, the restrictions of the action of 3y, 83, ..., #2,_1 to the subalgebra
U/ (spy,) yield automorphisms of the latter.
Now observe that the elements 1,73, ..., 72,3 of Bg, given by

Yor—1 = BorBok—12%k-+152%k k=1,...,n—1

generate a subgroup of Bs, isomorphic to B,,. The braid relations for the 91 are
easily verified with the use of their geometric interpretation.

For each odd 7 the elements (4.6) generate a subalgebra of U} (sp,,,) isomorphic to
U, (sp5). The next proposition shows that the elements 7; permute these subalgebras.

Proposition 4.6. The images of the elements (4.6) under the action of the auto-
morphisms 1,73, - - -, Yen—3 belong to U, (spy,).

Proof. This is verified with the use of (4.4). For any odd j the elements (4.6) with
i # 7,7 + 2 are fixed by the action of v;, while

ViS55 TS24 Sjt1,j+1 77 Sjg3543 Sji+1 77 Sj42,543

and

Vi - Sjv242 T S Sj+3,5+3 77 Sit15+1 Sj+2.4+3 7 Sjg+1-
This follows from the formulas for the action of the 5; on Uy(gl,,) which imply, for

instance, relations of the type
BiBj+1 : tja1,y — L2541

Since 7y; = B418+20;8;41, this gives v; : tj41; +— tji3,+2. The images of the

remaining elements of the form ¢;;,¢; ;11,%;41,j41 are calculated in a similar way which
gives the desired formulas. O]

It can be shown that Proposition 4.6 is not extended to the remaining generators
(4.7) of the algebra U} (sp,,). Observe that the elements 3; and ; of By, with odd i
satisfy the relations

VBv=8 i jAiI+2
while
%‘_152' Vi = Bigo and %'_1 iv2 Y = D
The elements 3; generate a subgroup of Bs, isomorphic to Z". We shall identify Z"
with this subgroup. These observations suggest the following definition. Consider
the braid group B, with generators v;,74, ..., 74,3 and the usual defining relations

ViVis2 Vi = Viz2ViVigzr  1=1,3,...,2n =5
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and

V= li—dl> 2.
Define the group I',, as the semidirect product I',, = B,, X Z"™ where the action of B,
on Z" is defined by

B =0, if jAii+2
while

~ ~
B = Biyo and Bita = B;-

Conjecture 4.7. There exists an action of the group I', on the algebra U (sp,,) by
automorphisms where the elements of Z™ act as in Proposition 4.5.

Our final theorem shows that the conjecture holds for n = 2.

Theorem 4.8. Let the generators By and (3 of the group T'y act on U (sp,) as in
Proposition 4.5 and let the generator | act on the elements (4.6) withi = 1,3 as ;.
Then together with the assignment

% 832 7 841, 841 > S32, 531 F 831, S42 7 S42
this defines an action of I'y on U (spy) by automorphisms.
Proof. Let us verify that 7] respects the defining relations of U} (sp,). We have
S33 S32 = S32 S33, S11 832 = S39.511 + (¢ 72 — 1) 812 831
s31532 = ¢ ss2531 + (¢ — ¢ )(q " s21 533 — s12 533)

and .
S11 S41 = S41 S11, S33 541 = Sa41 533 + (¢7 — q) S34 S31
-1 1y 1
$315401 = ¢ Sa1531+ (¢ —q )¢ SazS11— S34511)
together with

S32 S41 = S41 S32 + (C] - q_l)(812 543 — S34 321)-

These relations and Proposition 4.6 show that 7} defines an automorphism of U} (sp,).
The defining relations of I'y are easily verified. O

Appendix

Here we prove that the Sklyanin determinant sdet S(u) is central in the extended
algebra U;(sp ~) with NV = 2n; see the proof of Theorem 4.3. We need to introduce
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some more notation. Following [15], introduce the trigonometric R-matrix

R(u,v) = (u =) > E; @ Ejj + (¢ 'u—qv) > F:i ® Ej

7 . (5.1)
"‘(qi —Q)UZE,L]@EJZ‘F(qi —Q)UZEZ](@Eﬂ
i>j i<j
and a rational function in independent variables ui, ..., u,,q valued in (End C™)®"

by
R(uy, ... up) = [ [ Rijlus,uy), (5.2)

i<j
where the product is taken in the lexicographical order on the pairs (i,7). We have
the following relation in the algebra U;(sp ~) @ (EndCM)®7

R(uy, ..., uy) Si(u1)Riy - - - Ry, Sa(uz)Ryg - - - Ry, S3(us) - - R}

r—l,rS7"<uT> =
Sr(ur)R_y, -+ Ss(ug) Ry, -+ RogSa(uz) Ry, -+ RipSi(wr) R(ua, .., up); (5.3)

see [15], where R}, = RL(u; ", u;) with R (u,v) defined in (3.4). Now take r = N +1
and label the copies of End C" in the tensor product U (spy) ® (End CV)® ™V +1) with
the indices 0,1, ..., N. Furthermore, specialize the parameters u; in (5.3) as follows:

Uy = v, w, =q 22y for i=1,...,N.

Then by [15, Proposition 4.1], the element (5.2) will take the form

R(v,u,...,q¢ "N "u) = a(u) H Roi(v, ¢~ 2u) AL,

where
a(u) — NV-1)/2 H (q—2z+2 . q_2]+2).

16i<j6N
We shall now be verifying that
H Roi(v, ¢ 2" u) A = §(u,v) A% (5.4)
i=1,...,N
where
N—-1
5(u,v) = (¢~ — qu) [[ (v — ¢~ %u)
i=1

The R-matrix R(u,v) satisfies the Yang—Baxter equation
ng(u, U)ng(’u, U))RQg('U, w) = Rgg (U, w)ng(u, w)ng(u, 'U).
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Using this relation repeatedly, we derive the identity
R(ul, Ce ,UT) = H Rij(ui, Uj),
i<j
where the product is taken in the order opposite to the lexicographical order on the
pairs (i,7). Taking here r = N + 1 and specializing the variables u; as above, we

arrive at . .
[T Roitv,a?*2u) Ay =AY T[] Roiv.a 2 ). (5.5)
i=1,..,N i=1,..,N

Hence, for the proof of (5.4), it now suffices to compare the images of the operators
on both sides at the basis vectors of the form v, = e, ®e;, ® -+ ® e;, with k =
1,..., N, where the e; denote the canonical basis vectors of CV and {i,...,iy} is
a fixed permutation of {1,...,N}. Our next observation is the fact that for any
i,j €{1,..., N} the expression R(u,v)(e; ® e;) is a linear combination of e¢; ® e; and
e; ® e;. This implies that for each k,

A% H Roi(v, ¢ " 2u) vy, = 8, (u,v) A% vy, (5.6)
i=1,..,N
for some scalar function 6, (u, v) which is independent of the permutation {i1,...,ix}.

It remains to show that 0, (u,v) = 0(u,v) for all k. However, this is immediate from
(5.6) if for a given k we choose a permutation {iy, ..., iy} with i; = k, thus completing
the proof of (5.4).

Now apply the transposition ¢ on the 0-th copy of End C* and combine (5.4) and
(5.5) to derive another identity

A(]IV H Réz (U7 q_2i+2u) = H Réz (U7 q_2i+2u) A(]]V = 6(“7 U) A(]]V

=1,...,

Thus, (5.3) becomes
§(u,v) 0 (u,v™ 1) A% So(v) sdet S(u) = §(u,v) d(u,v™") A% sdet S(u) Sp(v),

=1,...,

proving that sdet S(u) lies in the center of ﬁ; (spn)-

As a final remark, note that the above argument applies to more general matrices
S(u). The only property of S(u) used above is the fact that S(u) satisfies the reflection
equation

R(u,v) Sy (u) R (u™',v) Sa(v) = So(v) R (u™t,v) Sy(u) R(u,v). (5.7)
This implies that (3.3) equals A% sdet S(u) for some formal series sdet S(u) called
the Sklyanin determinant. Then sdet S(u) is central in the algebra with the defin-

ing relations (5.7). In particular, this applies to the (extended) twisted ¢-Yangians
associated with the orthogonal and symplectic Lie algebras; see [15].
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