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Abstract. We show that every torsion-free virtually poly-Z group
of Hirsch length 4 is the fundamental group of a closed 4-manifold
with a geometry of solvable Lie type.

Geometric 4-manifolds of solvable Lie type are infrasolvmanifolds,
and their fundamental groups are torsion-free virtually poly-Z group
π of Hirsch length 4. We shall show that every such group is realized
geometrically. In general, every such group is the fundamental group
of a closed infrasolvmanifold [1], and closed infrasolvmanifolds are dif-
feomorphic if and only if their fundamental groups are isomorphic [2].
However it is not a priori obvious that infrasolvmanifolds admit ge-
ometries in the sense of Thurston. It is well-known that torsion-free
virtually abelian groups are realized by flat manifolds (see [3]), while
Dekimpe has dealt with the virtually nilpotent cases [5]. If π is of
Seifert type (i.e, is an extension of a flat 2-orbifold group by Z2 or
Z ⋊−1 Z) then this is due to Ue in the orientable case and Kemp
in general [9, 10, 11]. In the remaining cases we shall give explicit
representations of the possible fundamental groups as lattices in the
appropriate isometry groups. (Some calculations are deferred to an
appendix.) We also give an ad hoc low-dimensional argument to show
that the group determines the manifold up to diffeomorphism (with
the exception of a handful of groups, for which we must appeal to [2].)

1. Notation

If G is a group let G′, ζG and
√
G denote the commutator subgroup,

centre and Hirsch-Plotkin radical of G. Let I(G) = {g ∈ G | ∃n >
0, gn ∈ G′} and let CG(H) be the centralizer of the subgroup H .

Let Γq be the nilpotent group with presentation

〈x, yz | xz = zx, yz = zy, xy = zqyx〉.
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Let Rn be the space of column vectors φ = (φ1, . . . , φn)
tr of length n,

and let e1, . . . , en be the standard basis vectors. Let E(r) = Isom(Er)
be the group of euclidean isometries of Rn, and let In be the n × n
identity matrix.

2. Seifert fibrations and geometries

An n-dimensional orbifold B has an open covering by subspaces of
the form Dn/G, where G is a finite subgroup of O(n). The orbifold
B is good if B = Γ\M , where Γ is a discrete group acting properly
discontinuously on a manifold M ; otherwise it is bad. A good orbifold
B is aspherical if B = Γ\M with M aspherical, and is closed if Γ acts
cocompactly. An orbifold bundle with general fibre F over B is a map
f : M → B which is locally equivalent to a projection G\(F ×Dn) →
G\Dn, where G acts freely on F and effectively and orthogonally on
Dn.

A 4-manifold S is Seifert fibred if it is the total space of an orbifold
bundle with general fibre a torus or Klein bottle over a 2-orbifold. (In
[10, 11, 13, 14] it is required that the general fibre be a torus. This is
always so if the manifold is orientable.) It is easily seen that χ(S) = 0
and that if the base is aspherical π1(S) has Z2 as a normal subgroup.
Seifert fibred 4-manifolds over aspherical bases are determined up to
diffeomorphism by their fundamental groups. This is due to Zieschang
for the cases with base a hyperbolic orbifold with no reflector curves
and general fibre a torus [13], and the general result is due to Vogt [12].

Theorem [Vogt] Let M and M ′ be two closed 4-manifolds which are

Seifert fibred over euclidean or hyperbolic orbifolds. Then the Seifert

fibrations are isomorphic if and only if the corresponding fundamental

group sequences are isomorphic. �

In particular, if the bases are hyperbolic the fundamental group of
the general fibre is the unique solvable normal subgroup with quotient
a discrete cocompact subgroup of Isom(H2), and so such 4-manifolds
have esentially unique Seifert fibrations. The fibration is also unique if
π is not virtually nilpotent of class at most 2.

If X is one of the geometries Nil4, Nil3×E1, Sol3×E1, S2×E2, H2×E2,

S̃L × E1 or F4 its model space X has a canonical foliation with leaves
diffeomorphic to R2 and which is preserved by isometries. (For the
Lie groups Nil3 × R, Nil4 and Sol3 × R we may take the foliations
by cosets of the normal subgroups ζNil3 × R, Nil4

′
and Sol3

′
.) These

foliations induce Seifert fibrations on quotients by lattices. All S3×E1-
manifolds are also Seifert fibred. Case-by-case inspection of the 74
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flat 4-manifold groups shows that all but three have Z2 as a normal
subgroup, and the representations given in [3] may be used to show
that the corresponding manifolds are Seifert fibred. The exceptions
are certain semidirect products G6 ⋊θ Z where G6 is the Hantzsche-
Wendt flat 3-manifold group. No other closed geometric 4-manifolds
are Seifert fibred, as they either have nonzero Euler characteristic or
their fundamental groups do not admit abelian normal subgroups of
rank 2.

Conversely, Ue has shown that an orientable 4-manifold which is
Seifert fibred over an aspherical 2-orbifold is diffeomorphic to a geomet-
ric 4-manifold [10, 11]. This has been extended to the nonorientable
case by Kemp (using similar arguments) [9]. These results for the eu-
clidean base cases follow also from our constructions below, together
with Vogt’s theorem. (A new treatment of the cases with hyperbolic
bases is given in Chapter 11 of the revised version of [8].)

3. Sol4m,n- and Sol40-manifolds

Let π be a torsion-free virtually poly-Z group of Hirsch length 4. If
π is virtually nilpotent then it is realized geometrically [5]. Otherwise√
π ∼= Z3 or Γq, for some q ≥ 1, by Theorem 1.5 of [8]. Hence π/

√
π

is an extension of Z or D∞ = (Z/2Z) ∗ (Z/2Z) by a finite normal
subgroup. Thus π has a characteristic subgroup ν such that [ν :

√
π] <

∞ and π/ν ∼= Z or D∞. We shall consider the groups with
√
π ∼= Z3

here and those with
√
π ∼= Γq in the next section.

If π is the fundamental group of a closed Sol4m,n-manifold (with m 6=
n) or Sol40-manifold then π/ν ∼= Z, by Corollary 8.4.1 of [8].

Theorem 1. Let π be a torsion-free group with
√
π ∼= Z3 and such

that π/
√
π maps onto Z with finite kernel. Then π is the fundamental

group of a closed Sol4m,n- or Sol40-manifold.

Proof. Let ν be the characteristic subgroup of π containing
√
π and

such that π/ν ∼= Z, and let t ∈ π represent a generator of π/ν. Then
π ∼= ν⋊τ Z, where τ is the automorphism of ν determined by conjuga-
tion by t. Let M = τ |√π. If the eigenvalues κ, λ, µ of M were all roots

of unity, of order dividing k, say, the subgroup generated by
√
π and tk

would be nilpotent, and of finite index in π. Therefore we may assume
that κ, λ and µ are distinct and that neither κ nor λ is a root of unity.
If ν 6= √

π then [ν :
√
π] = 2 and µ = ±1, by Theorem 8.3 of [8].

Suppose first that the eigenvalues are all real. Then the eigenvalues
ofM2 are all strictly positive. Since

√
π ∼= Z3 there is a monomorphism

f :
√
π → R3 such that fM = Tf , where T = diag[κ, λ, µ] ∈ GL(3,R).
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Let F (g) =
(
I3 f(g)
0 1

)
, for g ∈ √

π. We shall extend F to ν be-

low, and let F (t) =
(
T ξ
0 1

)
, where ξ ∈ R3 is to be chosen so that

F (t)F (g)F (t)−1 = F (τ(g)), for g ∈ ν. (In this theorem there is usually
an obvious simplest choice, but we shall need greater flexibility in The-
orem 6 below.) This condition needs checking only on a set of coset
representatives for ν/

√
π, as it clearly holds for g ∈ √

π.
If ν =

√
π we may choose ξ arbitrarily. In this case F determines

a discrete cocompact embedding of π in Isom(Sol4m,n), where m =

trace(M2) and n = trace(M−2). (If one of the eigenvalues of M is ±1
then m = n and the geometry is Sol3 × E1. See Chapter 7.§3 of [8].)

If ν 6= √
π then ν ∼= Z2 ⋊θ Z, where θ = −I2, ( 1 0

0 −1 ) or ( 0 1
1 0 ), by

Theorem 8.3 of [8]. If ν ∼= G2 = Z2 ⋊θ Z where θ = −I2 then ν has a
presentation

〈x, y, z | xy = yx, zxz−1 = x−1, zyz−1 = y−1〉,
and {x, y, z2} is a basis for

√
π. The subgroup I(ν) generated by {x, y}

is characteristic in ν and therefore normal in π. The image of z gener-
ates ν/I(ν), and z2 generates ζν. Hence tzt−1 = zǫk for some ǫ = ±1
and k ∈ I(ν), and so M(z2) = z2ǫ. Therefore ǫ = µ. Since R3

is generated by the images of I(ν) and ζν and τ preserves each of
these subgroups we may assume that f(I(ν)) is in the span of {e1, e2}
and f(z2) = e3. We extend F to π by setting F (z) =

(
J e3
0 1

)
, where

J = diag[−1,−1, 1], and choosing ξ so that f(k) + 2ξ ∈ Re3.
If ν ∼= B1 = Z2 ⋊θ Z where θ = ( 1 0

0 −1 ) then ν has a presentation

〈x, y, z | xy = yx, xz = xz, yzy−1 = z−1〉,
and {x, y2, z} represents a basis for

√
π. In this case {x, y2} generates

ζν and z generates I(ν). Since R3 is generated by the images of ζν and
I(ν) and τ preserves each of these subgroups we may assume that f(ζν)
is in the span of {e1, e2} and f(z) = e3. Suppose that tyt−1 = mzry,
where m ∈ ζν and r ∈ Z. Then ty2t−1 = m2y2, and so Tf(y2) =
2f(m) + f(y2). We extend F to π by setting F (y) =

(−J β
0 1

)
, where

β = 1
2
f(y2) + he3, and ξ3 = 1

2
(h(1 − µ) + r). (Here h, ξ1, ξ2 may be

chosen freely.)
If ν ∼= B2 = Z2 ⋊θ Z where θ = ( 0 1

1 0 ) then ν has a presentation

〈x, y, z | xyx−1 = yz, xz = zx, yzy−1 = z−1〉
and {x, y2, z} represents a basis for

√
π. In this case {y2, x2z} represent

a basis for ζν. Since R3 is generated by the images of ζν and z and
τ preserves each of these subgroups we may assume that f(ζν) is in
the span of {e1, e2} and f(z) = e3. Suppose that tyt−1 = nxsy, where
n ∈ ζν and s ∈ Z. Then ty2t−1 = n2(x2z)sy2. Let γ = 1

2
f(y2) + he3
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and ξ = 1
2
(2h(1 − µ) − s)e3. (Here h may be chosen freely.) Then we

may extend F to π by setting F (y) =
(−J γ

0 1

)
and F (t) =

(
T ξ
0 1

)
.

In each case, F determines a discrete cocompact embedding of π in
Isom(Sol3 × E1).

If the eigenvalues are not all real we may assume that λ = κ̄ and
µ 6= ±1. In this case we again have ν =

√
π, by Theorem 8.3 of [8].

Let Rφ ∈ SO(2) be rotation of R2 through the angle φ = Arg(κ).
There is a monomorphism f :

√
π → R3 such that fM = Tf where

T =
(

|κ|Rφ 0
0 µ

)
. Let F (n) =

(
I3 f(n)
0 1

)
, for n ∈ √

π, and let F (t) =

( T 0
0 1 ). Then F determines a discrete cocompact embedding of π in
Isom(Sol40). �

It remains to be shown that if ν is virtually Z3 and π/ν ∼= D∞ then
π is the fundamental group of a closed Sol3×E1-manifold. (As recalled
in Theorem 1, Sol4m,m = Sol3 × E1, for any m.)

Theorem 2. Let π be a torsion-free group with
√
π ∼= Z3 and such that

π/
√
π maps onto D∞ with finite kernel. Then π is the fundamental

group of a closed Sol3 × E1-manifold.

Proof. Let ν be the characteristic subgroup of π containing
√
π and

such that π/ν ∼= D∞, and let t ∈ π represent a generator of
√
π/ν ∼= Z.

Let π̃ be the subgroup of index 2 in π generated by ν and t, and let
f :

√
π → R3 and F : π̃ → Isom(Sol3 × E1) be the embeddings given

in Theorem 1. Let u ∈ π represent an element of order 2 in π/ν.
Then v = u2 and w = (ut)2 are elements of ν, and are nontrivial since
π is torsion-free. The subgroups 〈ν, u〉 and 〈ν, ut〉 are flat 3-manifold
groups, with holonomy of order dividing 4. Since B2 is not a subgroup
of index 2 in any such group, we may assume that ν ∼= Z3, G2 or B1.
However each of these groups is such a subgroup of several different
flat 3-manifold groups.

If ν 6= √
π let q represent the nontrivial coset of

√
π in ν. Then

c = uqu−1q−1 is in
√
π. We must define F (u) so that

F (ugu−1) = F (u)F (g)F (u)−1 ∀g ∈
√
π,

F (u)F (q) = F (c)F (q)F (u),

F (u)2 = F (v) and

(F (u)F (t))2 = F (w).

Let U ∈ GL(3,R) be the matrix such that f(ugu−1) = Uf(g) for
g ∈ √

π.
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Suppose first that v, w ∈ √
π. Then U2 = I3 and UTU = T−1, so

{κ, λ, µ} = {κ−1, λ−1, µ−1}. Since κ2, λ2 6= 1 it follows that κλ = 1 and
µ2 = 1, and since T = diag[κ, λ, µ] we then see that

U =




0 η 0
η−1 0 0
0 0 e




for some η 6= 0 and e = ±1. (In particular, U 6= I3 and UT 6= I3.) We
shall assume that F (t) =

(
T ξ
0 1

)
and F (u) =

(
U ρ
0 1

)
, for some ξ, ρ ∈ R3.

Then F (ugu−1) = F (u)F (g)F (u)−1 for all g ∈ √
π.

If ν =
√
π the remaining consistency conditions F (u)2 = F (v) and

F (ut)2 = F (w) reduce to the two equations

(U + I3)ρ = f(v) and

(UT + I3)(Uξ + ρ) = f(w).

We must have f(v)1 = ηf(v)2, f(v)3 = ef(v)3, f(w)1 = ηκf(w)2 and
f(w)3 = eµf(w)3, and we obtain four linear equations in six unknowns:
ρ1 + ηρ2 = f(v)1, (e+1)ρ3 = f(v)3, ρ1 + ηκρ2 = f(w)1 −κξ1 − ηξ2 and
(eµ + 1)(eξ3 + ρ3) = f(w)3. Thus ρ1 and ρ2 are determined uniquely
by ξ1 and ξ2. If e = µ = +1 then we must have ρ3 = 1

2
f(v)3 and

ξ3 = 1
2
(f(w)3 − f(v)3). If e = −1 then f(v)3 = 0, since uvu−1 = v,

while if eµ = −1 then f(w)3 = 0, since utw(ut)−1 = w. In either
case these linear equations impose no further constraint on ξ and may
be solved for ρ. In this case any solution ξ, ρ determines a discrete
cocompact embedding F : π → Isom(Sol40).

If ν ∼= G2 we set q = z. Let uzu−1 = mze and v = v0z
2r, where

m, v0 ∈ I(ν) and e, r ∈ Z. Then c = mze−1, u2zu−2 = umu−1mz and
also u2zu−2 = vzv−1 = v0zv

−1
0 = v2

0z = v2z1−4r. Since v = uvu−1 =
uv0u

−1z2er we see that if e = −1 then r = 0. We also have tzt−1 = zµk,
where µ = ±1 and k ∈ I(ν), and so utz(ut)−1 = uzµu−1uku−1 =
muk−1u−1zeµ. Similarly, if w = w0z

2s, where w0 ∈ I(ν) and s ∈ Z,
then utw(ut)−1 = w, w2z1−4s = ut(muk−1u−1)(ut)−1muk−1u−1z, and
s = 0 if eµ = −1.

In this case F (z) =
(
J e3
0 1

)
and f(k) + 2ξ ∈ Re3. The consistency

conditions reduce to the equations

(J − I3)ρ = (U − I3)e3 − f(c) = −f(m),

(U + I3)ρ = f(v) and

(UT + I3)(Uξ + ρ) = f(w).

The two calculations of u2zu−2 in the previous paragraph show that
(U + I3)f(m) = f(v2z−4r) = (I3 − J)f(v), while the calculations of
(ut)2z(ut)−2 show that (UT + I3)(f(m) − Uf(k)) = f(w2

0). Thus the
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consistency conditions reduce further to the four equations ρ1 = 1
2
f(c)1,

ρ2 = 1
2
f(c)2, (1+e)ρ3 = f(v)3 = 2r and (1+eµ)(ξ3+ρ3) = f(w)3 = 2s.

If e = µ = +1 we must have ρ3 = r and ξ3 = s−r. If e = −1 or eµ = −1
then r = 0 or s = 0 (respectively), and there is a one-parameter family
of solutions.

If ν ∼= B1 we set q = y. Suppose that tyt−1 = mzry and uyu−1 =
nzsy, where m,n ∈ ζν and r, s ∈ Z. Then uty(ut)−1 = umu−1nzer+sy,
c = nzs and uy2u−1 = n2y2. Hence y2uy−2u−1c2 = z2s. Let v = v0z

a

and w = w0z
b, where v0, w0 ∈ ζν and a, b ∈ Z. Calculating vyv−1 =

u2yu−2 = ucyu−1 in two ways shows that 2a = (1 + e)s. Similarly,
2b = (1 + eµ)(er + s).

In this case F (y) =
( −J β

0 1

)
, where β = 1

2
f(y2) + he3, and ξ3 =

1
2
(h(1− µ) + r). (Here h, ξ1, ξ2 may be chosen freely.) The consistency

conditions are
(J + I3)ρ = (I3 − U)β + f(c),

(U + I3)ρ = f(v) and

(UT + I3)(Uξ + ρ) = f(w).

The equation y2uy−2u−1c2 = z2s implies that (I3 − U)f(y2) + 2f(c) =
2se3. Hence the first two conditions reduce to the equations

2ρ3 = (h(1 − e) + s),

ρ1 + ηρ2 = f(v)1

η−1ρ1 + ρ2 = f(v)2 and

(e+ 1)ρ3 = f(v)3.

If e = 1 then ρ3 = 1
2
f(v)3 = 1

2
s, while if e = −1 then f(v)3 = 0

and ρ3 = h + 1
2
s. Thus the first and fourth equations have an unique

solution for ρ3. The third equation is equivalent to the second since
Uf(v) = f(uvu−1) = f(v), and so ηf(v)2 = f(v)1.

The third condition reduces to the equations

λξ1 + ηξ2 + ρ1 + ηλρ2 = f(w)1

η−1ξ1 + κξ2 + η−1κρ1 + ρ2 = f(w)2 and

(eµ+ 1)(eξ3 + ρ3) = f(w)3.

The second equation is equivalent to the first, since κλ = 1 and
UTf(w) = f(w), so κηf(w)2 = f(w)1. If eµ = 1 then f(w)3 = er + s,
while f(w)3 = 0 if eµ = −1. Hence the third equation holds since
e(h(1− µ) + r) + h(1− e) + s) = er+ s if eµ = 1, while both sides are
0 if eµ = −1. Thus our consistency conditions are satisfied.

Suppose now that v is not in
√
π. On considering the possible ho-

lonomy groups we see that we may assume that 〈ν, u〉 ∼= G4, ν ∼= G2
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and u2 = z. Since R3 is generated by the images of I(ν) and ζν and
conjugation by u preserves the subgroup I(ν) and fixes ζν we must
have U = ( V 0

0 1 ), where V 2 = −I2. Moreover ρ = 1
2
e3, since u2 = z, and

f(k)+2ξ ∈ Re3. Let F (w) =
(
W ψ
0 1

)
. Then we must have W = (UT )2.

Since c = 1 our consistency conditions are now

(W + I3)ψ = f(w2) and

(UT + I3)(Uξ +
1

2
e3) = ψ.

Let w = w0z
s, where w0 ∈ I(ν) and s ∈ Z. Then s = 0 if µ =

−1, since utw(ut)−1 = w. If w ∈ √
π then s is even, and W = I3

and ψ = f(w). Since the equations wzw−1 = w2
0z and wzw−1 =

ut(uzµku−1)(ut)−1 = (ut)uk−1u−1(ut)−1uk−1u−1z imply that (UT +
I3)Uf(k) + 2f(w) = 2se3, and since s = 0 if µ = −1, our consistency
conditions are satisfied.

If w 6∈ √
π then s is odd. Hence w2 = z2s, W 2 = I3 and f(w2) = 2se3.

In this case our conditions our satisfied if we set ψ = se3 and ξ = ξ3e3,
where (µ + 1)(2ξ3 + 1) = 2s. (Once again we observe that s = 0 if
µ = −1.) �

Theorems 1 and 2, with the work of De Kimpe [5] provide another
approach to the following result of Kemp.

Theorem 3. [9] Let π be a torsion-free group with a normal subgroup K
such that K and π/K are each virtually Z2. Then π is the fundamental
group of a Seifert fibred geometric 4-manifold of solvable Lie type.

Proof. If K ∼= π1(Kb) then
√
K ∼= Z2 and Out(K) is finite. Hence

√
K

is centralized by a subgroup of finite index, and so
√
K ∼= Z2 ≤ ζ

√
π.

Hence π is virtually abelian or virtually 2-step nilpotent, and so is
the fundamental group of a flat 4-manifold or a Nil3 × E1-manifold,
respectively [5].

If π is virtually nilpotent but Z2 � ζ
√
π then π is the fundamental

group of a Nil4-manifold [5].
If π is not virtually nilpotent h(

√
π) = 3 and K ∼= Z2. Clearly K <√

π, since
√
π is the unique maximal locally-nilpotent normal subgroup.

We may assume that K is maximal among abelian normal subgroups
of rank 2, and so π/K has no nontrivial finite normal subgroup. The
image of π/K in Aut(K) is virtually cyclic, since π/K is solvable and
Aut(K) ∼= GL(2,Z) is virtually free. It follows easily that

√
π =

Cπ(K) ∼= Z3.

If K̃ 6= K were a second normal subgroup of π which is maximal

abelian of rank 2 then K̃ <
√
π also. But then π would have a chain
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of normal subgroups K ∩ K̃ < K < KK̃ of strictly increasing Hirsch
length, and so would be virtually nilpotent. Thus K is the unique
maximal normal subgroup of π isomorphic to Z2.

Thus π has a characteristic subgroup ν such that [ν :
√
π] <∞ and

π/ν ∼= Z or D∞. The result now follows from Theorems 1 and 2. �

The observation that if the general fibre is Kb then the geometry
must be E4 or Nil3 × E1 is due to Kemp [9]. His proof of this theorem
follows Ue in using the fact that (if K is maximal) π/K is the funda-
mental group of a flat 2-orbifold. Hence π has a presentation lifting a
standard presentation for π/K, and one may construct matrices real-
izing the standard generators and respecting the relations. (He treats
the virtually nilpotent cases explicitly, as well as the Sol3 × E1 cases.)

4. Sol41-manifolds

In this section we shall show that every torsion-free virtually poly-
Z group π of Hirsch length 4 with

√
π ∼= Γq (for some q ≥ 1) is the

fundamental group of a closed Sol41-manifold. The model space for this
geometry is the linear group

Sol41 = {




1 y z
0 t x
0 0 1


 | t > 0, x, y, z, ∈ R}.

The subgroup of such matrices with t = 1 is the group Nil3. Let G be
the subgroup of GL(3,R) generated by Sol41 and the diagonal matrices
diag[−1, 1, 1] and diag[1, 1,−1], and let P ∈ GL(3,R) be the permu-
tation matrix which reverses the order of the standard basis of R3.
Let Ω(g) = P (gtr)−1P , for all g ∈ G. Then Isom(Sol41) ∼= G ⋊ Z/2Z,
where the multiplication is given by (g, i)(h, j) = (gΩi(h), i + j) for
g, h ∈ G and i, j ∈ Z/2Z. (Note that while Sol41 acts on itself by left
multiplication the diagonal matrices act by conjugation.) For simplic-
ity of notation we shall identify each g ∈ G with (g, 0) ∈ Isom(Sol41).

IfM is a Sol41-manifold with fundamental group π then it is orientable
if and only if π/

√
π maps onto Z, by Corollary 8.7.1 of [8].

Theorem 4. Let π be a torsion-free group with
√
π ∼= Γq and such

that π/
√
π maps onto Z with finite kernel. Then π is the fundamental

group of an orientable closed Sol41-manifold.

Proof. Let ν be the characteristic subgroup of π containing
√
π and

such that π/ν ∼= Z, and let t ∈ π represent a generator of π/ν. Then
π ∼= ν⋊τ Z, where τ is the automorphism of ν determined by conjuga-
tion by t. Let A be the induced automorphism of

√
π/ζ

√
π ∼= Z2. Since
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π is not virtually nilpotent the eigenvalues α, β of A are distinct and not
±1. Moreover ν =

√
π or [ν :

√
π] = 2 and ν/ζ

√
π ∼= Z2 ⋊−I (Z/2Z).

(See Chapter 8.§7 of [8].)
Suppose first that ν =

√
π. Then τ(x) = xaybzm and τ(y) = xcydzn,

for some a, . . . , n ∈ Z, and τ(z) = zdetA = zαβ . Let e, f ∈ R2 be the
eigenvectors of A = ( a cb d ) corresponding to α and β, respectively. Let
( 1

0 ) = x1e+ x2f , ( 0
1 ) = y1e+ y2f , and let X = ( x1 y1

x2 y2 ) be the change-
of-basis matrix. Then XA =

(
α 0
0 β

)
X. In particular, αx1 = ax1 + by1,

βx2 = ax2 + by2, αy1 = cx1 + dy1 and βy2 = cx2 + dy2. Let [x, y] =
1
q
(x2y1 − x1y2). If v = v1e+ v2f let

vN =




0 v2 0
0 0 v1

0 0 0


 and N2 =




0 0 1
0 0 0
0 0 0


 .

Then (vN)2 = v1v2N
2 and (vN)3 = 0. Hence the exponential series

gives evN = I3+vN+ 1
2
(vN)2. An easy calculation shows that (evN )n =

envN for all n ∈ Z. We may define a homomorphism F : ν → Nil3 by
setting F (x) = exN , F (y) = eyN and F (z) = e[x,y]N

2

. Let F (t) = α
|α|T ,

where

T =



αβ t2 t3
0 α t1
0 0 1


 .

(The sign term α
|α| here is to ensure that F (t) ∈ G, and plays no

role in the computations. Similarly in Theorem 6.) Then F (t)F (z) =
F (z)αβF (t) and so F extends to a homomorphism from π to Isom(Sol41)
provided that

F (t)F (x) = F (x)aF (y)bF (z)mF (t) and

F (t)F (y) = F (x)cF (y)dF (z)nF (t).

These equations have unique solutions for t1 and t2:

t1 =
1

2qβ
((2n+ cdq)x1 − (2m+ abq)y1) and

t2 =
1

2q
((2n+ cdq)x2 − (2m+ abq)y2).

(The entry t3 may be chosen freely.) It is easily seen that the corre-
sponding homomorphism F is a discrete cocompact embedding.

If ν 6= √
π let w ∈ ν represent a generator of ν/

√
π. Sine ν/ζ

√
π ∼=

Z2 ⋊−I (Z/2Z) we may assume that wxw−1 = x−1zi and wyw−1 =
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y−1zj for some i, j ∈ Z, and so w2 ∈ ζ
√
π. Hence w2 = zk, for some

odd k ∈ Z, since ν is torsion-free. Thus ν has a presentation

〈w, x, y, z | wxw−1 = x−1zi, wyw−1 = y−1zj , xy = zqyx, w2 = zk〉.
Then τ(x) = xaybzm, τ(y) = xcydzn and τ(w) = xryszpw, for some
a, . . . , s ∈ Z. These formulae define an automorphism of ν if and only
if

2m = q(rb− as− ab) − ai− bj + i detA,

2n = q(rd− cs− cd) − ci− dj + j detA and

qrs+ 2p+ ri+ sj = k(detA− 1).

Define F (x), F (y) and F (t) as before, and let

F (w) =



−1 w2 w3

0 1 w1

0 0 −1


 ,

where w1 = 1
q
(jx1−iy1), w2 = 1

q
(−jx2+iy2) and w3 = 1

2
(w1w2−k[x, y]).

Then F (w)F (x) = F (x)−1F (z)iF (w), F (w)F (y) = F (y)−1F (z)jF (w)
and F (w)2 = F (z)k. The condition

F (t)F (w) = F (x)rF (y)sF (z)pF (w)F (t)

reduces to the equations

2t1 = rx1 + sy1 + (α− 1)w1,

2t2 = α(rx2 + sy2 + (1 − β)w2) and

(αβ−1)w3= t1w2−t2w1+(t1+w1−
rx1 + sy1

2
)(rx2+sy2)−

qrs+ 2p

2
[x, y].

On solving αx1 = ax1 + by1 for y1 in terms of x1 and remembering that
α+β = a+d and αβ = detA we see that the first equation is satisfied.
Similarly for the second equation. The third equation follows from the
first since qrs + 2p + ri + sj = k(detA − 1). Thus F determines a
discrete cocompact embedding of π in Isom(Sol41). �

We could arrange that i = j = 0 and k = 1 in Theorem 4 by replacing

x, y and w by xz−i, yz−j and wz
1−k
2 , respectively. However the version

given is more convenient for use in Theorem 6 below, which treats the
case when π/

√
π is a finite extension of D∞. Here the verification that

our constructions work needs more effort, and we shall defer the details
of our calculations to an appendix.

Lemma 5. Let ν be a torsion-free group with
√
ν ∼= Γq and suppose

that ν is generated by
√
ν and an element u such that u2 ∈ √

ν and
ugu−1 = g−1 for g ∈ ζ

√
ν. Then q is even.
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Proof. Let z generate ζ
√
ν, and let U be the automorphism of

√
ν/ζ

√
ν

induced by conjugation by u. Then det(U) = −1, since uzu−1 = z−1,
and u2 6∈ ζν, since u(u2)u−1 = u2. Therefore U has eigenvalues {1,−1},
and so may be diagonalized (over Z). Thus we may assume

√
ν has

generators x, y and z such that uxu−1 = xzi and uyu−1 = y−1zj . Let
u2 = xpyqzr. Then q = 0, since u(u2)u−1 = u2. On replacing u by
ux−P we see that we may vary p by any even number. In particular,
we may assume that p = 1, since u2 6∈ ζν. We may now replace x by
u2z−r, so that u2 = x. Hence xyx−1 = u(y−1zj)u−1 = yz−2j , and so q
must be even. �

Theorem 6. Let π be a torsion-free group with
√
π ∼= Γq and such that

π/
√
π maps onto D∞ with finite kernel. Then π is the fundamental

group of a nonorientable closed Sol41-manifold.

Proof. Let ν be the characteristic subgroup of π containing
√
π and

such that π/ν ∼= D∞, and let u, v ∈ π represent a pair of generators
of order 2 for π/ν. Then u2 and v2 are elements of ν, and are non-
trivial since π is torsion-free. Let π̃ be the subgroup of index 2 in π
generated by ν and t = uv. Let U, V and T be the automorphisms
of

√
π/ζ

√
π ∼= Z2 induced by conjugation by u, v and t, respectively.

Since π is not virtually nilpotent T = UV has infinite order and distinct
real eigenvalues α and β which are not ±1.

Suppose first that ν =
√
π. Then U2 = V 2 = I2. Since T = UV has

infinite order neither of U or V is ±I2. Therefore detU = detV = −1,
and so αβ = detT = +1. As in the lemma, we may assume the
generators of ν so chosen that u2 = x and uyu−1 = y−1z−

q

2 . We
shall assume also that txt−1 = xaybzm and tyt−1 = xcydzn, for some
a, . . . , n ∈ Z, as in Theorem 4. (Note that abcd 6= 0, since π is not
virtually nilpotent.)

Let e ∈ R2 = R ⊗Z (
√
π/ζ

√
π) be an eigenvector of T corresponding

to α. Then TUe = α−1TUTe = βUe. Thus f = Ue is an eigenvector
of T corresponding to β. Let [x] = x1e + x2f and [y] = y1e + y2f be
the images of x and y in R2. Since U [x] = [x] and U [y] = −[y] are
eigenvectors of U , we have x2 = x1 and y2 = −y1. Hence all these
terms are nonzero.

Let F : π̃ → Isom(Sol41) be the embedding given in Theorem 4, and
let F (u) = (K,Ω), where

K =



−1 1

2
x1 0

0 1 −1
2
x1

0 0 −1


 .



GEOMETRIES AND INFRASOLVMANIFOLDS IN DIMENSION 4 13

It follows easily from the equations x2 = x1 and y2 = −y1 that
x1y2 = −x2y1 = − q

2
[x, y], and hence that F (u)2 = F (x) = F (u2),

F (u)F (y)F (u)−1= F (uyu−1) and F (u)F (z)F (u)−1 = F (uzu−1). Since
t = uv we must set F (v) = F (u)−1F (t) = F (x)−1F (u)F (t).

Let v2 = xgykzp. Since v = u−1t we have vxv−1 = xay−bz
bq

2
−m,

vyv−1 = xcy−dz
dq

2
−n and vzv−1 = z−1. On expanding out the left-hand

side of the equation vxgykzpv−1 = xgykzp we see that

(a− 1)g + ck = bg + (d+ 1)k = 0 and

2p =
q

2
(g(g − 1)ab+ k(k − 1)cd+ 2bcgk + bg + dk) − gm− kn.

The latter equation simplifies further to

p =
qk

4
(a2 + a− ac− 2g − 1) − 1

2
(gm+ kn).

The equation v(vxv−1)v−1 = v2xv−2 = ykxy−k = xz−qk gives

k =
1

2
(ab(a− c− 1) + b) +

1

q
((a− 1)m− bn).

We see also that a = d and a2 − 1 = bc. Similarly, the equation
v(vyv−1)v−1 = xgyx−g = yzqg gives

g =
1

2
(ac(a− b+ 1) − a− 1) +

1

q
(−cm+ (a + 1)n).

(The last two equations are equivalent, since bc = (a + 1)(a − 1) and
ck = (1 − a)g.) In the appendix we shall verify that

F (v)2 = F (v2) = F (x)gF (y)kF (z)p.

Then F determines a discrete cocompact embedding of π in Isom(Sol41).
If ν 6= √

π then ν is generated by x, y and w, with wxw−1 = x−1zi,
wyw−1 = y−1zj and w2 = zk, for some i, j, k ∈ Z with k odd. Suppose
first that u2 ∈ √

π. Then we may assume that u2 = x and uyu−1 =
y−1z−

q

2 , by the first part of this theorem (applied to the subgroup of
index 2 generated by

√
π, u and t). Since uwu−1w−1 ∈ √

π we have
uwu−1w−1 = xφyψzρ, for some φ, ψ, ρ ∈ Z. Squaring both sides of the
equation wuw−1 = z−ρy−ψx−φu gives

φ = 1.

Similarly, squaring both sides of the equation uwu−1 = xyψzρw gives

i+ (j + q)ψ + 2ρ = −2.

Conjugating x by uwu−1w−1 gives yψxy−ψ = xz2i, and so

2i = −qψ.
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(Conjugating y and z by uwu−1w−1 gives no further constraints.)
We again let F : π̃ → Isom(Sol41) be the embedding given in Theo-

rem 4, and let F (u) = (K,Ω), where K is as above. In the appendix
we shall verify that

F (u)F (w) = F (x)F (y)ψF (z)ρF (w)F (u).

Then F determines a discrete cocompact embedding of π in Isom(Sol41).
If u2 6∈ √

π then 〈ν, u〉/√π ∼= Z/4Z, and we may assume that w = u2,
uxu−1 = y and uyu−1 = x−1zi, for some i ∈ Z. Hence u2xu−2 = x−1zi

and u2yu−2 = y−1zi, so U2 = −I2. We may also assume that u4 = zk

and tu2t−1 = xryszpu2, for some k, p, r, s ∈ Z with k odd. Since C =
utut is in ν we have C = xφyψzρu2η, for some φ, ψ, ρ ∈ Z and η = 0
or 1. Hence UTUT = (−I2)η. On computing the left-hand side and
recalling that abcd 6= 0, we see that b = c and ad − b2 = (−1)η+1. If
Te = αe then TUe = (−1)η+1UT−1e = βUe, and we again choose the
eigenvectors e, f so that f = Ue. It then follows that y1 = −x2 and
y2 = x1. The exponents a, b, d, i,m, n, p, r, s satisfy the constraints of
Theorem 4 for w = u2. Conjugation of x and y by C gives equations
φ = 1

2
(−dr + (b − 1)s) and ψ = 1

2
((b + 1)r − as). We shall defer

consideration of other constraints on the exponents to the appendix.
Let F : π̃ → Isom(Sol41) be the embedding given in Theorem 4 and

let F (u) = (L,Ω), where

L =



−1 i

q
x1

1
4q2

((i2 − kq)x2
1 − (i2 + kq)x2

2)

0 1 − i
q
x2

0 0 1


 .

Then F (u)2 = F (u2) and F (u)4 = F (z)k. It is also easily seen that
F (y)F (u) = F (u)F (x). (This uses the fact that y1 = −x2 and y2 = x1.)
Since 〈ν, u〉 is generated by u, x and z it follows that F (ugu−1) =
F (u)F (g)F (u)−1 for all g ∈ ν. In the appendix we shall verify that

F (u)F (t)F (u)F (t) = F (utut) = F (x)φF (y)ψF (z)ρF (u)2η.

Then F determines a discrete cocompact embedding of π in Isom(Sol41).
�

5. Orbifold bundles and diffeomorphisms

An infrasolvmanifold is a quotientM = Γ\S where S is a 1-connected
solvable Lie group and Γ is a closed torsion free subgroup of the semidi-
rect product Aff(S) = S ⋊α Aut(S) such that Γo (the component of
the identity of Γ) is contained in the nilradical of S (the maximal con-
nected nilpotent normal subgroup of S), Γ/Γ ∩ S has compact closure
in Aut(S) and M is compact. The pair (S,Γ) is called a presentation
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for M , and is discrete if Γ is a discrete subgroup of Aff(S), in which
case π1(M) = Γ. Every infrasolvmanifold has a presentation such that
Γ/Γ∩S is finite [6], but Γ need not be discrete, and S is not determined

by π. (For example, Z3 is a lattice in both R3 and Ẽ(2)+ = C ⋊α̃ R,
where α̃(t)(z) = e2πitz for all t ∈ R and z ∈ C. However if M is
an infranilmanifold, with S = N solvable and Γ discrete then N is
determined by Γ.)

Geometric 4-manifolds of solvable Lie type are infrasolvmanifolds,
and infrasolvmanifolds are the total spaces of orbifold bundles with
infranilmanifold fibre and flat base. (See Chapter 7 of [8].) Baues
showed that in all dimensions infrasolvmanifolds are determined up to
diffeomorphism by their fundamental groups [2]. In dimensions ≤ 3 this
follows from standard results of low dimensional topology. We shall
show that related arguments also cover most 4-dimensional orbifold
bundle spaces. The following theorem extends the main result of [4]
(in which it was assumed that π is not virtually nilpotent).

Theorem 7. Let M and M ′ be 4-manifolds which are total spaces of
orbifold bundles p : M → B and p′ : M ′ → B′ with fibres infranilmani-
folds F and F ′ (respectively) and bases flat orbifolds, and suppose that
π1(M) ∼= π1(M

′) ∼= π. If π is virtually abelian and β1(π) = 1 assume
that π is orientable. Then M and M ′ are diffeomorphic.

Proof. We may assume that d = dim(B) ≤ d′ = dim(B′). Sup-
pose first that π is not virtually abelian or virtually nilpotent of class
2. Then all subgroups of finite index in π have β1 ≤ 2, and so
1 ≤ d ≤ d′ ≤ 2. Moreover π has a characteristic nilpotent subgroup
ν̃ such that h(π/ν̃) = 1, by Theorems 1.5 and 1.6 of [8]. Let ν be the
preimage in π of the maximal finite normal subgroup of π/ν̃. Then
ν is a characteristic virtually nilpotent subgroup (with

√
ν = ν̃) and

π/ν ∼= Z or D. If d = 1 then π1(F ) = ν and p : M → B induces this
isomorphism. If d = 2 the image of ν in πorb1 (B) is normal. Hence there
is an orbifold map q from B to the circle S1 or the reflector interval
I such that qp is an orbifold bundle projection. A similar analysis ap-
plies to M ′. In either case, M and M ′ are canonically mapping tori or
unions of two twisted I-bundles, and the theorem follows via standard
3-manifold theory.

If π is virtually nilpotent it is realized by an infranilmanifold M0

[5]. Hence we may assume that M ′ = M0, d
′ = 4, h(

√
π) = 4 and√

π
′ ∼= Z or 1. If d = 0 or 4 then M is also an infranilmanifold and

the result is clear. If there is an orbifold bundle projection from B to
S1 or I then M is a mapping torus or a union of twisted I-bundles,
and π is a semidirect product κ⋊Z or a generalized free product with
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amalgamation G ∗J H where [G : J ] = [H : J ] = 2. The model M0

then has a corresponding structure as a mapping torus or a union of
twisted I-bundles, and we may argue as before.

If β1(π) + d > 4 then πorb1 (B) maps onto Z, and so B is an orbifold
bundle over S1. Hence if d = 1 or β1(π) + d > 4 the above argument
applies.

If there is no such orbifold bundle projection we may assume that
d = 2 or 3 and that β1(π) ≤ 4 − d. (If moreover β1(π) = 4−d and there
is no such projection then π′∩π1(F ) = 1 and so π is virtually abelian.)
If d = 2 then M is Seifert fibred. Since M ′ is an infranilmanifold (and
π cannot be one of the three exceptional flat 4-manifold groups G6⋊θZ
with θ = j, cej or abcej) it is also Seifert fibred, and so M and M ′ are
diffeomorphic, by [12].

If d = 3 then π1(F ) ∼= Z. The group π has a normal subgroupK such
that π/K ∼= Z or D, by Lemma 3.14. If π1(F ) < K then πorb1 (B) maps
onto Z or D and we may argue as before. Otherwise π1(F ) ∩K = 1,
since Z and D have no nontrivial finite normal subgroups, and so π is
virtually abelian. If β1(π) = 1 then π1(F )∩π′ = 1 (since π/K does not
map onto Z) and so π1(F ) is central in π. It follows that p is the orbit
map of an S1-action on M . Once again, the model M0 has an S1-action
inducing the same orbifold fundamental group sequence. Orientable 4-
manifolds with S1-action are determined up to diffeomorphism by the
orbifold data and an Euler class corresponding to the central extension
of πorb1 (B) by Z [7]. Thus M and M ′ are diffeomorphic. It is not
difficult to determine the maximal infinite cyclic normal subgroups of
the flat 4-manifold groups π with β1(π) = 0, and to verify that in each
case the quotient maps onto D. �

It is highly probable that the arguments of Fintushel can be extended
to all 4-manifolds which admit smooth S1-actions, and Theorem 7 is
surely true without any restrictions on π. (Note that the algebraic
argument of the final sentence of this theorem does not work for nine
of the 30 nonorientable flat 4-manifold groups π with β1(π) = 1.)

Since all such groups are realized geometrically, every smooth 4-
manifold admitting such an orbifold fibration is diffeomorphic to a
geometric 4-manifold of solvable Lie type.

Theorem 8. Let M be a closed 4-dimensional infrasolvmanifold. Then
M is diffeomorphic to a geometric 4-manifold of solvable Lie type.

Proof. Let π = π1(M). Then π is a torsion-free virtually poly-Z group
of Hirsch length 4. If π is virtually nilpotent then it is the fundamental
group of a E4-, Nil3 × E1- or Nil4-manifold [5]. Otherwise π is the
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fundamental group of a Sol4m,n-, Sol41-manifold, by Theorems 1,2, 4 and
6. Since all such manifolds are infrasolvmanifolds (cf. Chapter 7 of
[8]) the result follows from Theorem 7 (unless π is virtually abelian,
β1(π) = 1 and w1(π) 6= 0) or from [2] (in general). �
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Appendix: the calculations for Theorem 6

Here we shall outline some of the calculations which support the
claims that the functions defined on generators of π in Theorem 6
extend to homomorphisms from π to Isom(Sol41).

5.1. The case ν =
√
π: We assume that txt−1 = xaybzm, tyt−1 =

xcydzn and v2 = xgykzp. The matrices of U and T with respect to
the basis {[x], [y]} of

√
π/ζ

√
π are ( 1 0

0 −1 ) and ( a cb d ), respectively. Here
a = d and a2 − 1 = bc. Since e and f are eigenvectors of T we have
also cx1 = (α− a)y1 = (a− β)y1 and cx2 = (β − a)y2 = (a− α)y2. As
observed in the proof of Theorem 6, x1 = x2 and y1 = −y2, so all of
these terms are nonzero. Moreover,

g =
1

2
(ac(a− b+ 1) − a− 1) +

1

q
(−cm+ (a + 1)n),

k =
1

2
(ab(a− c− 1) + b) +

1

q
((a− 1)m− bn) and

p =
qk

4
(a2 + a− ac− 2g − 1) − 1

2
(gm+ kn).

Let F (v) = F (u)−1F (t) = F (x)−1F (u)F (t) = (P,Ω), where

P =




1 −x2
1
2
x1x2

0 1 −x1

0 0 1






−1 1

2
x1 0

0 1 −1
2
x1

0 0 −1







1 −α−1t1
t1t2−t3

α

0 α−1 −α−1t2
0 0 1




=



−1 α−1(t1 − 1

2
x1) D

0 (α 1
2
x1 − α−1t2

0 0 −1


 ,

where D = t3 + 1
2
x1x2 + α−1(1

2
x1t2 − t1t2). Therefore PΩ(P ) =



−1 α−1(t1 − 1

2
x1) D

0 α−1 1
2
x1 − α−1t2

0 0 −1






−1 1

2
αx1 − t2 D∗

0 α t1 − 1
2
x1

0 0 −1


 ,

where D∗ = α−1(t1 − 1
2
x1)(

α
2
x1 − t2) −D. Hence PΩ(P ) =




1 t2 + t1 − 1
2
(α + 1)x1 α−1(t1 − 1

2
x1)(t1 + t2 − α+1

2
x1)

0 1 α−1(t2 + t1 − 1
2
(α+ 1)x1)

0 0 1


 .

It remains to check that PΩ(P ) = F (x)gF (y)kF (z)p. This condition
reduces to three equations

gx2 + ky2 = t2 + t1 −
1

2
(α + 1)x1,
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gx1 + ky1 = α−1(t2 + t1 −
1

2
(α+ 1)x1) and

1

2
(a2x1x2+2abx2y1+b

2y1y2)+p[x, y] = α−1(t1−
1

2
x1)(t1+t2−

α + 1

2
x1).

On multiplying the first of these equations through by 2q, expressing t1
and t2 in terms of x1, . . . , y2 and using the facts that αβ = 1, α+β = 2a,
x1 = x2 and y1 = −y2 we obtain the equation

2q(gx2 + ky2) = (1 + α)(2n+ cdq − q)x2 + (α− 1)(2m+ abq)y2).

Multiply through by c and write cx2 = (a − α)y2. Now use the fact
that ck = (1 − a)g, and divide by y2, and this reduces to the above
equation for g.

The second equation is equivalent to the first, since [v2] = g[x]+k[y]
is fixed by UT , and so α(gx1 + ky1) = gx2 + ky2. The third equation
follows after similar substitutions and reductions.

5.2. The case ν 6= √
π but u2 ∈ √

π: A similar calculation shows
that the condition F (u)F (w) = F (x)F (y)ψF (z)ρF (w)F (u) reduces to
the equations

1

2
x1 − w1 = −1

2
x1 + (w2 + x2 + ψy2),

1

2
x1 + w2 = x1 + ψy1 −

1

2
x1 − w1 and

2w3 − w1w2 + x1w2 = ρ[x, y] +
1

2
(x1x2 + 2ψx2y1 + ψ2y1y2)

−(x2 + ψy2)(
1

2
x1 + w1).

We see that these equations hold on setting w1 = 1
q
(jx1 − iy1), w2 =

1
q
(−jx2 + iy2), w3 = 1

2
(w1w2 − [x, y]), x2 = x1 and y2 = −y1, and using

the conditions on the exponents a, . . . , s, ψ, ρ given in Theorem 4.

5.3. The case u2 6∈ √
π: This is the most computationally tedious

case. We may assume that uxu−1 = y, uyu−1 = x−1zi and utut =
xφyψzρu2η, for some i, φ, ψ, ρ ∈ Z and η = 0 or 1, and hence that u4 =
zk, for some odd k ∈ Z. We may also assume that tu2t−1 = xryszpu2,
for some p, r, s ∈ Z. The constraints of Theorem 4 for the exponents
a, b, d, i,m, n, p, r, s become

2m = q(rb− as− ab) + i(2η − a− b− 1),

2n = q(rd− bs− bd) + i(2η − b− d− 1) and

qrs+ 2p+ i(r + s) = 2k(η − 1),
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since c = b and j = i. The action of C = utut by conjugation on x and
y gives

φ =
1

2
(−dr + (b− 1)s) and

ψ =
1

2
((b+ 1)r − as).

The equation utC = Cut gives the further equation: ρ =

detAρ+φ(m+bi)+ψ(n+di)+q(ab

(
φ

2

)
+cd

(
ψ

2

)
+abφ2+adφψ+bdψ2).

If detA = −1 this determines ρ in terms of the other exponents; oth-
erwise it gives no constraint on ρ. Note also that detA = ad − b2 =
(−1)η+1 = 2η − 1.

We have F (u)F (t)F (u)F (t) = LΩ(F (t))Ω(L)F (t) =


−αβ t1 − t2 + i

q
(x1 − αx2) ∆

0 1 α−1(t1 + i
q
x1) + β(t2 + i

q
αx2)

0 0 −αβ


 ,

where ∆ =

α−1(t1 +
i

q
x1)

2−2η(t3 +
i2 − kq

4q2
x2

1−
i2 + kq

4q2
x2

2)+(βt2−
i

q
x2)(t1 +

i

q
x1).

The condition F (u)F (t)F (u)F (t) = F (x)φF (y)ψF (z)ρF (u)2η reduces
to the equations

q(t1 − t2) + i(x1 − αx2) = q(φx2 + ψy2) + ηi(x1 − x2)

α−1(qt1 + ix1) + β(qt2 + iαx2) = q(φx1 + ψy1) + ηi(x1 + x2) and

η(w3+w1(φx2+ψy2))+(−1)η(ρ[x, y]+φψx2y1+
1

2
(φ2x1x2+ψ

2y1y2))=∆,

where w1 = i
q
(x1+x2), w2 = i

q
(x1−x2) and w3 = 1

2
(w1w2−k[x, y]). The

first two equations may be verified on using the equations y1 = −x2

and y2 = x1 and the above constraints on the exponents. (Note also
that αx1 = ax1 − bx2, etc.) If η = 1 then we may choose t3 to satisfy
the third equation. If η = 0 then we may substitute for ρ and then
show that everything cancels.
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