
COMMENSURATORS AND DEFICIENCY

J.A.HILLMAN

Abstract. We show that if G is a finitely generated group the kernel of the
natural homomorphism from G to its abstract commensurator Comm(G) is
locally nilpotent by locally finite, and is finite if def(G) > 1. We also give a
simple proof that CommGL(n,R)(SL(n, Z) = R×GL(n, Q).

Two groups are commensurable if they have subgroups of finite index which are
isomorphic. If G ≤ π the commensurator of G in π is

Commπ(G) = {α ∈ π | [G : G ∩ αGα−1] < ∞, [G : G ∩ α−1Gα] < ∞}.
The abstract commensurator of a group G is Comm(G), the group of equivalence
classes of isomorphisms α : H ∼= J between subgroups of finite index in G, where α
and α′ are equivalent if they agree on some common subgroup of finite index, and
the product of the equivalence classes of α and β is represented by the partially
defined composite α ◦ β. (Thus Commπ(G) = {α ∈ π | cα ∈ Comm(G)}, where
cα is conjugation by α). It is easily seen that if H is a subgroup of finite index
in G there is a natural homomorphism from Comm(H) to Comm(G), and that
this is an isomorphism. Therefore if G1 and G2 are commensurable Comm(G1) ∼=
Comm(G2). If G has only finitely many subgroups of finite index then on letting H
be their intersection we find that Commπ(G) = Nπ(H) and Comm(G) = Aut(H).
(Commensurability is sometimes defined as the equivalence relation determined by
homomorphisms with finite kernel and cokernel. It is not clear whether the issues
considered here behave as well under this broader definition.)

We shall show that if G is finitely generated the kernel of the natural homo-
morphism from G to Comm(G) is is locally nilpotent by locally finite, and is finite
if def(G) > 1. We attempt to examine the structure of Comm(G) more closely,
through the subgroup V A(G) generated by the equivalence classes of automor-
phisms of subgroups of finite index in G. This subgroup is normal in Comm(G),
and we observe that if every partial isomorphism α : H ∼= J is equivalent to a
virtual automorphism β : K ∼= K then G satisfies the volume condition. We con-
clude by showing that (as is no doubt well-known) Comm(Zn) ∼= GL(n, Q) and
CommGL(n,R)(GL(n, Z)) = R×GL(n, Q), and that taking determinants gives an

isomorphism Comm(Zn)/V A(Zn) ∼= Q×/{±1}.

1. The kernel

Let F (r) be the free group of finite rank r. If S is a subset of a group G let

〈〈S〉〉G denote the normal closure of S in G. Let G′, ζG and
√

G be the commutator
subgroup, centre and Hirsch-Plotkin radical (respectively) of G. Let Hol(G) =
G ⋊ Aut(G), with the natural action of Aut(G) on G.
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If G ≤ π let Cπ(G) be the centralizer of G in π, γπ(G) : Commπ(G) → Comm(G)
be the natural homomorphism and Kπ(G) = Ker(γπ(G)). Let KG and Kaut(G) =
Aut(G) ∩ KHol(G)(G) be the kernels of the natural homomorphisms from G and
Aut(G) (respectively) to Comm(G). Clearly Kπ(H) = H ∩ Kπ(G) if H is a sub-
group of finite index in G.

Lemma 1. Let G ≤ π be a pair of groups, with G finitely generated. Then Kπ(G) =
∪Cπ(H) and KG = ∪CG(H), where the unions are taken over all normal subgroups
H of finite index in G.

Proof. This is clear, since normal subgroups are cofinal among all subgroups of
finite index in a finitely generated group. �

Theorem 2. Let G be a finitely generated group. Then

(1) KG is locally nilpotent by locally finite and KG
′ is locally finite;

(2) if G has no nontrivial locally-finite normal subgroup then KG is abelian;
(3) if CG(H) is finite for all normal subgroups H of finite index in G then KG

and Kaut(G) are locally finite;
(4) if G has no infinite elementary amenable normal subgroup then KG is the

maximal finite normal subgroup of G.

Proof. (1) We have [CG(H) : ζCG(H)] ≤ [CG(H) : ζH ] ≤ [G : H ], since ζH ≤
ζCG(H). Therefore CG(H) has centre of finite index, if [G : H ] < ∞. Hence
CG(H)′ is finite, by Schur’s Theorem (Proposition 10.1.4 of [7]). Let Hn be a
cofinal descending sequence of normal subgroups of finite index in G, and let Kn =
CG(Hn). Then Kn is a normal subgroup of Kn+1 for all n ≥ 1 and KG = ∪Kn.

Hence KG
′ = ∪Kn

′ is locally finite. Since ζKn ≤
√

Kn ≤
√

Kn+1 the union

N = ∪
√

Kn is locally nilpotent, with locally finite quotient. (In particular, KG is
elementary amenable.)

(2) This follows from (1), since K ′
G is a normal subgroup of G.

(3) If CG(H) is finite for all normal subgroups H of finite index in G then
KG = ∪CG(H) is locally finite. Let F be a finitely generated subgroup of Kaut(G).
Then there is a subgroup H of finite index in G such that α(h) = h for all α ∈ F
and h ∈ H . We may assume without loss of generality that H is normal in G. Let
fα(g) = gα(g−1) for all g ∈ G and α ∈ F . Then fα(gh) = fα(g) and hfα(g)h−1 =
fα(hg) = fα(gg−1hg) = fα(g) for all g ∈ G and h ∈ H . Therefore fα factors
through the finite group G/H , and takes values in CG(H). Since CG(H) is finite
and fα = fβ if and only if α = β it follows that F is finite. Thus Kaut(G) is locally
finite.

(4) If G has no infinite elementary amenable normal subgroup then KG is finite.
Moreover if F is the maximal locally finite normal subgroup of G it is finite, and acts
trivially on CG(F ), which has finite index in G. It follows easily that KG = F . �

In particular, if
√

G is locally finite then KG is locally finite. If moreover G ≤
GL(n, Q) then KG must be finite, since locally finite subgroups of such linear groups
are finite. In case (4) if H = CG(KG) then [G : H ] < ∞ and KH = ζH is a finite
abelian subgroup.
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2. Groups of positive deficiency

In this section we shall show that if G is a finitely presentable group with
def(G) ≥ 1 then KG is usually finite, the exceptions being groups commensurable
with Z × F (2) or Z2.

Theorem 3. Let G be a group with a presentation of deficiency ≥ 1. Then either

(1) KG is the maximal finite normal subgroup of G; or

(2) def(G) = 1, c.d.G ≤ 2 and KG =
√

G ∼= Z or Z2.

In the latter case either G ∼= Z2 or Z×̃Z or G is commensurable with Z × F (2).

Proof. If KG is not the maximal finite normal subgroup of G then G has an infinite

amenable normal subgroup, by Theorem 2. Hence β
(2)
1 (G) = 0 [2], and so def(G) =

1 and c.d.G ≤ 2, by Corollary 2.4.1 of [4]. In this case KG is nontrivial and torsion
free. Let k be a nontrivial element of KG. Then k centralizes some subgroup H
of finite index in G. We may assume that H is normal in G. Then k[G:H] is a
nontrivial element of ζH , so

√
G 6= 1. Either

√
G ∼= Z or G′ is abelian, by Theorem

2.7 of [4].

If
√

G ∼= Z then G/
√

G is virtually free, by Theorem 8.4 of [1], and [G :

CG(
√

G] ≤ 2. (In particular, the preimage in G of a free subgroup F of finite

index in CG(
√

G/
√

G is isomorphic to Z ×F .) Hence
√

G ≤ KG. Since KG/
√

G is

a torsion group, and is a normal subgroup of G/
√

G it is finite. Since KG is torsion

free it follows that KG
∼= Z and hence that KG =

√
G.

If G′ is abelian and
√

G is not infinite cyclic then G ∼= Z∗m, the ascending HNN
extension with presentation 〈a, t | tat−1 = am〉, for some m 6= 0, by Corollary 2.6
of [4]. But it is easy to see that KG must then be trivial unless m = ±1, in which

case G ∼= Z2 or Z×̃Z and KG =
√

G ∼= Z2. �

If def(G) ≥ 1 and KG is finite must it be trivial?

3. Hopficity, the volume condition and commensurability

A group G is hopfian if surjective endomorphisms of G are automorphisms, and is
cohopfian if injective endomorphisms are automorphisms. Residually finite groups
are hopfian. It is easy to see that residual finiteness is a property of commensura-
bility classes. To what extent is this true for hopficity or cohopficity and related
notions?

Let G be a finitely generated group and φ : G → G be an epimorphism. If
H ≤ G then φ(φ−1(H)) = H and [G : φ−1(H)] = [G : H ]. Hence φ maps the set of
subgroups of G of index [G : H ] onto itself. In particular, if [G : H ] < ∞ this set
is finite and so φN (H) = H for some N ≥ 1. Therefore if H is also hopfian φN |H
is an isomorphism, and so φN is itself an isomorphism. Hence G is hopfian.

The converse is not so clear. Suppose that G is hopfian. After replacing H by
the intersection of its images under automorphisms of G we may assume that H is
characteristic in G. But in order to use hopficity of G we need to be able to extend
a surjective endomorphism of H to a surjective endomorphism of G.

The volume condition holds for G if whenever H1 and H2 are isomorphic sub-
groups of finite index then [G : H1] = [G : H2]. This holds if def(G) > 1 [6]. More

generally, this is the case if β
(2)
1 (G) 6= 0, since L2 Betti numbers are multiplicative

in finite extensions. It also holds if G is of type FP and χ(G) 6= 0. Thus finitely
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generated nonabelian free groups and hyperbolic surface groups satisfy the volume
condition. If G is a PDn-group and satisfies the volume condition then G is cohop-
fian, since subgroups of infinite index in PDn-groups have cohomological dimension
strictly less than n [8]. On the other hand, nontrivial free abelian groups do not
satisfy the volume condition and nontrivial free groups are not cohopfian.

Theorem 4. The volume condition is a property of commensurability classes.

Proof. Suppose that H has finite index n in G. If G satisfies the volume condition
then clearly so does H . Conversely, suppose that H satisfies the volume condition.

If H1 and H2 are isomorphic subgroups of finite index in G then H̃1

n ∼= H̃2

n
, and

each is contained in H . Therefore

[G : H1] = [G : H ][H : H̃1

n
]/[H1 : H̃1

n
] = [G : H ][H : H̃2

n
]/[H2 : H̃2

n
] = [G : H2].

The theorem follows easily. �

4. Virtual automorphisms

We may give a somewhat more explicit description of Comm(G) when G is

finitely generated. Define inductively a descending sequence of subgroups G̃n of

finite index in G by setting G̃1 = G and G̃n+1 to be the intersection of all subgroups

of index ≤ n + 1 in G̃n, for all n ≥ 1. Then G̃n+1 is characteristic in G̃n, and the

sequence {G̃n}n≥1 is cofinal among all subgroups of finite index in G. Let

Xn = {φ ∈ Hom(G̃n, G) | [G : φ(G̃n)] < ∞, φ is mono}
and let in : G̃n → G be the natural inclusion. Composition defines a right action of

An = Aut(G̃n) on Xn, with trivial point stabilizers, by (φ, α) 7→ φ ◦ α, for φ ∈ Xn

and α ∈ An.
Restriction defines a function ρn : Xn → Xn+1 such that ρn(in) = in+1. Since

G̃n+1 is characteristic in G̃n automorphisms of G̃n restrict to automorphisms of

G̃n+1 and ρn(φ ◦α) = φ ◦ (α| eGn+1). If the subgroups G̃n have trivial centralizers in
G then ρn|An is a monomorphism for all n ≥ 1. Are the functions ρn injective?

The natural map from the direct limit lim−→Xn to Comm(G) which sends φ to

the equivalence class of the corresponding isomorphism G̃n ∼= φ(G̃n) is a bijection,
for if α : H ∼= J is an isomorphism of subgroups of finite index and [G : H ] = n

then G̃n ≤ H and α| eGn
∈ Xn. The direct limit A∞ = lim−→An acts on lim−→Xn.

A virtual automorphism of G is an element of Comm(G) determined by an auto-
morphism of a subgroup of finite index. In general the set of virtual automorphisms
is not a subgroup. Let A = ( 0 1

1 0 ) and B = ( 2 0
0 1 ). Then A and BAB−1 represent

virtual automorphisms of Z2 but ABAB−1 =
(

2 0
0 1

2

)
does not preserve any lattice,

and so does not represent a virtual automorphism of Z2. Let V A(G) ≤ Comm(G)
be the subgroup generated by virtual automorphisms. If H is a subgroup of finite
index in G the natural homomorphism from V A(H) to V A(G) is an isomorphism.

Theorem 5. Let G be a finitely generated group. Then

(1) V A(G) is a normal subgroup of Comm(G);
(2) if every element of V A(G) is represented by a virtual automorphism then

Comm(G)/V A(G) is torsion-free.

(3) A∞ = lim−→Aut(G̃n) ≤ V A(G)
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Proof. Suppose that H, J, K are subgroups of finite index in G and α : H → H

and β : J → K are isomorphisms. Let m = [H : H ∩ J ]. Then H̃m ≤ J and α

restricts to an automorphism of H̃m. Hence βαβ−1 is an automorphism of β(H̃m).
It follows that V A(G) is a normal subgroup of Comm(G).

Suppose that every element of V A(G) is represented by a virtual automorphism.
If α : J ∼= K represents an element of order n in Comm(G)/V A(G) there is a
subgroup H of finite index and an automorphism θ : H ∼= H such that αn(h) = θ(h)
for all h ∈ H0 ≤ H . Let Ji ≤ J be the domain of αi, for 1 ≤ i ≤ n. Then Ji+1 ≤ Ji

for i < n and H0 ≤ Jn. Let m = [H : H0]. On replacing H with H̃m we may
assume that H ≤ Jn and that αn(H) = H . In particular, H ≤ Ji, for all 1 ≤ i ≤ n,
and α restricts to an automorphism of ∩1≤k≤nαi(H). Thus α represents a virtual
automorphism and so Comm(G)/V A(G) is torsion-free.

The final assertion is clear. �

Similarly, if G < π and we let V Nπ(G) be the subgroup of π generated by
elements which normalize a subgroup of finite index in G then V Nπ(G) is normal
in Commπ(G) and γπ(G)(V Nπ(G)) ≤ V A(G).

To explore the quotient Comm(G)/V A(G) it may be useful to consider the
following generalization. Let Γ be a countable lattice which is a disjoint union of
finite subsets Γn, for n ≥ 0, with |Γ0| = 1 and such that if γ ∈ Γk, δ ∈ Γl and γ < δ
then k > l. (Thus elements of the same subset Γk are incomparable.) Let Lγ be
the sublattice with elements {δ ∈ Γ | δ ≤ γ}. A partial permutation of Γ is a lattice
isomorphism f : Lγ → Lγ′. Two such partial permutations are equivalent if they
agree on Lδ for some δ ≤ γ, γ′. Let PP (Γ) be the set of equivalence classes, with
the group multiplication determined by partial composition. A partial permutation
f is a virtual automorphism if it fixes a vertex γ. The set of equivalence classes
containing virtual automorphisms generates a subgroup V A(Γ) ≤ PP (Γ).

If G satisfies the volume condition [G : φ(Gn)] = [G : Gn] for all φ ∈ Xn and
so the set of orbits Xn/An is finite. In particular, if G ∼= F (r) or is an orientable
hyperbolic surface group then subgroups of finite index in G are hopfian, and two
such subgroups are isomorphic if and only if they have the same index. Moreover
the centralizers of such subgroups are trivial, since G is torsion-free and

√
G = 1.

Therefore A∞ embeds as a subgroup of Comm(G).
Let Γ be the lattice with Γn the set of subgroups of index n in G, partially

ordered by inclusion. Then Comm(G) is the subgroup of PP (Γ) represented by
partial permutations which preserve the index and V A(G) = V A(Γ).

Lemma 6. If G is finitely generated and every element of Comm(G) is represented
by a virtual automorphism then V A(G) = Comm(G) and G satisfies the volume
condition.

Proof. The first assertion is clear. Suppose J and K are subgroups of finite index
and α : J → K is an isomorphism. If α|L = β|L for some automorphism β : H → H
of a finite index subgroup H and some L ≤ J ∩ H of finite index in G then we map
assume L is characteristic in H , so β(L) = L. Hence

[G : J ] = [G : L]/[J : L] = [G : L]/[α(J) : α(L)] = [G : L]/[K : L] = [G : K]

and so G satisfies the volume condition. �

Does V A(G) = Comm(G) already imply that G satisfies the volume condition?
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5. Examples

The results in this section are surely known, but we include simple expositions
for convenience.

We consider first finitely generated free abelian groups.

Theorem 7. Comm(Zn) ∼= GL(n, Q), V A(Zn) contains SL(n, Q) as a subgroup
of index 2 and Comm(Zn)/V A(Zn) ∼= Q×/{±1} ∼= Z∞.

Proof. Let α : H ∼= J be an isomorphism between subgroups of finite index in Zn,
and let m = [Zn : H ]. Then αm = α|mZn◦m determines an injective endomorphism
of Zn. Let M(αm) be the matrix of this endomorphism with respect to the standard
basis of Zn. Then f([α]) = 1

m
M(αm) gives a well-defined isomomorphism from

Comm(Zn) to GL(n, Q). If N ∈ GL(n, Q) and d is a common denominator for the
entries of N let H = dZn, J = dN(Zn) and β(h) = dN(d−1h) for all h ∈ H . Then
f([β]) = N and so f is onto.

If A : L → L is an automorphism of a lattice L ≤ Zn then L = P (Zn) for
some change of basis matrix P ∈ GL(n, Q) and so P−1AP ∈ GL(n, Z). Therefore
V A(Zn) = 〈〈GL(n, Z)〉〉GL(n,Q). Now V A(Zn) ∩ SL(n, Q) is a normal subgroup
which properly contains ζSL(n, Q). Hence V A(Zn) ∩ SL(n, Q) = SL(n, Q), by
Proposition 3.2.8 of [7]. Since V A(Zn) certainly has elements represented by au-
tomorphisms of determinant −1 the homomomorphism from Comm(Zn)/V A(Zn)
to Q×/{±1} induced by taking determinants is an isomorphism. �

These results extend immediately to finitely generated, virtually abelian groups.
Note however that the natural homomorphism from Aut(D∞) to V A(D∞) has
infinite kernel.

The simplest infinite nonabelian groups are perhaps the free groups F (r) of
rank r > 1. All subgroups of index k in F (2) are free of rank k + 1, and so all
such groups are commensurable with F (2). We may give a “lower bound” for
Comm(F (2)) by first finding CommP(F (2)), for a suitable embedding of F (2) into
P = PSL(2, R). By a deep theorem of Margulis, a lattice H in P has infinite index
in CommP(H) if and only if H is arithmetic [5]. The most familiar arithmetic
embedding is given by the isomorphisms F (2) ∼= SL(2, Z)′ ∼= PSL(2, Z)′. (These
commutator subgroups have finite index in SL(2, Z) and PSL(2, Z), respectively.)
Our argument applies more generally, to n×n matrix groups. Let G(n) = GL(n, R)
and P(n) = PSL(n, R)

Theorem 8. R×GL(n, Q) = CommG(n)(SL(n, Z)).

Proof. The diagonal matrix D(m) =
(

m 0
0 In−1

)
with m a nonzero integer conjugates

the subgroup of matrices A =
(

a β
γ ∗

)
∈ SL(n, Z) with γ ≡ 0 mod (m) onto the

subgroup with β ≡ 0 mod (m). These subgroups have finite index in SL(n, Z), and
so D(m) is in CommG(n)(SL(n, Z)). Since GL(n, Q) is generated by SL(n, Z) and
these diagonal matrices it follows that GL(n, Q) ≤ CommG(n)(SL(n, Z)).

Let H be a subgroup of finite index m in SL(n, Z) and for each 1 ≤ p 6= q ≤ n let
Ep,q be the n×n matrix with (p, q)-entry 1 and 0s elsewheres. Then In + mEp,q =
(In + Ep,q)

m is in H for all such p, q. Therefore if M ∈ G(n) conjugates H into
SL(n, Z) we must have M(In + mEp,q) = Ap,qM for some Ap,q ∈ SL(n, Z). The
set of matrices in Mn×n(R) satisfying such an equation for given m, p, q and Ap,q is
a nontrivial rationally defined linear subspace. If M ′ is any matrix in this subspace
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then M ′ = MN , where N = M−1M ′ commutes with Ep,q. Thus the pth column
and qth row of N are zero, except for the (p, p)- and (q, q)-entries, which are equal.
As we vary p, q we see that the intersection of all such subspaces {MN} is {M(rIn) |
r ∈ R}. Therefore M lies on a rational line through the origin, and so is proportional
to a matrix with rational entries. Thus CommG(n)(SL(n, Z)) = R×GL(n, Q). �

Corollary 9. V NP(n)(PSL(n, Z)) = CommP(n)(PSL(n, Z)) = PGL(n, Q) and
γP(n)(PSL(n, Z)) is a monomorphism.

Proof. The equality CommP(n)(PSL(n, Z)) = PGL(n, Q) is immediate from the
theorem, while V NP(n)(PSL(n, Z)) = CommP(n)(PSL(n, Z)) then follows from
the fact that PSL(n, Q) is simple.

If H has finite index in PSL(n, Z) then CP(n)(H) = 1, since there are matrices
in H with distinct sets of eigenvalues. Hence KP(n)(PSL(n, Z)) = 1. �

The homomorphism from Aut(F (n)) to Comm(F (2)) corresponding to an in-
clusion of F (n) as a subgroup of index n − 1 in F (2) is injective, since noncyclic
subgroups of free groups have trivial centralizers. The groups Aut(F (n)) are not
linear if n ≥ 3 [3]. Hence Comm(F (2)) is not linear and γP(PSL(2, Z)) is not an
isomorphism.

Is V A(F (2)) = Comm(F (2))? Is Comm(F (2)) simple?

References

[1] Bieri, R. Homological Dimensions of Discrete Groups,
Queen Mary College Mathematical Notes, London (1976).

[2] Cheeger, J. and Gromov, M. L2-Cohomology and group cohomology,
Topology 25 (1986), 189–215.

[3] Formanek, E. and Procesi, C. The automorphism group of a free group is not linear,
J. Algebra 149 (1992), no. 2, 494–499.

[4] Hillman, J.A. Four-Manifolds, Geometries and Knots,
Geometry and Topology Monographs, vol. 5,
Geometry and Topology Publications (2002).

[5] Margulis, G.A. Discrete subgroups of semisimple Lie groups,
Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17,
Springer-Verlag, Berlin – Heidelberg – New York (1991).

[6] Reznikov, A. Volumes of discrete groups and topological complexity of homology spheres,
Math. Ann. 306 (1996), 547–454.

[7] Robinson, D.S. A Course in the Theory of Groups,
Graduate Texts in Mathematics 80,
Springer-Verlag, Berlin – Heidelberg – New York (1982).

[8] Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups, Comment.
Math. Helv. 52 (1977), 317–324.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: jonh@maths.usyd.edu.au


