
BLOCKS OF AFFINE AND CYCLOTOMIC HECKE ALGEBRAS

SINÉAD LYLE AND ANDREW MATHAS

ABSTRACT. This paper classifies the blocks of the affine Hecke algebras of type A and the blocks of the
cyclotomic Hecke algebras of typeG(r, 1, n) over an arbitrary algebraically closed field. Rather than work-
ing with the Hecke algebras directly we work instead with the cyclotomic Schur algebras. The advantage
of these algebras is that the cyclotomic Jantzen sum formula gives an easy combinatorial characterization
of the blocks of the cyclotomic Schur algebras. We obtain an explicit description of the blocks by analyzing
the combinatorics of ‘Jantzen equivalence’.

We remark that a proof of the classification of the blocks of the cyclotomic Hecke algebras was an-
nounced in 1999. Unfortunately, Cox has discovered that this previousproof is incomplete.

1. INTRODUCTION

The affine Hecke algebras arise naturally in representation theory of reductivep–adic groups as well as
having applications to the representation theory of semisimple algebraic groups in positive characteristic
and to quantum groups at roots of unity. These algebras can be definedgeometrically using theK–
theory of the Steinberg variety. This leads to explicit formulae for the decomposition numbers in terms
of Kazhdan–Lusztig polynomials whenq is a complex root of unity; see [10, Theorem 8.6.23].

This paper is concerned with the affine Hecke algebra of the general linear groupH aff
n , which is also

known as the extended affine Hecke algebra of typeAn−1. Let F be a field. Then, using the Bernstein
presentation,H aff

n can be written as a twisted tensor productHq(Sn)⊗F[X±
1 , . . . , X±

n ] of the Iwahori–
Hecke algebraHq(Sn) of the symmetric group and the Laurent polynomial ringF[X±

1 , . . . , X±
n ].

If A is an algebra then two simpleA–modulesD andD′ belong to sameblock if there exist simple
A–modulesD = D1, D2, . . . , Dk = D′ such that eitherExt1A(Di, Di+1) 6= 0 or Ext1A(Di+1, Di) 6= 0,
for 1 ≤ i < k. More generally, twoA–modulesM andN belong to the same block if all of their
composition factors belong to the same block.

By a well–known theorem of Bernstein [22, Prop. 3.11], the centre ofH aff
n is the setF[X±

1 , . . . , X±
n ]Sn

of symmetric Laurent polynomials inX1, . . . , Xn. It is not difficult to show that anyH aff
n –module de-

composes as anH aff
n –module into a direct sum of generalized eigenspaces for the central characters

of H aff
n . As H aff

n is finite dimensional over its centre every irreducibleH aff
n –module is finite dimen-

sional and, in particular, has a central character by Schur’s Lemma. Itfollows that any twoH aff
n –modules

which are in the same block have the same central character.

Theorem A. Suppose thatF is algebraically closed and thatq 6= 1. LetD andD′ be twoH aff
n –modules.

ThenD andD′ belong to the same block if and only if they have the same central character.

The centre ofH aff
n is well understood, however, as far as we know, Theorem A is new. Whenq 6= 1 the

simpleH aff
n –modules have been classified in terms of ‘content functions’ on aperiodicmultisegments;

see [4, Theorem B] for a precise statement. As a consequence the values of thecentral characters on the
simpleH aff

n –modules are easy to compute.
To prove Theorem A we do not work with the affine Hecke itself, but rather with certain natural

quotients ofH aff
n which are known as the Ariki–Koike algebras, or the cyclotomic Hecke algebras of
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typeG(r, 1, n). These algebras appear first in the work of Cherednik [9], however, their properties were
first systematically studied by Ariki and Koike [3] and Broúe and Malle [7]. Apart from being interesting
in their own right, these algebras are central to the conjectures of Broué, Malle and Michel [6] which
attempt to understand Broué’s abelian defect group conjecture for the finite groups of Lie type.

If Q = (Q1, . . . , Qr) ∈ (F×)r then the Ariki–Koike algebraHr,n(q,Q) is the quotient algebra
H aff

n /〈(X1 − Q1) . . . (X1 − Qr)〉. Consequently, every irreducibleHr,n(q,Q)–module can be consid-
ered as an irreducibleH aff

n –module. Conversely, by quotienting out by the characteristic polynomial
of X1, every irreducibleH aff

n –module is an irreducible module for some Ariki–Koike algebra. Deep
results of Ariki [2] and Grojnowski [17] show that the module categories of the affine Hecke algebras
and the Ariki–Koike algebras are intimately intertwined.

The natural surjectionH aff
n −→ Hr,n shows that ifD andD′ are in the same block asHr,n–modules

then they are in the same block asH aff
n –modules. The second result of this paper shows that the blocks

of the Ariki–Koike algebras are determined by the affine Hecke algebra.

Theorem B. Suppose thatF is an algebraically closed field and thatq 6= 1. Let D and D′ be irre-
ducible modules for the Ariki–Koike algebraHr,n(q,Q). ThenD andD′ belong to the same block as

Hr,n(q,Q)–modules if and only if they belong to the same block asH
aff

n –modules.

We also classify the blocks of the Ariki–Koike algebras whenq = 1 and when some of the parameters
Q1, . . . , Qr are zero. Motivated by Theorem A we can give an explicit combinatorial criterion for two
Hr,n(q,Q)–modules to belong to the same block, and it is this statement that we actually prove. See
Theorem 2.11 for the precise statement. With this in hand, we then deduce Theorem A from Theorem B.

Observe that the Theorem B is equivalent to the following property of the blocks ofH aff
n .

Corollary. Suppose thatq 6= 1 and letD andD′ be two simpleHr,n(q,Q)–modules. ThenD andD′

belong to the same block asH aff
n –modules if and only if there exist simpleHr,n(q,Q)–modulesD =

D1, D2, . . . , Dk = D′ such that either

Ext1
H

aff
n

(Di, Di+1) 6= 0 or Ext1
H

aff
n

(Di+1, Di) 6= 0,

for 1 ≤ i < k.

In 1999 Grojnowski [18] announced a proof of Theorem B. Using an ingenious argument, whatGro-
jnowski actually proves is that

Ext1
H aff

n
(D, D′) = Ext1

Hr,n(q,Q)(D, D′)

wheneverD 6= D′ are simpleHr,n(q,Q)–modules. Unfortunately, as Anton Cox [11] has pointed out,
this is not enough to classify the blocks of the Ariki–Koike algebras. For example, it could happen that
there are noH aff

n –module extensions between differentHr,n(q,Q)–modules which belong to the same
block asH aff

n –modules. We note that Grojnowski’s result does not follow from Theorem B.
Lusztig [22] introduced a graded, or degenerate, Hecke algebra for each affine Hecke algebra. Brun-

dan [8] has shown that the centre of the degenerate affine Hecke algebra mapsonto the centre of the
degenerate cyclotomic Hecke algebras. This gives a classification of the blocks of the degenerate cyclo-
tomic and affine Hecke algebras analogous to our Theorems A and B above. It should be possible to use
the arguments from this paper to classify the blocks of the degenerate cyclotomic Hecke algebras of type
G(r, 1, n) and the associated degenerate cyclotomic Schur algebras. All of the combinatorics that we use
goes through without change, however, it is necessary to check that arguments of [21] can be adapted to
prove a sum formula for the Jantzen filtrations of the degenerate cyclotomic Schur algebras. This should
be routine (cf. [5, §6]), however, we have not checked the details.

The outline of this paper is as follows. In the next section we introduce the Ariki–Koike algebras
and the cyclotomicq–Schur algebras. Using the representation theory of these two algebras, we reduce
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the proof of Theorem B to a purely combinatorial problem of showing that two equivalence relations
on the set of multipartitions coincide (Theorem 2.11). The first of these equivalence relations comes
from the cyclotomic Jantzen sum formula [21], and the second equivalence relation is the combinatorial
criterion which classified the central characters the affine Hecke algebras. Assuming Theorem 2.11 we
prove Theorem A and Theorem B at the end of section 2. In section 3 we develop the combinatorial
machinery needed to show that our two equivalence relations on the set ofmultipartitions coincide when
q 6= 1 and when the parametersQ1, . . . , Qr are non–zero. Here we are greatly aided by recent work of
Fayers [14, 15] on the ‘core block’ of a multipartition. Finally, in section 4 we consider the blocks of
the Ariki–Koike algebras with ‘exceptional’ parameters; that is, those algebras withq = 1 or with some
of the parametersQ1, . . . , Qr being zero. Quite surprisingly, the algebras with ‘exceptional parameters’
have only a single block (unlessq = 1 andr = 1).

Acknowledgement
We are grateful to Susumu Ariki for asking us if we could describe the blocks of the affine Hecke

algebras of type A.

2. CYCLOTOMIC HECKE ALGEBRAS AND SCHUR ALGEBRAS

This section begins by introducing the cyclotomic Hecke algebras and Schuralgebras. We then re-
duce the proof of Theorem B to a purely combinatorial statement which amounts to showing that two
equivalence relations on the set of multipartitions coincide.

2.1. Ariki–Koike algebras. Let F be a field of characteristicp ∈ {2, 3, . . . } ∪ {∞} and fix positive
integersn andr. Suppose thatq, Q1, . . . Qr are elements ofF such thatq is invertible and letQ =
(Q1, . . . , Qr). TheAriki–Koike algebra Hr,n = Hr,n(q,Q) is the unital associativeF–algebra with
generatorsT0, T1, . . . , Tn−1 and relations

(Ti + q)(Ti − 1) = 0, 1 ≤ i ≤ n − 1,

(T0 − Q1) . . . (T0 − Qr) = 0,

TiTj = TjTi, 0 ≤ i < j − 1 ≤ n − 2,

TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n − 2,

T0T1T0T1 = T1T0T1T0.

Definee ≥ 2 to be minimal such that1 + q + . . . + qe−1 = 0 ∈ F. Thene ∈ {2, 3, . . .} ∪ {∞}. Note
thate = p if and only if q = 1. If e 6= p andp is finite thenp does not dividee.

Recall that a partitionλ = (λ1, λ2, . . . ) of n is a weakly decreasing sequence of non–negative integers
which sum to|λ| = n. An r–multipartition ofn, or more simply a multipartition, is an orderedr–
tuple λ =

(

λ(1), . . . , λ(r)) of partitions with|λ| = |λ(1)| + · · · + |λ(r)| = n. Let Λ+
r,n be the set of

multipartitions ofn. We regard a partition as a multipartition with one component, so any subsequent
definition concerning multipartitions specializes to a corresponding definition for partitions.

The set of multipartitions is naturally ordered bydominancewhereλ D µ if

s−1
∑

t=1

|λ(t)| +
i

∑

j=1

λ
(s)
j ≥

s−1
∑

t=1

|µ(t)| +
i

∑

j=1

µ
(s)
j

for s = 1, 2, . . . , r and alli ≥ 1. We writeλ ⊲ µ if λ D µ andλ 6= µ.
The Ariki–Koike algebraHr,n is a cellular algebra [12,16]. The cell modules ofHr,n are indexed by

the multipartitions ofn. The cell module indexed by the multipartitionλ is theSpecht moduleS(λ). By
the theory of cellular algebras [16,23], there is anHr,n–invariant bilinear form〈 , 〉λ on the Specht mod-
uleS(λ), so the radicalradS(λ) = {x ∈ S(λ) | 〈x, y〉λ = 0 for all y ∈ S(λ) } is anHr,n–submodule
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of S(λ). SetD(λ) = S(λ)/ radS(λ). Then the non–zeroD(λ) give a complete set of pairwise non–
isomorphic simpleHr,n–modules.

The theory of cellular algebras gives us the following fact which is vital for this paper because it
allows us work with Specht modules rather than with the simpleHr,n–modules.

2.1.Lemma (Graham–Lehrer [16, 3.9.8], [23, Cor. 2.2]). Suppose thatλ is a multipartition. Then all of
the composition factors ofS(λ) belong to the same block.

Equivalently, if we decomposeHr,n into a direct sum of indecomposable subalgebras then exactly
one of these subalgebras has a non–zero action onS(λ). Thus we can talk of the block ofHr,n which
contains the Specht moduleS(λ).

2.2. Cyclotomic q–Schur algebras.Rather than working with Specht modules to classify the blocks
we want to work with Weyl modules. To this end let{La1

1 . . . Lan
n Tw | 0 ≤ ai < r andw ∈ Sn } be the

standard basis ofHr,n [3, Prop. 3.4]. That is,L1 = T0 andLi+1 = q1−iTiLiTi, for 1 < i < n, and if
w ∈ Sn thenTw = Ti1 . . . Tik wheneverw = (i1, i1 + 1) . . . (ik, ik + 1) with k minimal (so this is a
reduced expression ofw). For each multipartitionλ define

mλ =
r

∏

s=1

|λ(1)|+···+|λ(s−1)|
∏

k=1

(Lk − Qs) ·
∑

w∈Sλ

Tw,

whereSλ = S
λ(1) × · · · × S

λ(r) is the parabolic subgroup ofSn associated toλ. Thecyclotomic
q–Schur algebrais the endomorphism algebra

Sr,n = Sr,n(q,Q) = EndHr,n

(

⊕

λ∈Λ+
r,n

mλHr,n

)

.

We remark this variant of the cyclotomicq–Schur algebra is Morita equivalent to the one of the algebras
introduced in [12]. The representation theory ofSr,n is discussed in [24].

The cyclotomicq–Schur algebraSr,n is a quasi–hereditary cellular algebra. The cell modules ofSr,n

are theWeyl modules∆(λ), for λ ∈ Λ+
r,n. For eachλ ∈ Λ+

r,n, there is a non–zero simple module
L(λ) = ∆(λ)/ rad∆(λ). Just as with Lemma 2.1, the theory of cellular algebras tells us the following.

2.2.Lemma (Graham–Lehrer [16, 3.9.8], [23, Cor. 2.2]). Suppose thatλ is a multipartition. Then all of
the composition factors of∆(λ) belong to the same block.

The next result shows that in order to classify the blocks ofHr,n it is enough to consider the blocks
of Sr,n. In fact, this is an easy consequence of double centralizer theory.

2.3.Proposition. Let λ andµ be multipartitions ofn. ThenS(λ) andS(µ) are in the same block as
Hr,n–modules if and only if∆(λ) and∆(µ) are in the same block asSr,n–modules.

Proof. By a standard Schur functor argument [21, Prop. 2.17], ifD(ν) 6= 0 then [S(λ):D(ν)] =
[∆(λ):L(ν)]. Therefore, ifS(λ) andS(µ) are in the same block then∆(λ) and∆(µ) are in the same
block. Note that this implies thatSr,n cannot have more blocks (that is, indecomposable subalgebras)
thanHr,n.

To prove the converse letM =
⊕

λ∈Λ+
r,n

mλHr,n and suppose thatHr,n = B1 ⊕ · · · ⊕ Bk is the
unique decomposition ofHr,n into blocks (that is, indecomposable subalgebras). Then

M = MHr,n = MB1 + · · · + MBk.
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In fact, this sum is direct because, by definition,MBi ∩ MBj = ∅ if i 6= j, andMBi 6= 0 sinceHr,n is
a submodule ofM . Therefore,

Sr,n = EndHr,n
(M) = EndHr,n

(

MB1 ⊕ · · · ⊕ MBk

)

=
⊕

1≤i,j≤k

HomHr,n
(MBi, MBj) =

k
⊕

i=1

EndHr,n
(MBi),

where the last equality follows becauseBi andBj have no common irreducible constituents ifi 6= j.
Consequently,Sr,n has at least as many blocks asHr,n.

Combining the last two paragraphs proves the proposition. ¤

Thus, to prove Theorem B it suffices to determine when two Weyl modules are in the same block. The
advantage of working with Weyl modules is shown in Lemma 2.4 below. Before we can state this result
we need some notation.

If A is an algebra letK0(A) be the Grothendieck group of finite dimensionalA–modules and ifM
is aA–module let[M ] be its image inK0(A). In particular, the Grothendieck groupK0(Sr,n) of Sr,n

is the freeZ–module with basis{ [L(λ)] | λ ∈ Λ+
r,n }. The images{ [∆(λ)] | λ ∈ Λ+

r,n } of the Weyl
modules give a second basis ofK0(Sr,n) since[∆(λ):L(λ)] = 1 and[∆(λ):L(µ)] > 0 only if λ D µ,
for all λ, µ ∈ Λ+

r,n (see [16]). Hence, we have the following.

2.4. Lemma. Suppose thataλ ∈ Z. Then
∑

λ aλ[∆(λ)] = 0 in K0(Sr,n) if and only ifaλ = 0 for
all λ ∈ Λ+

r,n.

Note that, in general, there exist non–zero integersaλ ∈ Z such that
∑

λ aλ[S(λ)] = 0. This follows
becauseK0(Hr,n) is a freeZ–module of rankL = # {λ ∈ Λ+

r,n | D(λ) 6= 0 } andL = #Λ+
r,n if (and

only if) Hr,n is semisimple.

2.3. The cyclotomic Jantzen sum formula.The next step is to recall (a special case of) the machinery
of the cyclotomic Jantzen sum formula [21]. Let t be an indeterminate overF and letO = F[t, t−1]π
be the localization ofF[t, t−1] at the prime idealπ = 〈t − 1〉. Let SO = SO(qt,X) be the cyclotomic
Schur algebra overO with parametersqt andX = (X1, . . . , Xr) where

Xa =

{

Qat
na, if Qa 6= 0,

(t − 1)tna, if Qa = 0.

ConsiderF as anO–module by lettingt act onF as multiplication by1. ThenSr,n
∼= SO ⊗O F, since

SO is free as anO–module by [12, Theorem 6.6]. The algebraSO ⊗O F(t) is split semisimple by
Schur–Weyl duality [24, Theorem 5.3] and Ariki’s criterion for the semisimplicity forHr,n [1]. Thus we
are in the general setting considered in [21, §4].

Let νπ be theπ–adic evaluation map onO×; thus,νπ(f(t)) = k if k ≥ 0 is maximal such that(t−1)k

dividesf(t) ∈ F[t, t−1]. Let ∆O(λ) be the Weyl module ofSO indexed by the multipartitionλ ∈ Λ+
r,n.

Recall that∆O(λ) carries a bilinear form〈 , 〉λ by the general theory of cellular algebras. For each
integeri ≥ 0 define

∆O(λ)i = {x ∈ ∆O(λ) | νπ(〈x, y〉) ≥ i for all y ∈ ∆O(λ) } .

Finally, let∆(λ)i =
(

∆O(λ)i + π∆O(λ)
)

/π∆O(λ). Then

∆(λ) = ∆(λ)0 ⊃ ∆(λ)1 ⊇ ∆(λ)2 ⊇ . . .

is a Jantzen filtration of the Sr,n–module∆(λ). Then∆(λ)k = 0 for k ≫ 0 since∆(λ) is finite
dimensional.
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To describe the Jantzen filtration of∆(λ) we need some combinatorics. Thediagram of a multipar-

tition λ is the set[λ] = { (i, j, a) | 1 ≤ j ≤ λ
(a)
i and1 ≤ a ≤ r }. A node is any ordered triple(i, j, a)

in N × N × {1, . . . , r}. For example, the elements of[λ] are nodes.
Each nodex = (i, j, a) ∈ [λ] determines arim hook

rλ
x = { (k, l, a) ∈ [λ] | k ≥ i, l ≥ j and(k + 1, l + 1, a) /∈ [λ] } .

We say thatrλ
x is ah–rim hook if h = |rλ

x |. Let i′ be maximal such that(i′, j, a) ∈ [λ]; soi′ is the length
of columnj of λ(a). Thenfλ

x = (i′, j, a) ∈ [λ] is thefoot of rλ
x andrλ

x hasleg lengthℓℓ(rλ
x ) = i′ − i.

If x ∈ [λ] let λ\rλ
x be the multipartition with diagram[λ]\rλ

x . We say thatλ\rλ
x is the multipartition

obtained byunwrapping the rim hookrλ
x from λ, and thatλ is the multipartition obtained fromλ\rλ

x

by wrapping on the rim hookrλ
x .

Define theO–residue of the nodex = (i, j, a) to beresO(x) = (qt)j−iXa = qj−iQat
na+j−i.

2.5. Definition. Suppose thatλ = (λ(1), . . . , λ(r)) andµ = (µ(1), . . . , µ(r)) are multipartitions ofn.
TheJantzen coefficientis the integer

Jλµ =















∑

x∈[λ]

∑

y∈[µ]

[µ]\rµ
y =[λ]\rλ

x

(−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )νπ

(

resO(fλ
x ) − resO(fµ

y )
)

, if λ ⊲ µ,

0, otherwise.

The Jantzen coefficientJλµ depends on the choices ofF, q andQ; in fact,Jλµ depends only onp, e
andQ. By definitionJλµ is an integer which is determined by the combinatorics of multipartitions. The
definition of Jλµ is reasonably involved, however, it turns out that these integers are computable. In
sections 3 and 4 we determineJλµ explicitly.

2.6.Theorem (James and Mathas [21], Theorem 4.3). Suppose thatλ is a multipartition ofn. Then
∑

i>0

[∆(λ)i] =
∑

µ∈Λ+
r,n

Jλµ [∆(µ)]

in K0(Sr,n).

For multipartitionsλ andµ in Λ+
r,n let dλµ = [∆(λ):L(µ)] be the number of composition factors

of ∆(λ) which are isomorphic toL(µ). Define

J ′
λµ =

∑

ν∈Λ+
r,n

λ⊲νDµ

Jλνdνµ.

By Theorem 2.6,J ′
λµ is the composition multiplicity of the simple moduleL(µ) in

⊕

i>0 ∆(λ)i. There-
fore,J ′

λµ ≥ 0, for all λ, µ ∈ Λ+
r,n. As ∆(λ)1 = rad ∆(λ) we obtain the following.

2.7.Corollary. Suppose thatλ 6= µ are multipartitions ofn. Thendλµ ≤ J ′
λµ and, moreover,dλµ 6= 0

if and only ifJ ′
λµ 6= 0.

We now use Theorem 2.6 to classify the blocks ofSr,n.

2.8.Definition. Suppose thatλ, µ ∈ Λ+
r,n. Thenλ andµ areJantzen equivalent, and we writeλ ∼J µ,

if there exists a sequence of multipartitionsλ0 = λ, λ1, . . . ,λk = µ such that either

Jλiλi+1 6= 0 or Jλi+1λi
6= 0,

for 1 ≤ i ≤ k.

Jantzen equivalence gives us our first combinatorial characterizationof the blocks ofSr,n.
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2.9.Proposition. Suppose thatλ, µ ∈ Λ+
r,n. Then∆(λ) and∆(µ) belong to the same block asSr,n–

modules if and only ifλ ∼J µ.

Proof. We first show that∆(λ) and∆(ν) belong to the same block wheneverλ ∼J ν. By defini-
tion ∆(λ)i is a submodule of∆(λ) for all i, so all of the composition factors of

∑

i>0 ∆(λ)i belong
to the same block by Lemma 2.2. Consequently, all of the composition factors of the virtual module
∑

µ Jλµ[∆(µ)] belong to the same block. LetΛ′ be the set of multipartitionsµ such that∆(µ) is not in
the same block as∆(λ). Then we have

∑

µ∈Λ′ Jλµ[∆(µ)] = 0. Hence,Jλµ = 0 wheneverµ ∈ Λ′ by
Lemma 2.4. It follows that∆(λ) and∆(µ) belong to the same block wheneverλ ∼J µ.

To prove the converse it is sufficient to show thatλ ∼J µ wheneverdλµ 6= 0. Hence, by Corollary 2.7
we must show thatλ ∼J µ wheneverJ ′

λµ 6= 0. However, ifJ ′
λµ 6= 0 then we can find a multipartitionν1

such thatJλν1 6= 0, dν1µ 6= 0 andλ ⊲ ν1 D µ. Consequently,λ ∼J ν1. If ν1 6= µ thenJ ′
ν1µ 6= 0 by

Corollary 2.7 sincedν1µ 6= 0. Therefore, we can find a multipartitionν2 such thatJν1ν2 6= 0, dν2µ 6= 0
andν1 ⊲ ν2 D µ. Continuing in this way we can find multipartitionsν0 = λ, ν1, . . . ,νk = µ such that
Jνi−1νi

6= 0, dνiµ 6= 0, for 0 < i < k, andλ ⊲ ν1 ⊲ · · · ⊲ νk = µ. Note that we must haveνk = µ for
somek sinceΛ+

r,n is finite. Therefore,λ ∼J ν1 ∼J · · · ∼J νk = µ as required. ¤

Remark.Without using the cyclotomicq–Schur algebras it is not clear that Jantzen equivalence deter-
mines the blocks ofHr,n. Applying the Schur functor to Theorem 2.6 gives an analogous description
of the Jantzen filtration of the Specht modules:

∑

i>0[S(λ)i] =
∑

µ Jλµ[S(µ)]. The problem is that,a
priori , the composition factors of

⊕

µ JλµS(µ) could belong to different blocks because the analogue
of Lemma 2.4 fails for Specht modules.

Remark.The argument of Proposition 2.9 is completely generic. It shows that the blocks of any quasi–
hereditary algebra are determined by the Jantzen coefficients once a sumformula for the Jantzen filtra-
tions of its standard modules is known.

2.4. A second combinatorial characterization of the blocks.Proposition 2.9 completely determines
the blocks ofSr,n, and hence the blocks ofHr,n. Unfortunately, it is not obvious when two multiparti-
tions are Jantzen equivalant.

Theresidueof the nodex = (i, j, a) is

res(x) =











qj−iQa, if q 6= 1 andQa 6= 0,

(j − i, Qa), if q = 1 andQa 6= Qb for b 6= a,

Qa, otherwise,

wherez = z (mod p) for z ∈ Z (if p = ∞ we setz = z). Let

Res(Λ+
r,n) = { res(x) | x ∈ [λ] for someλ ∈ Λ+

r,n }

be the set of all possible residues. For any multipartitionλ ∈ Λ+
r,n andf ∈ Res(Λ+

r,n) define

Cf (λ) = # {x ∈ [λ] | res(x) = f } .

We can now define our second combinatorial equivalence relation onΛ+
r,n.

2.10.Definition. Suppose thatλ andµ are multipartitions. Thenλ andµ areresidue equivalent, and
we writeλ ∼C µ, if Cf (λ) = Cf (µ) for all f ∈ Res(Λ+

r,n).

It is easy to determine if two multipartitions are residue equivalent, so the next result gives an effective
characterization of the blocks of the algebrasHr,n andSr,n.
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2.11.Theorem. Suppose thatλ andµ are multipartitions ofn. Then the following are equivalent.
a) S(λ) andS(µ) belong to the same block asHn(Q)–modules.
b) ∆(λ) and∆(µ) belong to the same block asSr,n(Q)–modules.
c) λ ∼J µ.
d) λ ∼C µ.

By Proposition 2.3 and Proposition 2.9, (a), (b) and (c) are equivalent.Therefore, to prove the theorem
it is enough to prove thatλ ∼J µ if and only if λ ∼C µ. The proof of this fact is given in sections 3
and 4. It turns out that, combinatorially, these equivalence relations depend very much on whether or
not q = 1 and whether or not some of the parametersQ1, . . . , Qr are zero. The following result allows
us to treat these cases separately.

2.12.Theorem (Dipper and Mathas [13], Theorem 1.5 and Corollary 5.7).
Suppose thatQ = Q1

∐

Q2
∐

· · ·
∐

Qκ is a partition ofQ such thatqcQa ∈ Qα only if Qa ∈ Qα,
for c ∈ Z, 1 ≤ a ≤ r and1 ≤ α ≤ κ. Setr0 = 0 andri = |Qα|, for 1 ≤ α ≤ κ. ThenSr,n(Q) is
Morita equivalent to

⊕

n1,...,nκ≥0
n1+···+nκ=n

Sr1,n1(Q1) ⊠ Sr2,n2(Q2) ⊠ · · · ⊠ Srκ,nκ(Qκ).

Moreover, the Morita equivalence is induced by the map∆(λ) 7→ ∆(λ1) ⊠ · · · ⊠ ∆(λκ), whereλα =

(λ(rα−1+1), . . . , λ(rα)), for 1 ≤ α ≤ κ andλ ∈ Λ+
r,n.

There is an analogous result for the Ariki–Koike algebraHr,n; see [13, Theorem 1.1].
Theorem 2.12 says that the blocks ofHr,n(Q) and Sr,n(Q) depend only on theq–orbits of the

parameters and, further, that it is enough to consider the case whereQ is contained in a singleq–orbit.
Hence, by rescalingT0 we can assume that the parametersQ1, . . . , Qr are all powers ofq. That is, we
can assume that there exist integersc1, . . . , cr such thatQa = qca , for 1 ≤ a ≤ r. Consequently, to
prove Theorem 2.11 we are reduced to considering the following five cases:

(2.13) Case 1. q 6= 1 andQa = qca , for 1 ≤ a ≤ r.
Case 2. r = 1, q = 1 andQ1 = 1.
Case 3. r > 1, q = 1 andQ1 = · · · = Qr = 1.
Case 4. r > 1, q = 1 andQ1 = · · · = Qr = 0.
Case 5. r > 1, q 6= 1 andQ1 = · · · = Qr = 0.

The proof of Theorem 2.11 for case 1 is given in section 3. Cases 2–5 are considered in section 4
using similar, but easier, arguments. Given a nodex = (i, j, a) note thatres(x) = qj−iQa in case 1,
res(x) = (j − i, 1) in case 2 andres(x) = Qa in the other three cases.

We treat all of these cases separately because the underlying combinatorics is different. Fayers has
pointed out that the Ariki–Koike algebras in cases 3 and 4 are isomorphic viathe algebra homomorphism
determined byT0 7→ (T0 − 1) andTi 7→ Ti, for 1 ≤ i < n, so we do not really need to consider case 4
(we deal with Cases 3–5 simultaneously).

2.5. The blocks of the affine Hecke algebra.Assuming Theorem 2.11 we now prove Theorem A and
Theorem B from the introduction.

As the centreZ(H aff
n ) of H aff

n is the set of symmetric Laurent polynomials inX1, . . . , Xn, the
central characters ofH aff

n are indexed bySn–orbits of(F×)n. More precisely, ifγ ∈ (F×)n/Sn then
the central characterχγ is given by evaluation atγ.

By Lemma 2.1, all of the composition factors of the Specht moduleS(λ) belong to the same block
asHr,n–modules. Therefore, all of the composition factors ofS(λ) belong to the same block anH aff

n –
modules. We need to know the central characters of the Specht modules.
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2.14. Lemma. Suppose thatq 6= 1 and thatD(λ) 6= 0, for some multipartitionλ ∈ Λ+
r,n. Then

f(X) ∈ Z(H aff
n ) acts onD(λ) as multiplication byf(γ), whereγ =

(

res(x1), res(x2), . . . , res(xn)
)

and[λ] = {x1, . . . , xn} (in any order).

Proof. As all of the composition factors ofS(λ) belong to the same block asD(λ), f(X) acts onS(λ)
and onD(λ) as multiplication by the same scalar. By [21, Prop. 3.7] this scalar is given by evaluating
the polynomialf(X) at

(

res(x1), res(x2), . . . , res(xn)
)

. ¤

2.15.Theorem (Theorem A). Suppose thatq 6= 1 and thatF is algebraically closed. Then two simple
H

aff
n –modulesD andD′ belong to the same block if and only if they have the same central character.

Proof. Any two simple modules in the same block have the same central character. Conversely, suppose
thatD andD′ are simpleH aff

n –modules which have the same central character. Let(X1−Q1) . . . (X1−
Qs) and(X1−Qs+1) . . . (X1−Qr), respectively, be the minimal polynomials forX1 acting onD andD′.
(Note thatQ1, . . . , Qr are non–zero sinceX1, . . . , Xn are invertible.) ThenD′ andD′ are both simple
modules for the Ariki–Koike algebraHr,n with parametersQ1, . . . , Qr. Therefore,D ∼= D(λ) andD′ ∼=
D(µ) for some multipartitionsλ, µ ∈ Λ+

r,n. By assumption,D andD′ have the same central characters.
The central character ofD(λ) is uniquely determined by the multiset of residues{ res(x) | x ∈ [λ] } by
Lemma 2.14. Similarly, the central character ofD(µ) is determined by the multiset{ res(x) | x ∈ [µ] }.
Hence,Cf (λ) = Cf (µ), for all f ∈ Res(Λ+

r,n). Therefore,λ ∼C µ, soD ∼= D(λ) andD′ = D(µ)
are in the same block asHr,n–modules by Theorem 2.11. Hence,D andD′ are in the same block as
H aff

n –modules. ¤

Using Theorems 2.11 and 2.15 we obtain a more descriptive version of Theorem B.

2.16.Corollary (Theorem B). Suppose thatF is an algebraically closed field,q 6= 1 and that the param-
etersQ1, . . . , Qr are non–zero. Letλ andµ be multipartitions inΛ+

r,n with D(λ) 6= 0 andD(µ) 6= 0.
Then the following are equivalent:

a) D(λ) andD(µ) belong to the same block asHr,n–modules.

b) D(λ) andD(µ) belong to the same block asH aff
n –modules.

c) D(λ) andD(µ) have the same central character asH
aff

n –modules.
d) λ ∼C µ.

3. COMBINATORICS

In this section, we proveλ ∼J µ if and only if λ ∼C µ, for λ, µ ∈ Λ+
r,n in the cases whenq 6= 1

and all of the parametersQ1, . . . , Qr are powers ofq. This is Case 1 of (2.13). The basic idea is that
we want to reduce the comparision of the Jantzen and residue equivalence relations to the case where the
multipartitionsλ andµ are both ‘cores’. The complication is that, unlike for partitions (the caser = 1),
we do not have a good notion of ‘core’ for multipartitions whenr > 1. We circumvent this difficulty
using ideas of Fayers [14,15].

As we are assuming that the parametersQ1, . . . , Qr are all powers ofq, there exist integersc1, . . . , cr

such thatQa = qca , for 1 ≤ a ≤ r. The sequencec = (c1, . . . , cr) is called themulti–charge of Q.
Now thatQ is contained in a singleq–orbit, we redefine theresidueof a nodex = (i, j, a) to be

res(x) = (j − i + ca) (mod e).

Therefore,{ res(x) | x ∈ [λ] for someλ ∈ Λ+
r,n } ⊆ Z/eZ.

For λ ∈ Λ+
r,n andf ∈ Z/eZ put Cf (λ) = # {x ∈ [λ] | res(x) = f }. It is straightforward to check

that with these new conventionsλ ∼C µ if and only if Cf (λ) = Cf (µ), for all f ∈ Z/eZ.
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3.1. Abacuses.Abacuses first appeared in the work of Gordon James [19] and have since been used
extensively in the modular representation theory of the symmetric groups andrelated algebras. Ane–
abacusis an abacus withe vertical runners, which are infinite in both directions. Ife is finite then we
label the runners0, 1, . . . , e−1 from left to right and positionz ∈ Z on the abacus is the bead position in
rowx on runnery, wherez = xe+y and0 ≤ y < e. If e = ∞ then we label the runners. . . ,−1, 0, 1, . . .
and positionz on the abacus is the bead position in row0 on runnerz.

Let λ ∈ Λ+
r,n be a multipartition and recall that we have fixed a sequence of integersc = (c1, . . . , cr).

Fix a with 1 ≤ a ≤ r. Theβ–numbersof the partitionλ(a) is the set of integersBa = {βa
1 , βa

2 , . . .},
where

βa
i = λ

(a)
i − i + ca,

for i ≥ 0. Thee–abacus displayof λ(a) is thee–abacus with a bead at positionβa
i , for i ≥ 1. The

e–abacus display ofλ is the orderedr–tuple of abacuses for the partitionsλ(1), . . . , λ(r).
It is easy to check that a multipartition is uniquely determined by its abacus displayand, conversely,

that every abacus display corresponds to a unique multipartition.

3.1.Example. Suppose thate = 3, r = 3 andc = (0, 1, 2). Let λ =
(

(4, 1, 1), (2), (3, 2, 1)
)

. Then

B1 = {3,−1,−2,−4,−5, . . .}, B2 = {2,−1,−2, . . .}, B3 = {4, 2, 0,−2,−3, . . .}

and the abacus display forλ is given by

...
...

...
b b b

− b b

− − −
b − −
− − −

...
...

...
b b b

b b b

− − b

− − −
− − −

...
...

...
b b b

b b −
b − b

− b −
− − −

Let λ be a partition and suppose thatB = {β1, β2, . . . } is the set ofβ–numbers forλ. Then thee–
abacus forλ has beads at positionsβi, for i ≥ 0. If βi +h /∈ B thenmoving the bead at positionβi to the
right h positions gives a new abacus display with beads at positions{β1, β2, . . . , βi−1, βi+h, βi+1, . . . }.
Similarly, if βi − h /∈ B thenmoving this beadh positions to theleft creates a new abacus display with
beads at positions{β1, β2, . . . , βi−1, βi −h, βi+1, . . . }. The conditionsβi ±h /∈ B are needed to ensure
that the abacus display forλ does not already have a bead at the new position. Note that with these
conventions moving a bead on runner0 one position to the left moves the bead to a position on runner
e−1 in the preceding row. Similarly, moving a bead on runnere−1 to the right moves a bead to a position
on runner0 in the next row. We also talk of moving beads in the abacus displays of multipartitions.

Recasting the above discussion in terms of the abacus we have the following well–known result which
goes back to Littlewood and James.

3.2.Lemma. Suppose thatλ is a partition. Then moving a bead to the righth positions from runnerf
to runnerf ′ corresponds to wrapping anh–rim hook with foot residuef ontoλ. Similarly, moving a
beadh positions to the left, from runnerf to runnerf ′ corresponds to unwrapping anh–rim hook fromλ
with foot residuef .

That increasing a beta number byh corresponds to wrapping on anh–rim hook is proved in [23,
Lemma 5.26]. The remaining claim about residues follows easily from our definitions. As a consequence
we obtain the following.

3.3.Corollary. Suppose thatλ is a partition andf ∈ Z/eZ, wheree < ∞. Then
a) Moving a bead down one row on a runner corresponds to wrapping ane–rim hook onto[λ]. If

this bead is on runnerf then the rim hook has foot residuef .
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b) Moving a bead up one row on a runner corresponds to unwrapping ane–rim hook from[λ]. If
this bead is on runnerf the rim hook has foot residuef .

c) Moving the lowest bead on runnerf down one row corresponds to wrapping on ane–hook with
foot residuef . Consequently, we can add ane–hook with foot residuef to any partition.

Suppose thatλ is a partition. Thee–coreof λ is the partitionλ whosee–abacus display is obtained
from thee–abacus display forλ by moving all beads as high as possible on their runners, that is, succes-
sively removing alle–hooks from the diagram ofλ. If e = ∞ then thee–core ofλ is λ itself. Define the
e–weightof the partition,w(λ), to be the number ofe–hooks that we remove in order to constructλ.

3.2. Jantzen equivalence.In order to prove Theorem 2.11 we first simplify the formula forJλµ. Let λ
be a multipartition and recall that ifx ∈ [λ] thenrλ

x ⊆ [λ] is the associated rim hook. To ease notation
we lethλ

x = |rλ
x | be thehook length of rλ

x . Before we start the proof of Theorem 2.11 we simplify the
formula forJλµ.

Recall thatF is a field of characteristicp. Defineνp : N−→N to be the map

νp(h) =

{

pk, if p is finite,

1, if p = ∞.

wherek ≥ 0 is maximal such thatpk dividesh.
If σ = (σ1, σ2, . . . ) is a partition letσ′ = (σ′

1, σ
′
2, . . . ) be its conjugate. Thenσ′

i = c if c is maximal

such that(c, i) ∈ [σ]. (Soσ′
i is the length of columni of [σ].) For any integerh ∈ Z let [h]t = th−1

t−1 ∈

F[t, t−1].

3.4. Lemma. Suppose thatλ and µ are multipartitions ofn and that [λ]\rλ
x = [µ]\rµ

y , for some
nodesx = (i, j, a) ∈ [λ] and y = (k, l, b) ∈ [µ]. Thenνπ

(

resO(fλ
x ) − resO(fµ

y )
)

6= 0 if only
if res(fλ

x ) = res(fµ
y ), in which case

νπ

(

resO(fλ
x ) − resO(fµ

y )
)

= νp

(

n(a − b) + j − λ
(a)′

i − l + µ
(b)′

k

)

.

Proof. Let i′ = λ
(a)′

i andk′ = µ
(b)′

k so thatfλ
x = (i′, j, a) andfµ

y = (k′, l, b). Then

resO(fλ
x ) − resO(fµ

y ) = qj−i′Qat
na+j−i′ − ql−k′

Qbt
nb+l−k′

= ql−k′

Qbt
nb+l−k′(

qj−i′−l+k′

QaQ
−1
b tn(a−b)+j−i′−l+k′

− 1
)

.

Therefore,νπ(resO(x) − resO(y)) 6= 0 if and only if qj−i′−l+k′

QaQ
−1
b = 1, which is if and only

if res(fλ
x ) = qj−i′Qa = ql−k′

Qb = res(fµ
y ). Now suppose thatres(fλ

x ) = res(fµ
y ) and leth =

n(a − b) + j − i′ − l + k′. Then

νπ

(

resO(fλ
x ) − resO(fµ

y )
)

= νπ(tn(a−b)+j−i′−l+k′

− 1) = 1 + νπ([h]t).

If p = ∞ then(t − 1) does not divide[h]t, so thatνπ(resO(x) − resO(y)) = 1 = νp(h). If p is finite
then writeh = pkh′, wherep ∤ h′. Then

[h]t = [pkh′]t = [pk]t[h
′]

tp
k = (t − 1)pk−1[h′]p

k

t .

Now, t− 1 does not divide[h′]t sincep ∤ h′. Therefore,νπ([h]t) = νp(h)− 1 and the result follows. ¤

We can now prove that (c)=⇒ (d) in Theorem 2.11.

3.5.Corollary. Suppose thatλ ∼J µ, whereλ, µ ∈ Λ+
r,n. Thenλ ∼C µ.

Proof. By the Lemma and Definition 2.5,Jλµ is non–zero only if there exist nodesx ∈ [λ] andy ∈ [µ]

such that[λ]\rλ
x = [µ]\rµ

y andres(fλ
x ) = res(fµ

y ). These two conditions imply thatCf (λ) = Cf (µ),
for all f ∈ Z/eZ, soλ ∼C µ. ¤
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Establishing the reverse implication takes considerably more effort. We startby explicitly describing
the Jantzen coefficients.

3.6.Proposition. Letλ = (λ(1), . . . , λ(r)) andµ = (µ(1), . . . , µ(r)) be multipartitions inΛ+
r,n.

a) Suppose that there exist integersa < b such thatλ(c) = µ(c), for c 6= a, b. ThenJλµ 6= 0 only
if there exist nodesx = (i, j, a) ∈ [λ] andy = (k, l, b) ∈ [µ] such thatres(fλ

x ) = res(fµ
y ) and

[λ]\rλ
x = [µ]\rµ

y . In this case

Jλµ = (−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )νp

(

n(a − b) + j − λ
(a)′

i − l + µ
(b)′

k

)

.

b) Suppose thate is finite and for some integera we haveλ(c) = µ(c), for c 6= a. ThenJλµ 6= 0 only
if there exist nodesx = (i, j, a), (i, m, a) ∈ [λ] such thatm < j, e | hλ

(i,m,a) andµ is obtained

by wrapping a rim hook of lengthhλ
x ontoλ\rλ

x with its highest node in columnm. In this case

Jλµ =











(−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )νp(h
λ
(i,m,a)), if e ∤ hλ

(i,j,a),

(−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )
(

νp(h
λ
(i,m,a)) − νp(h

λ
(i,j,a))

)

, if e | hλ
(i,j,a),

where the nodey ∈ [µ] is determined by[µ]\rµ
y = [λ]\rλ

x .
c) In all other cases,Jλµ = 0.

Proof. Suppose thatJλµ 6= 0. Thenλ ⊲ µ by Definition 2.5 andres(fλ
x ) = res(fµ

y ) by Lemma 3.4.
Furthermore, there exist nodesx = (i, j, a) ∈ [λ] andy = (k, l, b) ∈ [µ] such that[λ]\rλ

x = [µ]\rµ
y .

Consequently,λ(c) 6= µ(c) for at most two values ofc. Therefore, we may assume that we have integers
1 ≤ a ≤ b ≤ r such thatλ(c) = µ(c), for c 6= a, b.

If a 6= b then the nodesx and y are uniquely determined becauserλ
x = [λ(a)]\[µ(a)] and rµ

y =

[µ(b)]\[λ(b)]. Note thata < b sinceλ ⊲ µ. Therefore, we are in the situation considered in part (a). The
formula forJλµ now follows directly from Definition 2.5 and Lemma 3.4.

Now assume thata = b. If e = ∞ thenres(fλ
x ) = res(fµ

y ) if and only if x = y sincehλ
x = hµ

y .
This forcesλ = µ, which is not possible sinceλ ⊲ µ. Hence,e must be finite. Letx = (i, j, a) and
y = (k, l, a) and observe thatl < j if and only if λ ⊲ µ, so we may assume thatl < j. By Lemma 3.2
the abacus display forµ(a) is obtained from the abacus display forλ(b) by moving one beadhλ

x positions
to the leftfrom runnerres(fλ

x ), and other beadhλ
x positions to the rightto runnerres(fλ

x ).

Case 1. e ∤ hλ
(i,j,a): By Lemma 3.2 and the remarks above, the beads on the abacus displays ofλ(a)

and µ(a) are being moved between different runners. Therefore, the nodesx = (i, j, a) ∈ [λ] and
y = (k, l, a) ∈ [µ] are uniquely determined by the conditionsres(fλ

x ) = res(fµ
y ) and[λ]\rλ

x = [µ]\rµ
y .

Let m = µ
(a)
k . Thenhλ

(i,m,a) = (j − λ
(a)′

i ) − (l − µ
(a)′

k ) is the ‘axial distance’ fromfλ
x to fµ

y , so

thate | hλ
(i,m,a). (In fact,hλ

(i,m,a) is the axial distance between the corresponding ‘hand nodes’, but this

distance is, of course, the same. Note also that, sinceres(fλ
x ) = res(fµ

y ), we have thate | hλ
(i,m,a).)

Hence,Jλµ = (−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )νp

(

hλ
(i,m,a)

)

by Definition 2.5 and Lemma 3.4.

Case 2. e | hλ
(i,j,a): Sincehλ

x ≡ 0 (mod e) unwrappingrλ
x from λ and wrappingrµ

y back ontoλ\rλ
x

corresponds to moving one bead on runnerres(fλ
x ) up 1

ehλ
x rows and another bead on runnerres(fλ

x )

down 1
ehλ

x rows. If in the abacus display forλ these beads were moved from rowsr1 > r2 to rowsr′1
andr′2, respectively, then the abacus display forµ can also be obtained from abacus display forλ by
moving the bead in rowr1 to row r′2 and moving the bead in rowr2 to row r′1. That is, there exist
nodesx′ 6= x andy′ 6= y such that we can obtainµ by unwrappingrλ

x′ from λ and wrappingrµ
y′ back

ontoλ\rλ
x′ . By Lemma 3.2 there are no other ways of obtainingµ by unwrapping a rim hook fromλ
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and wrapping it back on again. Sinceλ ⊲ µ we can choose the nodesx = (i, j, a) andy = (k, l, a)

above so thatr1 > r′1 > r′2 > r2. Thenx′ = (i, m, a), wherem = µ
(a)
k , andy′ = (λ

(a)′

j , l, a). Further,

ℓℓ(rλ
x ) + ℓℓ(rµ

y ) = λ
(a)′

j − i + µ
(a)′

l − k andℓℓ(rλ
x′) + ℓℓ(rµ

y′) = λ
(a)′

m − i + µ
(a)′

l − λ
(a)′

j . But by

construction,k = λ
(a)′

m + 1 soℓℓ(rλ
x ) + ℓℓ(rµ

y ) andℓℓ(rλ
x′) + ℓℓ(rµ

y′) have opposite parities. The axial

distance fromfλ
x to fµ

y is hλ
(i,m,a) (wheree | hλ

(i,m,a) sinceres(fλ
x ) = res(fµ

y )) and the axial distance

from fλ
x′ to fµ

y′ is hλ
(i,j,a). Therefore,

Jλµ = (−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )
(

νp(h
λ
(i,m,a)) − νp(h

λ
(i,j,a))

)

as required.
We have now exhausted all of the cases whereJλµ is non–zero, so the Proposition is proved. ¤

3.3. Residue equivalence.We are now ready to start proving thatλ ∼J µ wheneverλ ∼C µ.
We say that a rim hook ofλ is vertical if it is contained within a single column of[λ].

3.7.Proposition. Suppose thatλ, µ ∈ Λ+
r,n and that there is an integera, with 1 ≤ a ≤ r, such that

λ(a) = µ(a) andλ(c) = µ(c), for c 6= a. Thenλ ∼J µ.

Proof. If e = ∞ thenλ(a) = µ(a) if and only if λ(a) = µ(a) so there is nothing to prove. Assume thate

is finite. Letwa = w(λ(a)). If wa = 0 thenλ(a) = λ(a) so thatλ = µ and there is nothing to prove. So
we can assume thatwa > 0.

Let Λa(λ) = {µ ∈ Λ+
r,n | µ(a) = λ(a) andµ(c) = λ(c) whenc 6= a } and letρ be the multipartition in

Λa(λ) whereρ(a) is the partition obtained by wrappingwa verticale–hooks onto the first column of the
e–core ofλ(a). Thenµ D ρ for all µ ∈ Λa(λ). To prove the Lemma it is enough to show thatµ ∼J ρ,
for all µ ∈ Λa(λ). By induction on dominance we may assume thatµ ∼J ρ wheneverµ ∈ Λa(λ) and
λ ⊲ µ. If Jλµ 6= 0 for someµ ∈ Λa(λ) thenλ ∼J µ. As λ ⊲ µ, we have thatµ ∼J ρ by induction, so
thatλ ∼J µ ∼J ρ.

It remains to consider the case whenλ ⊲ ρ andJλµ = 0 for all µ ∈ Λa(λ). By Lemma 3.6 (b),

νp(h
λ
(i,m,a)) = νp(h

λ
(i,j,a)), for all (i, m, a), (i, j, a) ∈ [λ].

This is precisely the condition for the Weyl module∆(λ(a)) to be irreducible (in the caser = 1). The
conjugates of these partitions are described explicitly in [20, Theorem 4.19]. For us the most important
properties of these partitions is that all ofe–hooks which can be unwrapped fromλ(a) when constructing

its e–coreρ(a) are vertical,νp is constant on the rows of[λ(a)], andρ
(a)′

i ≡ ρ
(a)′

i−1 − 1 (mod e) whenever

λ
(a)′

i 6= ρ
(a)′

i . Sincewa > 0 we can find a (unique) node(i, j, a) ∈ [λ] such thathλ
(i,j,a) ≡ 0 (mod e)

andhλ
(i′,j′,a) 6≡ 0 (mod e), for all (i′, j′, a) ∈ [λ] with (i′, j′) 6= (i, j), i′ ≤ i andj′ ≥ j. Let ν be the

multipartition obtained by unwrappingrλ
(i,j,a) from [λ] and wrapping it back on to the end of the first row

of [λ]\rλ
(i,j,a). Similarly, letµ be the multipartition obtained by unwrapping this same hook fromλ and

wrapping it back on to the end of the first column of[λ]\rλ
(i,j,a). Therefore,Jνλ 6= 0 andJνµ 6= 0, by

Lemma 3.6 (b), so thatλ ∼J ν ∼J µ. Note thatλ ⊲ ρ implies thatj > 1, so thatλ ⊲ µ. Consequently,
λ ∼J ρ by induction. ¤

Recall that thee–cores of the partitions ofn completely determine the blocks whenr = 1. We have
the following imperfect generalization whenr > 1.

3.8.Definition. Suppose thatλ =
(

λ(1), . . . , λ(r)
)

is a multipartition. Then thee–multicore of λ is the

multipartitionλ =
(

λ
(1)

, . . . , λ
(r))

. We abuse notation and say thatλ is a multicore ifλ = λ.



14 SINÉAD LYLE AND ANDREW MATHAS

By Corollary 3.3 (a), thee–multicoreλ of λ is obtained fromλ by sequentially unwrapping alle–
rim hooks from the diagram ofλ, in any order. Note that ife = ∞ then every multipartition is an
e–multicore.

Mimicking the representation theory of the symmetric groups, definewe(λ) to be the number ofe–
hooks that have to be unwrapped fromλ to constructλ. If e is finite thenwe = 1

e (|λ| − |λ|), whereas
w∞(λ) = 0. Now define

We(λ) = max{we(µ) | µ ∼C λ}.

Note that whileWe(λ) is well defined, it is not immediately clear how to compute it.

3.9.Lemma. Suppose thatλ, µ ∈ Λ+
r,n and thatλ = µ. Thenλ ∼J µ.

Proof. Suppose first that|λ(a)| = |µ(a)|, for 1 ≤ a ≤ r. Thenλ ∼J µ by successive applications of
Proposition 3.7. If this is not the case then by successively unwrappinge–hooks from one component
of λ and wrapping them back onto a different component without changing their foot residue we can
obtain another multipartitionν such that|ν(a)| = |µ(a)|, for 1 ≤ a ≤ r. Thenλ ∼J ν by Proposition 3.6
(and Lemma 3.2). By the first line of the proofν ∼J µ, soλ ∼J µ as required. ¤

In order to consider two multipartitions which are residue equivalent but have different multicores, we
make the following definitions.

3.10.Definition. a) Suppose thatλ is a multicore. Ife is finite, definesab
ij (λ) to be the multicore

whose abacus display is obtained by moving a bead from runneri to runnerj on the abacus
for λ(a) and moving a bead from runnerj to runneri on the abacus forλ(b). If e = ∞ and the
abacus display forλ(a) contains a bead in positioni but not in positionj, while the abacus display
for λ(b) contains a bead in positionj but not in positioni, definesab

ij (λ) to be the multicore whose

abacus display is obtained by moving a bead from positioni to positionj on the abacus forλ(a)

and fromj to positioni on the abacus forλ(b).
b) Suppose thate is finite and letλ be a multipartition. Definetaiw(λ) to be the multipartition whose

abacus display is obtained by moving the lowest bead on runneri of the abacus forλ(a) downw
rows.

3.11.Lemma. Suppose thatλ ∼C µ and thatµ = sab
ij (λ). Thenλ ∼J µ.

Proof. Letν = tai we(λ)(λ) andρ = taj we(µ)(µ). Thenλ ∼J ν andρ ∼J µ by Lemma 3.9. Furthermore,
the multipartitionsν andρ satisfy the conditions of Proposition 3.6 (a), soλ ∼J ν ∼J ρ ∼J µ as
required. ¤

We now need several results and definitions of Fayers from the papers[14, 15]. In these papers
Fayers assumes the classification of the blocks of the Ariki–Koike algebras. He remarks before [15,
Theorem 1.5] that the paper [15] only ever uses the fact that if two Specht modules belong to the same
block then they are residue equivalent. We have already proved this in Corollary 3.5. The paper [14]
requires more careful consideration. In this paper, Fayers describes certain sets of multipartitions, each
of which is of the form{µ | µ ∼C λ} for some multipartitionλ. His construction does not rely on the
assumption thatλ ∼C µ implies that the corresponding Specht modules lie in the same block. We may
therefore use his descriptions.

3.12.Definition (Fayers [15, §2.1]). Suppose thatλ is a multipartition. Then thee–weight of λ is the
integer

wt(λ) =
r

∑

j=1

Ccj
(λ) −

1

2

∑

f∈Z/eZ

(Cf (λ) − Cf+1(λ))2.
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Fayers [15] shows thatwt(λ) ≥ 0 for all multipartitionsλ, and that ifr = 1, it coincides with the
usual definitionw(λ) of weight. Further, ifλ ∼C µ thenwt(λ) = wt(µ), so the functionwt(·) is
constant on the residue classes ofΛ+

r,n. The results of [15, Prop. 3.8] show how to use the abacus display
of λ to calculatewt(λ). Combining this method with Lemma 3.16 below gives a way of computing
We(λ) using the abacus display ofλ. We leave the details to the reader.

Recall that a node(i, j, a) ∈ [λ] is removable if [λ]\{(i, j, a)} is the diagram of some multipartition
ν ∈ Λ+

r,n−1. Similarly, a node(i, j, a) /∈ [λ] is a addable if [λ] ∪ {(i, j, a)} is the diagram of some
multipartitionν ∈ Λ+

r,n+1. The nodex = (i, j, a) is anf–node ifres(x) = f .
Let λ be a multipartition. Forf ∈ Z/eZ anda ∈ {1, . . . , r}, define

δa
f (λ) = #{ removablef–nodes of[λ(a)] } − #{ addablef–nodes of[λ(a)] }

and set

δf (λ) =
r

∑

j=1

δk
i (λ).

The sequence(δf (λ) | f ∈ Z/eZ) is thehub of λ. The hub ofλ can be read off the abacus display ofλ

using Lemma 3.2.
Observe that Corollary 3.3 implies that ife is finite then the hub is unchanged by wrappinghe–hooks

onto[λ], for h ≥ 1. Furthermore,λ andµ have the same hub ifµ = sab
ij (λ), for somea, b, i, j.

3.13.Proposition (Fayers [15, Proposition 3.2 and Lemma 3.3]). Suppose thatλ is a multipartition ofn
andµ is a multipartition ofm. Then

a) If e < ∞ andλ andµ have the same hub thenm ≡ n mod e and

wt(λ) − wt(µ) =
r(n − m)

e
;

b) If n = m thenλ ∼C µ if and only if they have the same hub.
Consequently, ifµ is obtained fromλ by wrapping on ane–hook, thenwt(µ) = wt(λ) + r.

The next result will let us determine whenWe(λ) = we(λ).

3.14.Proposition (Fayers [14, Theorem 3.1]). Suppose thatλ ∈ Λ+
r,n is a multipartition. Then the

following are equivalent.
a) µ is a multicore wheneverµ ∼C λ.
b) wt(µ) ≥ wt(λ) wheneverµ andλ have the same hub.

3.15. Definition. A multipartition λ is a reduced multicore if it satisfies the conditions of Proposi-
tion 3.14.

Not every multicore is reduced. Ifλ is a reduced multicore then the block which contains∆(λ) is, in
general, not simple. In contrast, whenr = 1 every core is a reduced multicore and the block containing
a core is always simple. Ifλ is an reduced multicore then Fayers [14] calls the set of multipartitions
{µ | µ ∼C λ } a ‘core block’.

3.16.Lemma. Suppose thatλ ∈ Λ+
n,r. Thenλ is a reduced multicore if and only ifwe(λ) = We(λ).

Proof. Supposewe(λ) 6= We(λ). By definition, there exists a multipartitionµ such thatµ ∼C λ

andwe(µ) > we(λ). Now µ andλ have the same hub, and by Proposition 3.13,wt(µ) < wt(λ),
contradicting Condition (b) of Proposition 3.14. Therefore,λ is not a reduced multicore.

Now suppose thatλ is not a reduced multicore. Then there exists a multipartitionµ, which is not
a multicore, such thatµ ∼C λ. Let ν = t10we(λ)(µ). Thenν ∼C λ andwe(ν) > we(λ). Hence,
We(λ) > we(λ). ¤
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3.17.Lemma (Fayers [14, Proof of Proposition 3.7 (1)]). Suppose thatλ is a multicore which is not
reduced. Then there exists a sequence of multicoresλ0 = λ, λ1, . . . ,λk = µ such thatwt(µ) < wt(λ),
andλm+1 = sambm

imjm
(λm) andwt(λm) ≤ wt(λ), for 0 ≤ m < k.

3.18.Lemma (Fayers [14, Proof of Proposition 3.7 (2)]). Suppose thatλ andµ are reduced multicores
and thatλ ∼C µ. Then there exists a sequence of multicoresλ0 = λ, λ1, . . . ,λk = µ such that
λm+1 = sambm

imjm
(λm) andλm+1 ∼C λm, for 0 ≤ m < k.

We can now complete the proof of Theorem 2.11 whenq 6= 1 and the parametersQ1, . . . , Qr are
non–zero. Consequently, this completes the proofs of Theorem A and Theorem B from the introduction.

3.19.Theorem. Suppose thatq 6= 1 and that the parametersQ1, . . . , Qr are non–zero. Letλ andµ be
multipartitions inΛ+

n,r. Thenλ ∼C µ if and only ifλ ∼J µ.

Proof. By Corollary 3.5 ifλ ∼J µ thenλ ∼C µ. Therefore, to prove the theorem it is sufficient to
prove the following two statements.

a) Suppose thatwe(λ) < We(λ). Thenµ ∼J λ andwe(µ) > we(λ), for someµ ∈ Λ+
r,n.

b) Suppose thatλ ∼C µ and thatwe(λ) = We(λ) = we(µ). Thenµ ∼J λ.
Suppose, as in (a), thatwe(λ) < We(λ). Thene is finite and by Lemma 3.16,λ is not a reduced

multicore. By Lemma 3.17, there exists a sequence of multicoresλ0 = λ, λ1, . . . ,λk = µ such that
wt(µ) < wt(λ), λm+1 = sambm

imjm
(λm) andwt(λm) ≤ wt(λ), for 0 ≤ m < k. Fix m with 0 ≤ m < k.

Sinceλm andλ have the same hub, Proposition 3.13 says that|λm| ≤ |λ| and|λ| ≡ |λm| (mod e),
and that|µ| < |λ|. Definewm = we(λ) + 1

e (|λ| − |λm|) and setνm = t10wm
(λm). Thenνm ∼J νm+1

by Lemma 3.11, so thatλ ∼J µ. Moreover,we(µ) = we(λ) + 1
e (|λ| − |µ|) > we(λ) as required.

Now consider (b), that is, suppose thatλ ∼C µ andwe(λ) = We(λ) = we(µ). By Lemma 3.16,λ
andµ are reduced multicores. Then, by Lemma 3.18, there exist multicoresλ0 = λ, λ1, . . . ,λk = µ

such thatλm+1 = sambm

imjm
(λm) andλm+1 ∼C λm. For0 ≤ m < k, defineνm = t10we(λ)(λm). Then by

Lemma 3.11,νm ∼J νm+1 and by Lemma 3.9,λ ∼J ν0 ∼J ν1 ∼J · · · ∼J νk ∼J µ as required. ¤

4. THE BLOCKS FOR ALGEBRAS WITH EXCEPTIONAL PARAMETERS

In this section we classify the blocks of the Ariki–Koike algebras for the remaining cases from (2.13).
That is, we assume that the parameters satisfy one of the following four cases:

Case 2. r = 1, q = 1 andQ1 = 1.
Case 3. r > 1, q = 1 andQ1 = · · · = Qr = 1.
Case 4. r > 1, q = 1 andQ1 = · · · = Qr = 0.
Case 5. r > 1, q 6= 1 andQ1 = · · · = Qr = 0.

As in the previous section the basic strategy is to use the Jantzen sum formula toanalyze the combina-
torics of the Jantzen coefficients.

We distinguish between cases 2 and 3 because the blocks differ dramaticallyin these two cases. In
fact, the blocks in Case 2 behave like the blocks whenq 6= 1 and the parametersQ1, . . . , Qr are non-zero.
Quite surprisingly, the algebrasHr,n andSr,n have only one block in Cases 3–5.

In all cases the blocks of the algebrasHr,n andSr,n are determined by Jantzen equivalence by Propo-
sition 2.9. This section gives an explicit description of when two multipartitions are Jantzen equivalent
in cases 2–5 above.

4.1. The blocks whenr = 1 and q = 1. Assume that we are in Case 2 above and letHn = H1,n and
Sn = S1,n. In this case the Specht modules and Weyl modules are indexed by partitions, rather than
multipartitions, so we writeλ in place ofλ, and so on. The nodes in the diagrams of partitions are all of
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the form(i, j, 1), for i, j ≥ 1, so we drop the trailing1 from this notation and consider a node to be an
ordered pair(i, j), so that[λ] = { (i, j) | 1 ≤ j ≤ λi }.

As q = 1 we have thate = p. Following section 3 define theresidueof a nodex = (i, j) to be

res(x) = (j − i) (mod p).

Once again,{ res(x) | x ∈ [λ] for someλ ∈ Λ+
r,n } ⊆ Z/pZ. For a partitionλ and f ∈ Z/pZ put

Cf (λ) = # {x ∈ [λ] | res(x) = f } and defineλ ∼C µ if Cf (λ) = Cf (µ), for all f ∈ Z/pZ. Then it
is well–known (and easy to prove using Corollary 3.3 (a)) thatλ ∼C µ if and only if λ andµ have the
samep–core.

We can now prove Theorem 2.11 whenq = 1 andr = 1. To prove this result we need to show that
the Jantzen and residue equivalence relations on the set of partitions coincide. We follow the argument
of the previous section.

The analogue of Lemma 3.4 in Case 2 is as follows.

4.1.Lemma. Suppose thatλ andµ are multipartitions ofn and that[λ]\rλ
x = [µ]\rµ

y , for some nodes
x = (i, j) ∈ [λ] andy = (k, l) ∈ [µ]. Then

νπ

(

resO(fλ
x ) − resO(fµ

y )
)

= νp

(

j − λ′
j − l + µ′

l

)

.

Proof. Let i′ = λ′
i andk′ = µ′

k so thatfλ
x = (i′, j) andfµ

y = (k′, l). Then

resO(fλ
x ) − resO(fµ

y ) = tna+j−i′ − tna+l−k′

= tna+l−k′

(tj−i′−l+k′

− 1).

Mimicking the proof of Lemma 3.4, leth = j − i′ − l + k′. Then

νπ

(

resO(fλ
x ) − resO(fµ

y )
)

= νπ(tj−i′−l+k′

− 1) = 1 + νπ([h]t).

Repeating the second half of the proof of Lemma 3.4 completes the proof. ¤

The only difference between Lemma 3.4 and Lemma 4.1 is that nowνπ

(

resO(fλ
x ) − resO(fµ

y )
)

is
non–zero whenever[λ]\rλ

x = [µ]\rµ
y ; that is, we no longer require thatres(fλ

x ) = res(fµ
y ).

4.2.Proposition. Letλ andµ are partitions ofn. ThenJλµ is non–zero only ifp is finite and there exist
nodesx = (i, j), (i, m) ∈ [λ] such thatm < j, p | hλ

(i,m) andµ is obtained by wrapping a rim hook of

lengthhλ
x ontoλ\rλ

x with its highest node in columnm. In this case

Jλµ =











(−1)ℓℓ(rλ
x)+ℓℓ(rµ

y )νp(h
λ
(i,m)), if p ∤ hλ

(i,j),

(−1)ℓℓ(rλ
x)+ℓℓ(rµ

y )
(

νp(h
λ
(i,m)) − νp(h

λ
(i,j))

)

, if p | hλ
(i,j),

where the nodey ∈ [µ] is determined by[µ]\rµ
y = [λ]\rλ

x .

Proof. Suppose thatJλµ 6= 0. Thenλ ⊲ µ by Definition 2.5 and there exist nodesx = (i, j) ∈ [λ] and
y = (k, l, b) ∈ [µ] such that[λ]\rλ

x = [µ]\rµ
y .

Case 1. res(fλ
x ) 6= res(fµ

y ): Unwrapping the rim hookrλ
x from λ moves a bead on the abacus for

λ from runnerres(fλ
x ) to runnerr1, say, and wrapping the rim hookrµ

y back ontoλ\rλ
x moves a bead

from runnerr2 to runnerres(fµ
y ). Sinceres(fλ

x ) 6= res(fµ
y ) we can also construct the partitionµ from λ

by moving a bead from runnerres(fλ
x ) to runnerr2 and then moving a bead from runnerr1 to runner

res(fµ
y ). Comparing the abacus displays ofλ andµ, there are no other ways of obtainingµ from λ by

moving a single rim hook. As in the proof of Proposition 3.6, the sums of the leg lengths for the two
different ways of changingλ into µ by moving a rim hook have different parities, so their contributions
to Jλµ cancel out. Hence,Jλµ = 0 whenres(fλ

x ) 6= res(fµ
y ).

Case 2. res(fλ
x ) = res(fµ

y ): The proof of Proposition 3.6 in the case whena = b can now be repeated
without change to complete the proof of the Proposition. ¤
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4.3.Corollary. Suppose thatλ andµ are partitions ofn. Thenλ ∼J µ if and only ifλ ∼C µ.

Proof. By Proposition 4.2,λ ∼C µ wheneverλ ∼J µ. The reverse implication follows by the argument
of Proposition 3.7 since this proof only uses part (b) of Proposition 3.6, which is the same as the statement
of Proposition 4.2. ¤

Remark.Corollary 4.3 completes the classification of the blocks of theq–Schur algebras and the Hecke
algebras of typeA; that is whenr = 1. Unfortunately, the classification of the blocks of theq–Schur
algebras given in [20, Theorem 4.24] (and reproduced in [23, Theorem 5.47]), contains a gap because
these two proofs only consider the case of reducible Weyl modules. Fortunately, the classification of the
blocks of the Hecke algebras of typeA given in [20, Theorem 4.29] is correct – indeed, whenr = 1 our
proof is a streamlined version of this argument.

4.2. The blocks whenr > 1 and q = 1 or Q1 = · · · = Qr = 0. We now consider the blocks in the
remaining cases, that is, whenr > 1 and eitherq = 1 or Q1 = · · · = Qr = 0. In this case all simple
modules belong to the same block. We use the same strategy to prove Theorem 2.11 in these cases as in
the previous sections.

Note that, in Cases 3–5,res(x) = (Qa) for any nodex = (i, j, a). Therefore, in these cases,Λ+
r,n

forms a single residue class. Hence, in order to prove Theorem 2.11, weneed to show that any two
multipartitions inΛ+

r,n are Jantzen equivalent. Consequently, in Cases 3–5 Theorem 2.11 asserts that
the algebrasHr,n andSr,n have only one block and, in particular, that they are both indecomposable
algebras.

We adopt the same strategy for the proof. To state the analogue of Lemma 3.4 set

ǫ =

{

1, if Q1 = · · · = Qr = 0 (cases 4 and 5),

0, otherwise.

4.4.Lemma. Suppose thatλ andµ are multipartitions ofn and that[λ]\rλ
x = [µ]\rµ

y , for some nodes
x = (i, j, a) ∈ [λ] andy = (k, l, b) ∈ [µ]. Then

νπ

(

resO(fλ
x ) − resO(fµ

y )
)

= νp

(

n(a − b) + j − λ
(a)′

i − l + µ
(b)′

k

)

+ ǫ

The proof of Lemma 4.4 is similar to proofs of Lemma 3.4 and Lemma 4.1, so we leave the details
to the reader. Note in particular, thatνπ

(

resO(fλ
x ) − resO(fµ

y )
)

is always non–zero whena 6= b. This
crucial difference leads toJλµ being non–zero whenever there exist nodesx = (i, j, a) ∈ [λ] and
y = (k, l, b) ∈ [µ] with a < b and[λ]\rλ

x = [µ]\rµ
y . More explicitly, we have the following analogue of

Propositions 3.6 and 4.2. Again, we leave details to the reader.

4.5.Proposition. Letλ = (λ(1), . . . ,λ(r)) andµ = (µ(1), . . . ,µ(r)) be multipartitions inΛ+
r,n.

a) Suppose that there exist integersa 6= b such thatλ(c) = µ(c), for c 6= a, b. ThenJλµ 6= 0 only if
a < b and there exist nodesx = (i, j, a) ∈ [λ] andy = (k, l, b) ∈ [µ] such that[λ]\rλ

x = [µ]\rµ
y .

In this case

Jλµ = (−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )
(

νp

(

n(a − b) + j − λ
(a)′

i − l + µ
(b)′

k

)

+ ǫ
)

.

b) Suppose thate is finite and for some integera we haveλ(c) = µ(c), for c 6= a. ThenJλµ 6= 0 only
if there exist nodesx = (i, j, a), (i, m, a) ∈ [λ] such thatm < j, e | hλ

i,m,a) andµ is obtained by

wrapping a rim hook of lengthhλ
x ontoλ\rλ

x with its highest node in columnm. In this case

Jλµ =











(−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )
(

νp(h
λ
(i,m,a)) + ǫ

)

, if e ∤ hλ
(i,j,a),

(−1)ℓℓ(rλ
x )+ℓℓ(rµ

y )
(

νp(h
λ
(i,m,a)) − νp(h

λ
(i,j,a))

)

, if e | hλ
(i,j,a),

wherey ∈ [µ] is determined by[µ]\rµ
y = [λ]\rλ

x .
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c) In all other cases,Jλµ = 0.

We can now complete the proof of Theorem 2.11.

Proof of Theorem 2.11 for Cases 3–5.Letλ = (λ(1), . . . , λ(r)) be a multipartition ofn and fix an integer
a 6= b with λ(a) 6= (0) and1 ≤ a, b ≤ r. Letµ be any multipartition that can be obtained by unwrapping
a rim hook from[λ(a)] and wrapping it back on to componentb of λ. Thenλ ∼J µ by Proposition 4.5(a).
In particular, note thatλ ∼J µ if µ is obtained fromλ by moving a removable node fromλ(a) to λ(b).
Consequently, by moving the nodes in[λ] to the right, one by one, we see thatλ is Janzten equivalent
to a multipartitionµ, whereµ = ((0), . . . , (0), µ(r)). Similarly, moving nodes inµ to the left, one by
one, now shows thatλ ∼J µ ∼J ((n), (0), . . . , (0)). Hence, every multipartition inΛ+

r,n is Jantzen
equivalent to((n), (0), . . . , (0)). This shows that there is only one block in Cases 3, 4 and 5, so the
Theorem follows. ¤
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