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1 Introduction

We often think, naively, of the learning environments we create for our students as being
fluid and malleable, like water. But this can be an illusion and a question of scale. A tiny
creature can become trapped and suffocate inside a droplet of water because of the relative
strength of the surface tension. Even powerful public figures, like the president of the United
States, can be enclosed in bubbles, with imaginary or perceived boundaries that isolate them
from critics and the rest of the world (Thomas and Wolfe 2005).

Carroll and Rosson (1987) identify ‘cognitive and motivational paradoxes’ which inhibit
progress in learning (in the context of computer users) and a fact of mental life: that adults
unconsciously resist addressing themselves to new learning. For the teacher, overcoming this
resistance and the construction of an appropriate learning environment is far from being a
trivial design problem (Thomas and Carroll 1979). In any typical mathematics classroom at
the University of Sydney, with a huge diversity of interests and expectations (despite often
narrow bands of very high UAI scores!), this becomes an ill-defined design problem in the
sense of Reitman (1965): there are no clear starting or finishing points. Nor should there
be, and the issue is further compounded by the allocation of final grades. Does the teacher
allocate a grade based on some notion of competence or learning outcome, or on the basis of
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a ranking of students and an acceptable distribution, or some immeasurably complex (but
intuitively derived) combination of the two?

This paper pays particular attention to the passive/active interface in mathematics, which
has its own special dynamics and tension and can form an impenetrable learning barrier.
Unless one can release it, ‘pop the bubble’ so to speak, this barrier can make unhappy
prisoners of students forced to do mathematics against their will (such as science students
forced to take 12 credit points of mathematics) or repel many who do have a choice. Though
psychological and invisible, this barrier is exceedingly common, perhaps universal; but its
existence is largely neglected in traditional methods of teaching mathematics. The purpose
of this paper is to draw attention to this interface, and illustrate strategies for overcoming
it, by means of a case study from recent teaching by the author.

Sophisticated mathematics – as in driving a car – or playing a musical instrument – or
performing feats of wizardry on the soccer field – depends on a facile technique. The drilling
of basics is an essential feature which precedes (a) independent enquiry, and (b) the ability to
express oneself freely. The driver of a car who does not understand the differences between
the clutch, brake and accelerator has no chance of successfully exploring the countryside.
The potential driver who thinks he or she knows the differences in theory, but has had no
actual practice pushing the pedals, is bound to crash also. The driver’s licence – like the
mastery of elementary calculus or linear algebra, or the fundamentals of discrete mathematics
or statistics – is a ticket to freedom, to (a) experience the thrill of controlling a sophisticated
apparatus, and (b) explore the countryside and discover new worlds beyond the horizon.
The practice class technique, illustrated in the next section, reinforced by quiz and exam
questions, is one aspect of an armoury of teaching devices geared towards making students
confident and successful ‘drivers’, who are able to use mathematics to fulfill their potential
in their chosen field.

2 Case study: the theory of generating functions

All of the materials and extracts described in this section come from the author’s teaching
of the subject MATH2069/2969 Discrete Mathematics and Graph Theory, an Intermediate
unit of study, offered by the School of Mathematics and Statistics in 2005 and 2006.

Generating functions provide one of the most powerful techniques for counting, and come
as something of a surprise to an inexperienced student. At first they appear ‘weird’ and
unfamiliar, and it is not clear how they could be useful for anything! Gradually students
realise that generating functions possess an arithmetic which has many properties in common
with the familiar arithmetic of numbers which they study from early primary school.

Figure 1 comprises two extracts from lecture notes, presented to students in their ‘passive’
role as listeners/readers. There is some bald information: (i) the definition of a generating

function in terms of a formal power series; (ii) the seminal example of the geometric series;
and (iii) a brief exposé of one case of the method of partial fractions. Even (i) is problematical
and potentially offputting. There are several words with no obvious heuristic connection to
the symbols: a generating function is not a function at all, and the words ‘formal’, ‘power’
and ‘series’ all have a role which needs to be explained. The compression of an infinite
amount of information (the elements of the sequence extending indefinitely to the right)
into one strange expression G(z), and the Sigma notation, have to be negotiated carefully.
Preconceived ideas of convergence also have to be dispelled. The connection of (ii) with the
‘arithemetic’ of generating functions can be something of a ‘eureka’ moment, or revelation,
especially when applied to (iii). The method in (iii) is expressed both in abstract generality
and concretely in a special instance with actual numbers, and finishes with a question, more
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rhetorical in drawing attention to two particular constants A and B, than expecting students
to immediately answer for themselves.

Figure 1: extract from lecture notes

Figure 2 is an extract from a worksheet given to students in a practice class, which is
designed to help them move from their passive phase – receiving and absorbing lecture
or reading material (as in Figure 1) – to an active phase, where they will be able to solve
problems using generating functions. The ultimate aim of Figure 2 is (3), which gets a student
to ‘unpack’ the description of G(z) as a rational function to find the original sequence and a
formula for a

n
. Parts (1) and (2) are stepping stones which would be absent in a real problem.

In (1) the student is asked to find a partial fraction decomposition, and an intermediate step
is given (like the instructor putting a car into gear for someone learning to drive for the first
time). It is relatively easy to find the constants A and B (like the learner slowly taking
his or her foot off the clutch as the car starts to move). Part (2) is completely different:
an example of long division of power series, which starts at the constant term (by contrast
with usual long division of polynomials, which normally starts at the highest power of the
indeterminate). The first two steps are given (like an instructor helping the learner put the
car into first and then second gears), and the student is asked to mimic these to produce two
further steps (like the learner by analogy now putting the car into third and fourth gears).
Part (3) asks for five answers, the first four of which can be read off from the answers to (2),
and the last, which now requires the answer to (1) and knowledge about geometric series.
Filling out the sheet is relatively painless, yet takes the student, increasing in confidence,
along a path of sophisticated ideas. Other practice class problems on generating functions
repeat these processes, gradually removing any preparatory or intermediate steps. There
is repetition (with some similarity to but far less volume than Kumon exercises (Russell
1996)) balanced by reflective thought. In the end the student can answer questions about
generating functions with ease and fluency.
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Figure 2: extract from practice class worksheet

Practice classes are conducted with all students together in a single room, working at
their own pace, interacting with and helping each other, and seeking advice or feedback
as needed from the lecturer. At intervals the lecturer writes answers in the spaces on an
overhead projector copy of the worksheet and adds any words of explanation or additional
tips for calculation or reasoning. Very able students can complete the worksheet quickly and
move on to other topics, or leave early. The teaching method is robust: students who are
absent from the practice class can still catch up by completing the worksheets in their own
time and seeking help from the lecturer at office consultations. Inexperienced students can
take multiple copies of the worksheets and redo the problems as many time as they like until
they have gained enough fluency to feel confident in a quiz or exam.

From the lecturer’s point of view, practice classes are pleasurable, far less demanding in
terms of stress or energy than the delivery of a lecture or presentation, and provide almost
instant two-way feedback. At the end of a practice class, the lecturer has a very clear idea
of strengths and weaknesses in the class and how students are dynamically reacting to the
material. Practice classes break through the ‘active/passive’ interface and have become an
indispensable tool in the author’s armoury of teaching methods.

A series of practice classes lead up to a quiz, an extract of which is shown in Figure 3. The
problem highlighted is very similar, but not identical, to the problem attacked in Figure 2.
It is posed as a true/false question. The student has to actively make a decision about which
technique is appropriate. It turns out that both the methods practised, of partial fractions
and of long division of power series, lead to solutions, though in this instance the latter is
faster. Students can use both methods, if they have time, which mimics the robustness of
mathematicians who habitually look for ways of checking their answers. The quizzes used
by the author are sophisticated diagnostic tools and use a variety of testing mechanisms, of
which true/false only is illustrated here. Students are advised to circle T (for true) or F (for
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false) if they are sure of their answer, otherwise to leave it unanswered. By doing so, if the
student gets it wrong, then he or she knows that a conceptual or computational error has
occurred and needs fixing. If the student afterwards sees that the question was unanswered
then he or she is alerted to a gap in knowledge or technique that requires attention. What
happens if a student guesses? Then of course the diagnostic benefit disappears. To discourage
guessing true/false questions, incorrect answers are penalised by negative marking. On the
whole, in this author’s experience, most students follow the instructions and reap the benefit
of diagnostic feedback. Students that ignore the instructions and guess anyway, learn quickly
that it is not in their interest (from the point of view of gaining marks) and follow the
instructions in subsequent quizzes.

Figure 3: extract from 2005 class quiz (true/false)

This chain of events, from the passive phase in lectures, through the passive/active in-
terface in practice classes, to the active phase in solving problems and attempting a quiz,
culminates in the end of semester examination. The circled question in Figure 4 was one
of the hardest of 20 true/false questions in Section A of both exams for MATH2069 (nor-
mal) and MATH2969 (advanced) in 2005 and resembles part (3) of Figure 2. Of the 29
advanced students who sat the exam, 21 answered correctly, 3 answered incorrectly and 5
did not attempt the question. Of the 98 normal students who sat the exam, 43 answered
correctly, 3 incorrectly and 52 did not attempt the question. It is especially gratifying to see
such a large number of normal students attempt what would be perceived as an advanced
question, with a very small error rate. This is only one example, but success across a range
of similarly difficult questions demonstrates that even less able or inexperienced students at
the beginning of the semester can have sufficient confidence by the end of the semester to
choose and apply appropriate techniques with fluency.

Figure 4: extract from 2005 first semester exam (true/false)
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3 Results of a class survey

In June 2006, 32 students (out of a combined enrolment of 110 in MATH2069/2969) re-
sponded to a voluntary survey to assess several aspects of teaching as

1. very helpful 2. helpful 3. neutral 4. unhelpful 5. very unhelpful

in the process of learning and mastering discrete mathematics. For lectures (the passive
phase), practice classes (the active/passive interface) and tutorials (the active phase) the
results were:

1. 2. 3. 4. 5.

lectures 10 16 4 2 0

practice classes 18 9 5 0 0

tutorials 8 17 5 1 1

The figures suggest that in this particular course, practice classes were the most effective
aspect of teaching and learning. Traditional methods such as lectures and tutorials were also
helpful, but the perceived benefit by students seemed to be greater when special effort was
expended at the active/passive interface. It would be worthwhile trialling and experimenting
with the methodology of this paper in a range of other mathematics courses, obtaining more
comprehensive data and analyses of effects based on abilities and backgrounds.
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