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Abstract. Let k be an algebraically closed field of characteristic p, possibly zero, and G = q-

GL3(k), the quantum group of three by three matrices as defined by Dipper and Donkin. We

may also take G to be GL3(k). We first determine the extensions between simple G-modules for

both G and G1, the first Frobneius kernel of G. We then determine the submodule structure

of certain induced modules, Ẑ(λ), for the infinitesimal group G1B. We induce this structure to

G to obtain a good l-filtration of certain induced modules, ∇(λ), for G. We also determine the

homomorphisms between induced modules for G.

Introduction

Let k be an algebraically closed field of characteristic p, possibly zero. In this paper we study

the module category for G = q-GL3(k), the quantum group of three by three matrices. We use

the quantisation of Dipper and Donkin [7]. We may also take G to be GL3(k), that is the classical

group scheme of three by three invertible matrices.

We want to determine explicitly the structure of two types of modules. First we determine

the submodule structure of certain induced modules, Ẑ(λ), for the infinitesimal group G1B. We

then induce this structure to G to obtain a good l-filtration of certain induced modules, ∇(λ), for

G. We also determine the homomorphisms between induced modules for G.

This paper generalises several classical results including the extensions between simple mod-

ules for SL3(k), [16], the submodule structure of the Ẑ(λ)’s for SL3(k), [11], some results about

translations, [13], good p-filtrations of the induced modules ∇(λ) for SL3(k), [15], and the ho-

morphisms between induced modules for SL3(k), [6]. It also clears up some confusion regarding

the validity of results of Irving [11] and Parker [15] for small primes. A large part of this paper

produces a quantum version of many results of the PhD thesis of Yehia, [16]. We have reproduced

some of his arguments, only applied to the quantum case, as this reference is not that accessible.

1. Notation

We first review the basic concepts and most of the notation that we will be using. A very brief

introduction to the theory of quantum groups and how it relates to linear algebraic groups may be

found in [10, chapter 0]. Some of the cohomological theory of quantum groups and their q-Schur

algebras appears in [9]. We will also refer to [2] for many of the basic properties of quantum groups.

Throughout this paper k will be an algebraically closed field of characteristic p which may be

zero.
1
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First take G to be GL3(k). We take l to be p which we assume for this particular case

to be non-zero. We let T be the diagonal matrices in G and B, a Borel subgroup, be the lower

triangular matrices. We will write Mod(G) for the category of dimensional rational G-modules and

mod(G) for the category of finite dimensional rational G-modules. We let D be the one-dimensional

determinant module for G.

Now take G to be q-GL3(k) the quantum group of Dipper and Donkin, as defined in [10]. We

write Mod(G) for the category of right comodules of k[G], the Hopf algebra of G and mod(G) for

the category of finite dimensional right comodules of k[G]. If q is not a root of unity then mod(G)

is semi-simple. We will thus consider the case where q is a primitive lth root of unity with l > 2.

We take T , and B as defined in [9]. We let D be the one-dimensional module for G, where G acts

by the quantum determinant as defined in [9].

We now consider both cases together.

Let X(T ) = X ∼= Z
3 be the weight lattice for G with Z-basis {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =

(0, 0, 1)}. Every module in mod(G) is semi-simple as a T -module and we define the formal character

ch(V ) ∈ ZX of V to be the character of V restricted to T . We use e(λ) with λ ∈ X as a basis for

ZX , so to distinguish characters from the structure of the weight lattice as a Z vector space. We

thus have e(λ)e(µ) = e(λ + µ) in ZX .

We set R = {ei − ej | i 6= j} to be the roots of G. For each α ∈ R we take αˇ = α ∈ X to be

the coroot of α. (Here we have identified the weight space with the dual weight space, as we are

only considering GL3, the two are isomorphic.) Let R+ = {ei − ej | i < j} be the positive roots,

(chosen so that B is the negative Borel) and let S = {ei − ei+1} be the set of simple roots. Set

ρ = 1
2

∑

α∈R+ α = (1, 0,−1).

We have a partial order on X defined by µ 6 λ ⇔ λ − µ ∈ NS. We also have a bilinear form

〈−,−〉 : X×X → Z with 〈ei, ej 〉̌ = δij (Kronecker delta). A weight λ is dominant if 〈λ, αˇ〉 > 0 for

all α ∈ S and we let X+ be the set of dominant weights. In this case X+ = {(a, b, c) | a > b > c}.

Take λ ∈ X+ and let kλ be the one-dimensional module for B which has weight λ. We

define the induced module, ∇(λ) = IndG
B(kλ). This module has formal character given by Weyl’s

character formula and has simple socle L(λ), the irreducible G-module of highest weight λ. These

completely exhaust the simple modules in mod(G). We will denote the socle of a module M by

soc(M).

We return to considering the weight lattice X for G. We consider the affine reflections sα,ml

for α a positive root and m ∈ Z which act on X as sα,ml(λ) = λ− (〈λ, αˇ〉−ml)α. These generate

the affine Weyl group Wl. We let W be the Weyl group of G which is generated by s(1,−1,0),0

and s(0,1,−1),0. We mostly use the dot action of Wl on X which is the usual action of Wl, with

the origin shifted to −ρ. So we have w · λ = w(λ + ρ) − ρ. The reason for this is the following,

sometimes known as the linkage principle.
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Proposition 1.1 ([2, corollary 8.2]). Let V ∈ mod(G) and V be indecomposable. If L(µ) and

L(λ) are composition factors of V then µ ∈ Wl · λ.

We now define the quantum version of translation functors. These are defined in [2, section

8]. For any G-module V and any µ ∈ X , set prµ V equal to the sum of submodules of V such that

all the composition factors have highest weight in Wp · µ. Then prµ V is the largest submodule of

V with this property.

Definition 1.2. Suppose λ, µ ∈ C̄ . There is a unique ν1 ∈ X+ ∩ W (µ − λ). We define the

translation functor T µ
λ from λ to µ via

T µ
λ V = prµ(L(ν1) ⊗ prλ V )

for any G-module V . It is a functor from mod(G) to itself.

These functors have similar properties to the classical ones, as remarked in [2, section 8].

A facet for Wl is a non-empty set of the form

F = {λ ∈ X ⊗Z R | 〈λ + ρ, αˇ〉 = nαl ∀α ∈ R+
0 (F ),

(nα − 1)l < 〈λ + ρ, αˇ〉 < nαl ∀α ∈ R+
1 (F )}

for suitable nα ∈ Z and for a disjoint decomposition R+ = R+
0 (F ) ∪ R+

1 (F ).

The closure F̄ of a facet F is similar but with the inequalities replaced with equalities. The

upper closure F̂ of a facet F is defined as

F̂ = {λ ∈ X ⊗Z R | 〈λρ, αˇ〉 = nαl ∀α ∈ R+
0 (F ),

(nα − 1)l < 〈λ + ρ, αˇ〉 6 nαl ∀α ∈ R+
1 (F )}

A facet F is an alcove if R+
0 (F ) = ∅, (or equivalently F is open in X⊗ZR). If F is an alcove for

Wl then its closure F̄ ∩X is a fundamental domain for Wl operating on X . The group Wl permutes

the alcoves simply transitively. We set C = {λ ∈ X ⊗Z R | 0 < 〈λ + ρ, αˇ〉 < l ∀α ∈ R+} and

call C the fundamental alcove. We have C ∩ X 6= ∅ if and only if l > 3, the Coxeter number of G.

A facet F is a wall if there exists a unique β ∈ R+ with 〈λ + ρ, βˇ〉 = ml for some m ∈ Z and

for all λ ∈ F .

The category Mod(G) has enough injectives and so we may define Ext∗G(−,−) as usual by

using injective resolutions (see [3], section 2.4 and 2.5).

We let F be the Frobenius morphism from G → GL3(k), and denote by MF the Frobenius twist

of a module for GL3(k). We will sometimes distinguish modules for GL3(k) and G by a bar, .̄ We

set X1 to be the l-restricted weights. Thus X1 = {(λ1, λ2, λ3) | 0 6 λ1−λ2 < l and 0 6 λ2−λ3 < l}.

We let G1 be the kernel of F as a group scheme, (it has defining ideal generated by cij
l−δij where

the cij are the coordinate functions generating the Hopf algebra k[G] and δij is the Kronecker

delta).
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We define λ′ and λ′′ for λ ∈ X+, λ = lλ′′ + λ′ with λ′′ ∈ X+ and λ′ ∈ X1. We will

use Steinberg’s tensor product theorem: L(λ) ∼= L̄(λ′′)F ⊗ L(λ′), where λ ∈ X+. We define

∇l(λ) = ∇(λ1)
F ⊗ L(λ0).

We let Ẑ(λ) = IndG1B
B kλ and L̂(λ) be the simple module for G1B of highest weight λ. (Note:

this is the Ẑ ′(λ) of [13], we have dropped the primes, and so our Ẑ(λ) is not to be confused with

the Ẑ(λ) of [13]. The subgroup G1B has defining ideal generated by cl
ij with i < j. Our Ẑ(λ)

upon restriction to G1T , the subgroup with defining ideal generated by cl
ij with i 6= j, is the ∇̂1(λ)

of [10] and our “G1T” is the Janzten subgroup Ĝ1 of [10]. This reference doesn’t consider the case

with G1B. But many properties for G1B can be deduced from the properties for G1T .) We have

L̂(λ) ∼= L(λ′) ⊗ klλ′′ . We will often use a hat ˆ to distinguish modules for G1B from those for G.

Note that we have ∇l(λ) ∼= IndG
G1B(L̂(λ)). We also note that the ∇l(λ) are indecomposable with

simple socle L(λ).

We denote the composition multiplicity of a simple module L in a module M by [M : L].

Suppose a G-module M has a filtration:

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm−1 ⊆ Mm,

with quotients Qi = Mi/Mi−1. This will be depicted graphically as

•
Qm

•
Qm−1

•

•
Q2

•
Q1

•

We will also draw pictures like so

Qm

MMMMMMM
Qm−1

qqq
qqq

q

Qm−2 Qm−3

...
...

...

Q2

MMMMMMMMM Q3

qqqqqqqqq

Q1

when we have more information about the extensions appearing between the Qi in the module M .

So the above picture represents a module with an indecomposable submodule with Q1 and Q2 as

factors, etc.
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If every quotient Qi is isomorphic to ∇(µi) for some µi ∈ X+ then we say that M has a good

filtration. If every quotient Qi is isomorphic to ∇l(µi) for some µi ∈ X+ then we say that M

has a good l-filtration. We will often abbreviate this to just l-filtration. If every quotient Qi is

isomorphic to dual induced modules ∇(µi)
∗ for some µi ∈ X+ then we say that M has a Weyl

filtration.

Good filtration multiplicities and Weyl filtration multiplicities, like composition multiplicities

are well defined. It is conjectural that the same holds for good l-filtration multiplicities. They are

if a conjecture of Donkin holds — this is the subject of [1].

We say a module is a tilting module if it has both a good filtration and a Weyl filtration. For

each λ ∈ X+ there is a unique indecomposable tilting module T (λ) with [T (λ) : L(λ)] = 1.

Important convention: All weights (a, b, c) will be denoted (a − b, b − c).

Normally we would label the highest weight modules by λ ∈ X+. However we don’t want

to have to keep track of the degree of the representation. That is, we really want to pretend we

are looking at modules for SL3(k), even though such an object does not exist for the Dipper-

Donkin quantisation, as the determinant is not central. Since, however, we only need to consider

polynomial modules and this category splits up into a direct sum of homogeneous ones, we may

assume that we are always looking at modules of the same degree. Also we have the isomorphisms

∇(a+d, b+d, c+d) ∼= ∇(a, b, c)⊗D⊗d, L(a+d, b+d, c+d) ∼= L(a, b, c)⊗D⊗d and T (a+d, b+d, c+d) ∼=

T (a, b, c)⊗D⊗d. Thus we will label modules by the equivalent SL3(k) weights. Thus all the results

in this paper will be in SL3(k) notation (i.e. our weights are in N
⊕2). We may convert back by

adding an appropriate power of the determinant so that the modules all have the same degree.

2. Preliminaries

We first start off by noting the composition series of small induced modules.

Lemma 2.1. (i) Suppose λ = (r, s) with (r, s) ∈ Ĉ, or λ = (l − 1, r) or (r, l − 1) with

0 6 r 6 l − 1. Then ∇(λ) = L(λ).

(ii) Suppose λ = (l − s − 2, l − r − 2) with (r, s) ∈ C. Then ∇(λ) has two composition factors

with L(λ) as its socle and L(r, s) as its head.

(iii) Suppose λ = l(1, 0) + (r, s) with (r, s) ∈ Ĉ. Then ∇(λ) has two composition factors with

L(λ) as its socle and L(l − r − 2, r + s + 1) as its head.

(iv) Suppose λ = l(0, 1) + (r, s) with (r, s) ∈ Ĉ. Then ∇(λ) has two composition factors with

L(λ) as its socle and L(r + s + 1, l − r − 2) as its head.

This may be proved as in the classical case using Jantzen’s sum formula and translation

functors.
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3. Translating the ∇l’s

We start by considering the action of the translation functors on the ∇l’s.

Lemma 3.1. The translate of a G-module with a good l-filtration also has a good l-filtration.

Proof. This follows using the results of [1] and the definition of translation functors. �

We start by translating “onto the walls”.

Proposition 3.2. Let λ, µ ∈ C̄ such that µ belongs to the closure of the facet containing λ. Let

w ∈ Wl with w · λ ∈ X+ and denote by F the facet with w · λ ∈ F . Then

T µ
λ ∇l(w · λ) ∼=







∇l(w · µ), if w · µ ∈ F̂ ,

0, otherwise.

Proof. Now by definition

T µ
λ ∇l(w · λ) ∼= prµ(∇l(w · λ) ⊗ L(ν))

where ν is the unique element in X+ ∩ W (µ − λ), (since ∇l(w · λ) is indecomposable).

We may use the tensor identity,

T µ
λ ∇l(w · λ) ∼= T µ

λ IndG
G1B L̂(w · λ)

∼= prµ(IndG
G1B(L̂(w · λ)) ⊗ L(ν))

∼= prµ(IndG
G1B(L̂(w · λ) ⊗ L(ν)))

∼= IndG
G1B(p̂rµ(L̂(w · λ) ⊗ L(ν)))

∼= IndG
G1B(T̂ µ

λ (L̂(w · λ)))

∼=







IndG
G1B L̂(w · µ), if w · µ ∈ F̂ ,

0, otherwise

∼=







∇l(w · µ), if w · µ ∈ F̂ ,

0, otherwise.

where we use ’̂s to distinguish modules and functors for G1B from those for G. We also use the

quantum version of [13, II, remark 7.6 (1)] to identify ˆprµ(−⊗ L(ν)) with the translation functor

T̂ µ
λ on mod(G1B). �

Remark 3.3. We did not use the assumption that G = q-GL3(k) or GL3(k) thus the above propo-

sition is true for any quantum group or linear algebraic group G where we have the appropriate

theory of G1B-modules and translation functors.

It will also be useful to know what happens when we translate back the other way. This is

not as nice however and we will work it out on a case by case basis.
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Proposition 3.4. Suppose l > 3. Let λ, µ ∈ X+ with µ in the lower closure of the alcove

containing λ. Then we have the following.

(i) Suppose µ′ = (l − 1, r) with 0 6 r 6 l − 2, and λ′ = (a, b) with 0 6 a 6 l − 3, and

0 6 a + b 6 l − 3. Then T λ
µ∇(µ′′)F ⊗ L(µ′) has a good l-filtration with factors as shown.

•
∇(µ′′)F ⊗ L(l − a − 2, a + b + 1)

•
∇(µ′′ + (1, 0))F ⊗ L(λ′)

•
∇(µ′′ + (−1, 1))F ⊗ L(λ′)

•
∇(µ′′ + (0,−1))F ⊗ L(λ′)

•
∇(µ′′)F ⊗ L(l − a − b − 3, a)

•
∇(µ′′)F ⊗ L(l − a − b − 3, a)

•
∇(µ′′)F ⊗ L(l − a − 2, a + b + 1)

•

(ii) Suppose µ′ = (s, l − 1) with 0 6 s 6 l − 2, and λ′ = (a, b) with 0 6 a 6 l − 3, and

0 6 a + b 6 l − 3. Then T λ
µ∇(µ′′)F ⊗ L(µ′) has a good l-filtration with factors as shown.

•
∇(µ′′)F ⊗ L(a + b + 1, l − b − 2)

•
∇(µ′′ + (0, 1))F ⊗ L(λ′)

•
∇(µ′′ + (1,−1))F ⊗ L(λ′)

•
∇(µ′′ + (−1, 0))F ⊗ L(λ′)

•
∇(µ′′)F ⊗ L(b, l − a − b − 3)

•
∇(µ′′)F ⊗ L(a + b + 1, l − b − 2)

•

(iii) Suppose µ′ = (r, s) with 0 6 r 6 l − 2 and r + s = l − 2 and λ′ is in an up alcove. Then

T λ
µ∇(µ′′)F ⊗ L(µ′) has a good l-filtration with factors as shown.

•
∇(µ′′)F ⊗ L((l − 2)ρ + w0λ

′)
•
∇(µ′′)F ⊗ L(λ′)

•
∇(µ′′)F ⊗ L((l − 2)ρ + w0λ

′)
•

Proof. Case (i).

T λ
µ∇(µ′′)F ⊗ L(µ′) ∼= prλ ∇(µ′′)F ⊗∇(µ′) ⊗∇(ν)

We may use translation to assume that λ′ is such that ν = (1, 0).

Now ∇(l − 1, r) ⊗ ∇(1, 0) has a good filtration with factors (starting at the top) ∇(l, r),

∇(l − 2, r + 1), ∇(l − 1, r − 1).

Thus the module ∇(µ′′)F ⊗∇(µ′) ⊗∇(ν) has a filtration as shown,

•
∇(µ′′)F ⊗ L(l − 2, r + 1)

•
∇(µ′′)F ⊗ L(l, r)

•
∇(µ′′)F ⊗ L(l − r − 3, 0)

•
∇(µ′′)F ⊗ L(l − 2, r + 1)

•
∇(µ′′)F ⊗ L(l − 1, r − 1)

•
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using lemma 2.1. All the simples are l-restricted except for L(l, r).

Now

∇(µ′′)F ⊗ L(l, r) ∼= ∇(µ′′)F ⊗∇(1, 0)F ⊗ L(0, r)

using Steinberg’s tensor product theorem. Also ∇(µ′′)⊗∇(1, 0) has a good filtration with factors

(starting at the top) ∇(µ′′ + (1, 0)), ∇(µ′′ + (−1, 1)), ∇(µ′′ + (0,−1)), where the modules ∇(µ′′ +

(−1, 1)) and ∇(µ′′ + (0,−1)) are understood to be zero if the weight isn’t dominant.

Now the weight (l− 1, r− 1) is either not dominant or lies on a wall. So after applying prλ to

our filtration of ∇(µ′′)F ⊗∇(µ′) ⊗∇(ν) we get a module with good l-filtration as shown.

•
∇(µ′′)F ⊗ L(l − 2, r + 1)

•
∇(µ′′ + (1, 0))F ⊗ L(0, r)

•
∇(µ′′ + (−1, 1))F ⊗ L(0, r)

•
∇(µ′′ + (0,−1))F ⊗ L(0, r)

•
∇(µ′′)F ⊗ L(l − r − 3, 0)

•
∇(µ′′)F ⊗ L(l − 2, r + 1)

•

We can use translation again to get the result as stated.

Case (ii). This is the dual case to case (i).

Case (iii).

T λ
µ∇(µ′′)F ⊗ L(µ′) ∼= prλ ∇(µ′′)F ⊗∇(µ′) ⊗∇(ν)

We may use translation to assume that λ′ is such that ν = (1, 0).

Now ∇(r, s) ⊗ ∇(1, 0) has a good filtration with factors (starting at the top) ∇(r + 1, s),

∇(r − 1, s + 1), ∇(r, s − 1).

Thus the module ∇(µ′′)F ⊗∇(µ′) ⊗∇(ν) has good l-filtration as shown,

•
∇(µ′′)F ⊗ L(r, s − 1)

•
∇(µ′′)F ⊗ L(r + 1, s)

•
∇(µ′′)F ⊗ L(r − 1, s + 1)

•
∇(µ′′)F ⊗ L(r, s − 1)

•

using lemma 2.1. The weight (r − 1, s + 1) is either not dominant or lies on a wall, the other

simples are all l-restricted. So after applying prλ we get a module with good l-filtration as above

but without the ∇(µ′′)F ⊗ L(r − 1, s + 1).

We can use translation again to get the result as stated. �

A similar proof shows for l = 2 that

Proposition 3.5. Assume that l = 2. Let λ, µ ∈ X+ with µ in the lower closure of the alcove for

which λ is in the upper closure. Then we have the following.
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(i) Suppose µ′ = (1, 0), and λ′ = (0, 0) Then T λ′

µ ∇(µ′′)F ⊗ L(µ′) has a good l-filtration with

factors as shown.

•
∇(µ′′)F ⊗ L(0, 1)

•
∇(µ′′ + (1, 0))F

•
∇(µ′′ + (−1, 1))F

•
∇(µ′′ + (0,−1))F

•
∇(µ′′)F ⊗ L(0, 1)

•

(ii) Suppose µ′ = (0, 1), and λ′ = (0, 0). Then T λ′

µ ∇(µ′′)F ⊗ L(µ′) has a good l-filtration with

factors as shown.

•
∇(µ′′)F ⊗ L(1, 0)

•
∇(µ′′ + (0, 1))F

•
∇(µ′′ + (1,−1))F

•
∇(µ′′ + (−1, 0))F

•
∇(µ′′)F ⊗ L(1, 0)

•

(iii) Suppose µ′ = (0, 0) and λ′ = (1, 0) or (0, 1). Then

T λ′

µ ∇(µ′′)F ⊗ L(µ′) ∼= ∇(µ′′)F ⊗ L(λ′).

We will also need.

Proposition 3.6. Assume that l = 2. Let λ, µ ∈ X+ with λ and µ in the lower closure of the

same alcove but on different walls. Then µ′ = (1, 0), and λ′ = (0, 1), or µ′ = (0, 1), and λ′ = (1, 0).

We have

T λ′

µ ∇(µ′′)F ⊗ L(µ′) ∼= ∇(µ′′)F.

Proof. Now L(µ′) ⊗ ∇(1, 0) has a good filtration with factors ∇(1, 1) and ∇(0). This splits as

∇(1, 1) is the Steinberg module. Thus

prλ ∇(µ′′)F ⊗∇(µ′) ⊗∇(1, 0) ∼=∇(µ′′)F �

4. Characters

Each ∇(λ) has an l-filtration (we may use the quantum version of the argument of Jantzen

[12, 3.13]) but we would like to know what the composition factors of Ẑ(λ) are for λ ∈ X .

To do this we will work backwards - and use the formula

ch IndG
G1B M =

∑

µ∈X

[M : L̂(µ)]χl(µ) (1)

where χl(µ) = ch∇l(µ) = χ(µ′′)Fφ(µ′) where we put φ(µ′) = ch L(µ′). This is the quantum

version of [12, section 3].
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Theorem 4.1. (i) Suppose λ = l(a, b) + (l − 1, l − 1) with (a, b) ∈ X+. Then χ(λ) =

χ(a, b)Fφ(l − 1, l − 1).

(ii) Suppose λ = l(a, b) + (l− 1, r) with (a, b) ∈ X+ and (l − 1, r) ∈ X1. If we set s = l− r − 2

then

χ(λ) = χ(a, b − 1)Fφ(s, l − 1) + χ(a + 1, b− 1)Fφ(r, s)

+ χ(a − 1, b)Fφ(r, s) + χ(a, b)Fφ(l − 1, r).

These weights are depicted in Figure 1(a).

(a) (c)(b)

Figure 1. Diagram showing weights for λ on (a) a right hand wall, (b) a left

hand wall and (c) a horizontal wall

(iii) Suppose λ = l(a, b) + (s, l− 1) with (a, b) ∈ X+ and (s, l − 1) ∈ X1. If we set r = l − s− 2

then

χ(λ) = χ(a − 1, b)Fφ(l − 1, r) + χ(a − 1, b + 1)Fφ(r, s)

+ χ(a, b − 1)Fφ(r, s) + χ(a, b)Fφ(s, l − 1).

These weights are depicted in Figure 1(b).

(iv) Suppose λ = l(a, b) + (r, s) with (a, b) ∈ X+, (r, s) ∈ X1 and r + s = l − 2. Then

χ(λ) = χ(a − 1, b − 1)Fφ(r, s) + χ(a, b − 1)Fφ(l − 1, r)

+ χ(a − 1, b)Fφ(s, l − 1)χ(a, b)Fφ(r, s).

These weights are depicted in Figure 1(c).

(v) Suppose λ = l(a, b) + (r, s) with (a, b) ∈ X+ and (r, s) ∈ C. We let

µ1 = λ, µ2 = (la+r+s+1, lb−s−2),

µ3 = (la+l−r−s−3, lb−2l+r), µ4 = (la−r−2, lb+r+s+1),

µ5 = (la−2l+s, lb+l−r−s−3), µ6 = (la+s, lb−r−s−3),

µ7 = (la−l+r, lb−l+s), µ8 = (la−r−s−3, lb+r),

µ9 = (la−s−2, lb−r−2).

These weights are depicted in Figure 2(a), where the number corresponds to the subscript

of µ.

Then χ(λ) =
∑9

i=0 χl(µi).
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(a) (b)

3

8
9

6

24
1

8

4

1 6

3

5 7

92

5 7

Figure 2. Diagram showing weights for λ inside (a) a lower alcove and (b) an

upper alcove

(vi) Suppose λ = l(a, b) + (l − s − 2, l − r − 2) with (a, b) ∈ X+, and (r, s) ∈ C. We let

µ1 = (la−l+s, lb+2l−r−s−3), µ2 = (la−r−2, lb+r+s+1),

µ3 = (la−l+r, lb−l+s), µ4 = λ,

µ5 = (la−r−s−3, lb+r), µ6 = (la+2l−r−s−3, lb−l+r),

µ7 = (la+s, lb−r−s−3), µ8 = (la+r, lb+s)

µ9 = (la+r+s+1, lb−s−2).

These weights are depicted in Figure 2(b).

Then χ(λ) =
∑9

i=0 χl(µi).

Proof. This is easily verified using induction and translation functors and the previous propositions.

If λ ∈ C then χl(µi) = 0 for 2 6 i 6 9. For these µi, χ(µ′′
i ) = 0, as µ′′

i is fixed by one of the

elements of W under the dot action. Thus

9
∑

i=0

χl(µi) = χl(µ1) = χ(λ)

using 2.1. We may use a similar argument for λ ∈ C̄ ∩ X+.

Now let λ ∈ X+. If λ lies on a vertex then we have the well known result that ∇(λ) ∼=

∇(λ′′)F ⊗ L(l − 1, l − 1) and thus have the required character formulae.

Suppose λ lies on a wall and l > 3 - then we may translate an induced module corresponding

to a weight inside the alcove lying below it (µ say) onto the wall. Since T λ
µ∇(µ) = ∇(λ) we have

χ(λ) =
∑

i

ch(T λ
µ (∇l(µi)))

where µi are as in Figure 2. We may now use proposition 3.4 to deduce the desired character,

noting that χl(λi) will be zero if one of the parts of λ′′
i is −1.

If λ lies inside an alcove (or lies on a wall and l = 2) then we may take a weight µ lying

on a wall in the lower closure of (the closure of) the alcove containing λ. Then ch(T λ
µ∇(µ)) =

ch(∇(λ)) + ch(∇(w · λ)), where w is the unique reflection of Wl that fixes µ. So

χ(λ) =
∑

i

ch(T λ
µ (∇l(µi))) − χ(w · λ)
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where the µi will be (at most) four weights in the good l-filtration of ∇(µ). The χ(w · λ) is known

by induction and the characters of the translated ∇l(µi) may be deduced from proposition 3.4 if

l > 3 or propositions 3.5 and 3.6 if l = 2. Note that for generic µ and l > 3 the translate will have

6 + 6 + 2× 3 = 18 factors as one would expect from adding the factors of ∇(λ) and ∇(w · λ). For

generic µ and l = 2 then the translate has 5 + 1 + 1 + 1 = 8 factors.

Also note that if λ is in a down alcove and is right on the edge of the dominant region (that

is λ′′ = (a, 0) or (0, a) for some a ∈ N), then χl(µ3) = −χl(µ8) so these cancel in the sum. �

Corollary 4.2. We have the following characters for Ẑ(lλ′′ + λ′) with λ′′ ∈ X and λ′ ∈ X1.

(i) Suppose λ′ = (l − 1, l − 1), then

ch Ẑ(lλ′′ + (l − 1, l − 1)) = ch L̂(lλ′′ + (l − 1, l − 1)).

(ii) Suppose λ′ = (l − 1, r) with 0 6 r 6 l − 2, then

ch Ẑ(lλ′′ + (l − 1, r)) = ch L̂((l − 1, r) + lλ′′) + ch L̂((r − l, s) + lλ′′)

+ ch L̂((r + l, s − l) + lλ′′) + ch L̂((s,−1) + lλ′′).

(iii) Suppose λ′ = (s, l − 1) with 0 6 s 6 l − 2, then

ch Ẑ(lλ′′ + (s, l − 1)) = ch L̂((s, l − 1) + lλ′′) + ch L̂((r, s − l) + lλ′′)

+ ch L̂((r − l, s + l) + lλ′′) + ch L̂((−1, r) + lλ′′).

(iv) Suppose λ′ = (r, s) with 0 6 r 6 l − 2 and r + s = l − 2, then

ch Ẑ(lλ′′ + (r, s)) = ch L̂((r, s) + lλ′′) + ch L̂((s − l, l − 1) + lλ′′)

+ ch L̂((l − 1, r − l) + lλ′′) + ch L̂((r − l, s − l) + lλ′′).

(v) Suppose λ′ = (r, s) ∈ C, then

ch Ẑ(lλ′′ + (r, s)) =
∑

i

ch L̂(µi)

where the µi are as in Figure 2(a).

(vi) Suppose λ′ = (l − s − 2, l − r − 2) with (r, s) ∈ C, then

ch Ẑ(lλ′′ + (l − s − 2, l − r − 2)) =
∑

i

ch L̂(µi)

where the µi are as in Figure 2(b).

Proof. We have IndG
G1B Ẑ(λ) ∼= ∇(λ) so this follows using the character formula (1), the previous

theorem and the identity

Ẑ(λ′ + lλ′′) ∼= Ẑ(λ′) ⊗ klλ′′

which is the quantum version of [13, II 9.2 (5)]. The quantum result follows as in the classical

case. �
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5. Extensions for simple modules

We will need to be able to work out the G1B extensions between simple modules for G1B. To

do this we will need to generalise the extension results of Yehia [16]. We will essentially reproduce

his proofs but in the quantum case, as the reference is not widely accessible.

Lemma 5.1. Let λ ∈ X1 then L(λ) ⊗ St has a good filtration.

Proof. If l > 4 = 2h− 2 then this is the quantum version of [1, 2.5 corollary].

If λ is not in an up alcove then L(λ) ∼= ∇(λ) and we are done by [14] and [2, corollary 5.14].

So the only case left is if l = 3 and λ = (1, 1). But now ch(L(1, 1)) = ch(∇(1, 1))−ch(∇(0, 0)) =

e(1, 1) + e(2,−1) + e(1,−2) + e(−1,−1) + e(−2, 1) + e(−1, 2) + e(0, 0). So all the weights of

L(1, 1)|B ⊗ k(2,2) are dominant and so IndG
B L(1, 1)⊗ k(2,2) = L(1, 1)⊗St has a good filtration. �

Proposition 5.2. Let λ ∈ X1. There is an indecomposable G-module Q(λ) which restricts to the

G1 injective hull of L(λ) and this module is a tilting module for G. Moreover Q(λ) is the tilting

module T (2(l−1)ρ+w0λ) and this module is a direct summand of the module L((l−1)ρ+w0λ)⊗St.

Proof. If l > 4 then this is the result [1, proposition 5.7].

Let ν = (l− 1)ρ + w0λ ∈ X1. So L(ν)∗ ∼= L((l− 1)ρ− λ). If l 6 3 and λ lies on a left or right

hand wall then the tilting module T (2(l − 1)ρ + w0λ) is T λ
(1,1)St ∼= prλ L(ν) ⊗ St. This then has

simple G-socle L(λ) and is injective as a G1-module. Let µ ∈ X1. We have

HomG1
(L(µ), L(ν) ⊗ St) ∼= HomG1

(L(µ) ⊗ L((l − 1)ρ − λ), St)

and the latter group has dimension [L(µ)⊗L((l−1)ρ−λ) : St]G1
, the G1 composition multiplicity

of St in L(µ) ⊗ L((l − 1)ρ − λ), as St is the G1 injective hull of St. We may check that

[L(µ) ⊗ L((l − 1)ρ − λ) : St]G1
∼=







1, if µ = λ,

0, otherwise.

Thus L(ν) ⊗ St ∼= T (2(l − 1)ρ + w0λ and is the G1 injective hull of L(λ).

If λ = (0, 0) and l = 2 then ν = (1, 1). We may check that

[L(µ) ⊗ St : St]G1
∼=



















1, if µ = (0, 0),

3, if µ = (1, 1),

0, otherwise.

Thus the module St ⊗ St is the direct sum of three copies of the Steinberg module and one copy

of the G1 injective hull of L(0, 0) which is pr(0,0)(St ⊗ St) ∼= T (2, 2).

If λ = (1, 1) and l = 3 then the translate T λ
(2,2)St = prλ L(1, 1) ⊗ St. We may check that

[L(µ) ⊗ L(1, 1) : St]G1
∼=







1, if µ = (1, 1) or µ = (2, 2),

0, otherwise.
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Thus L(1, 1) ⊗ St is the direct sum of the Steinberg module and the G1-injective hull of L(1, 1)

which is pr(1,1)(L(1, 1)⊗ St) ∼= T (3, 3).

We may now get the G1 injective hull of L(0, 1) or L(1, 0) by translating the T (3, 3) onto the

wall. This translate is T (3, 4) or T (4, 3) respectively. A similar argument to above shows that

this module is injective as a G1 module and has G1 socle L(0, 2) or L(2, 0) respectively. Also the

module L(l− 2, l− 1)⊗St is a tilting module, a character calculation shows that T (3, 4) is a direct

summand of this module.

If λ = (0, 0) and l = 3 then the translate T
(0,0)
(0,1) T (4, 3) = pr(0,0) L(0, 1)⊗ T (4, 3) is injective as

a G1-mod as it is a direct summand of a tensor product of an injective G1-module. As a G-module

L(0, 1) ⊗ T (4, 3) is isomorphic to T (5, 5)⊕ T (5, 2)⊕ T (5, 2). We have

HomG1
(L(µ), L(0, 1) ⊗ T (4, 3)) ∼= HomG1

(L(µ) ⊗ L(1, 0), T (4, 3))

the latter group has dimension equal to the G1 composition multiplicity of L(1, 0) in L(µ)⊗L(1, 0)

as T (4, 3) is the G1 injective hull of L(1, 0). We may check that for µ ∈ X1

[L(µ) ⊗ L(1, 0) : L(1, 0)]G1
∼=



















1, if µ = (0, 0)

6, if µ = (2, 2)

0, otherwise.

Since T (5, 2) ∼= ∇(1, 0)F ⊗ St we have HomG1
(L(µ), T (5, 2)) ∼= ∇(1, 0)F if µ = (2, 2) and zero

otherwise. Thus HomG1
(L(µ), T (4, 3)) is k if µ = (0, 0) and zero otherwise and hence T (4, 3) is

the G1-injective hull of L(0, 0).

For l = 3 the module St⊗St is a tilting module and it has summands T (4, 4), T (3, 3), T (5, 2),

T (2, 5) and three copies of the Steinberg module, by characters. �

Corollary 5.3. The G-head of ∇(2(l − 1)ρ + w0λ) is simple and is isomorphic to L(λ).

Proof. We have that hd(∇(2(l − 1)ρ + w0λ) ⊆ hd T (2(l − 1)ρ + w0λ) ∼= L(λ) by the previous

proposition. �

The following four results follow as in the classical case [15, 4.8-4.11], see also [12].

Corollary 5.4. If λ ∈ X+ and µ ∈ X1 then ∇(λ)F ⊗ T (2(l − 1)ρ + w0µ) has a good filtration.

Corollary 5.5. If λ ∈ X+ and µ ∈ X1 then ∇(lλ + 2(l − 1)ρ + w0µ) is a quotient of ∇(λ)F ⊗

T (2(l − 1)ρ + w0µ) and ∇(lλ + µ) as a submodule.

Corollary 5.6. For all λ ∈ X+ and µ ∈ X1 we have

hdG1
∇(lλ + 2(l − 1)ρ + w0µ) ∼= ∇(λ)F ⊗ L(µ)

and

socG1
∇(lλ + µ) ∼= ∇(λ)F ⊗ L(µ).
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Corollary 5.7. For all λ ∈ X+ the module ∇(λ) has simple head.

To determine Ext1G1
(L(µ), L(λ)) we need to determine Ext1G(L(µ), L(λ)) for small µ and λ.

“Small” in this case means that λ 6 2(l − 1)ρ and µ ∈ X1.

The idea is to use the quantum version of the short exact sequence [8]

0 → Ext1G/G1
(k, HomG1

(L(µ), L(λ))) → Ext1G(L(µ), L(λ))

→ HomG/G1
(k, Ext1G1

(L(µ), L(λ))) → 0 (2)

Note that

HomG/G1
(k, Ext1G1

(L(µ), L(λ))) ∼= HomG/G1
(L(µ′′)F, Ext1G1

(L(µ′), L(λ))).

Also Ext1G1
(L(µ′), L(λ)) ∼= HomG1

(L(µ′), Q(λ)/L(λ)) so determining Ext1G(L(µ), L(λ)) for enough

µ determines the G1 socle of Q(λ)/L(λ) which in turn determines Ext1G1
(L(µ′), L(λ)). We thus

only need to calculate the Ext groups for µ a composition factor of Q(λ). I.e., it is enough to

determine the Ext’s for µ 6 2(l − 1)ρ and µ in the same block as λ.

Lemma 5.8. Suppose 0 6 r 6 l − 2 and r + s = l − 2 then

Ext1G(L(r, s), L(2l − 1, r)) ∼= Ext1G(L(r, s), L(s, 2l − 1)) ∼= k.

If l 6= 3 then

Ext1G(L(r, s), L(l + r, l + s)) ∼= 0.

If l = 3 then

Ext1G(L(r, s), L(l + r, l + s)) ∼= k.

Proof. Since if µ 6> λ we have Ext1G(L(µ), L(λ)) ∼= HomG(L(µ),∇(λ)/L(λ)), this lemma will follow

if we know what the socle of ∇(λ)/L(λ) is.

Now if λ = (2l − 1, r) or (s, 2l − 1) then ∇(λ) only has two composition factors L(λ) and

L(r, s). Thus ∇(λ)/L(λ) ∼= L(r, s) and the result follows.

If λ = (l + r, l + s) and l 6= 3 then ∇(λ) has four composition factors: L(λ), L(l − 1, r),

L(l− 1, s) and L(r, s). The previous corollary says that L(r, s) is the head of ∇(λ). We also know

that Ext1G(L(s, l − 1), L(l − 1, r)) ∼= Ext1G(L(l − 1, r), L(s, l − 1)) ∼= 0 thus the socle of ∇(λ)/L(λ)

is L(s, l − 1) ⊕ L(l − 1, r). Thus Ext1G(L(r, s), L(l + r, l + s) ∼= 0.

If l = 3 then [∇(l + r, l + s) : L(r, s)] = 2. The module ∇(l + r, l + s) has simple head

L(r, s). Since ∇(l + r, l + s) has five composition factors in total and is indecomposable the

multiplicity of L(r, s) in socle of ∇(l + r, l + s)/L(l + r, l + s) is at most one. Thus the dimension

of Ext1G(L(r, s), L(l + r, l + s)) is at most one. But there is at least one non-split extension - it is

the indecomposable module ∇(1, 1)F ⊗ L(r, s). �

We similarly get:
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Lemma 5.9. Suppose 0 6 r 6 l − 2 and r + s = l − 2 then

Ext1G(L(l − 1, r), L(r, l + s)) ∼= Ext1G(L(s, l − 1), L(l + r, s) ∼= k.

and

Ext1G(L(l − 1, r), L(l + s, l − 1)) ∼= Ext1G(L(s, l − 1), L(l − 1, l + r)) ∼= 0.

Lemma 5.10. Suppose 0 6 r 6 l − 3 and 0 6 r + s 6 l − 3 then

Ext1G(L(l − s − 2, l − r − 2), L(ν)) ∼= k

if ν ∈ {(r, s), (l + s, l − r − s − 3), (l − r − s − 3, l + r)} and

Ext1G(L(l − s − 2, l − r − 2), L(ν)) ∼= 0

if ν ∈ {(l − s − 2, l − r − 2), (2l − s − 2, l − r − 2), (l − s − 2, 2l − r − 2), (l + r, l + s)}.

Proof. The result for the first Ext group follows from the fact that there are only two composition

factors of ∇(ν) and ∇(l − s − 2, l − r − 2).

For the second Ext group we use that fact that ∇(ν) (if ν 6= (l − s − 2, l − r − 2)) has simple

head L(l − s − 2, l − r − 2) and this is the only occurrence of this simple module in ∇(ν). We

may deduce that ∇(ν) has simple head L(l − s − 2, l − r − 2) by either using corollary 5.3 or by

translating an induced module off the wall. �

Lemma 5.11. Suppose 0 6 r 6 l − 3 and 0 6 r + s 6 l − 3 then

Ext1G(L(r, s), L(ν)) ∼= k

if ν ∈ {(l − s − 2, l − r − 2), (l − r − 2, l + r + s + 1), (l + r + s + 1, l − s − 2)} and

Ext1G(L(r, s), L(ν)) ∼= 0

if ν ∈ {(r, s), (l+s, l−r−s−3), (l−r−s−3, l+r), (s, 3l−r−s−3), (3l−r−s−3, r), (2l−s−2, 2l−r−2)}.

If l 6= 3 then

Ext1G(L(r, s), L(l + r, l + s)) ∼= 0.

If l = 3 then

Ext1G(L(r, s), L(l + r, l + s)) ∼= k.

Proof. We first observe that ∇(r + s + 1, 2l− s− 2) is a quotient of ∇(l + r, l + s) (and dually so is

∇(2l−r−2, r+s+1)). These modules all have the same simple head — namely L(l−s−2, l−r−2).

Also there is a unique homomorphism from ∇(l + r, l + s) to ∇(r + s + 1, 2l − s − 2). (Quantum

version [2, section 7] of [13, II, 7.19(d)].) Since this homomorphism must be non-zero on the head

of ∇(l + r, l + s) and this head is the same as the head of ∇(r + s + 1, 2l − s − 2) and this simple

module only occurs once in ∇(r + s + 1, 2l − s − 2) this map must be onto.
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Thus by considering the composition factors of the kernel of this homomorphism, the socle of

the quotient ∇(l+r, l+s)/L(l+r, l+s) is contained in L(2l−r−2, r+s+1)⊕L(r+s+1, 2l−r−2)

if l 6= 3 and L(4, 1)⊕ L(1, 4) ⊕ L(0, 0) if l = 3.

Thus Ext1G(L(r, s), L(l + r, l + s) is zero if l 6= 3. If l = 3 then Ext1G(L(0, 0), L(3, 3)) is at most

one-dimensional. But there is a non-split extension — namely the module ∇(1, 1)F.

If ν ∈ {(r, s), (l + s, l− r− s− 3), (l− r − s− 3, l + r)} then L(r, s) is not a composition factor

of ∇(ν) so Ext1G(L(r, s), L(ν)) ∼= 0.

We may now deduce that the socle of the quotient ∇(r+s+1, 2l−s−2)/L(r+s+1, 2l−s−2)

is L(r, s)⊕L(l + s, l− r− s− 3)⊕L(l− r − s− 3, l + r) as these cannot extend each other and the

only other composition factor of ∇(r + s + 1, 2l − s − 2) is its head L(l − s − 2, l − r − 2). Thus

Ext1G(L(r, s), L(r+s+1, 2l−s−2)) ∼= k. Dually we have Ext1G(L(r, s), L(2l−r−2, r+s+1)) ∼= k.

If ν = (l − s − 2, l − r − 2) then this extension is the module ∇(l − s − 2, l − r − 2).

If ν ∈ (s, 3l − r − s − 3), (3l − r − s − 3, r), (2l − s − 2, 2l − r − 2)} and l 6= 3 then L(r, s) is

the head of ∇(ν). Since ∇(ν) has both simple head and socle and has at least three composition

factors and L(r, s) occurs with multiplicity one, it cannot be in the socle of the quotient ∇(ν)/L(ν)

thus Ext1G(L(r, s), L(ν)) is zero.

If l = 3 the only case that the above paragraph does not work is for ν = (4, 4) when L(0, 0)

occurs with multiplicity two. If Ext1G(L(0, 0), L̄(1, 1)F ⊗ L(1, 1)) is non-zero then using the five

term exact sequence L̄(1, 1)F must be a composition factor of Ext1G1
(L(0, 0), L(1, 1)). The following

lemma will show that this is not the case and so Ext1G(L(0, 0), L(4, 4)) is zero. �

Lemma 5.12. If l = 3 then

Ext1G1
(L(0, 0), L(1, 1)) ∼= ∇(1, 0)F ⊕∇(0, 1)F ⊕ k.

Proof. The G1 injective hull of L(1, 1) is T (3, 3). We apply HomG1
(k,−) to the short exact sequence

0 → L(1, 1) → T (3, 3) → Q → 0

to get

0 → HomG1
(k, L(1, 1)) → HomG1

(k, T (3, 3)) → HomG1
(k, Q) → Ext1G1

(k, L(1, 1)) → 0

The first two Hom groups are zero so the last two groups are isomorphic. Thus QG1 ∼= Ext1G1
(k,

L(1, 1)).

Now the G1 fixed points of Q are contained in the G1 fixed points of the induced modules

appearing in a good filtration of T (3, 3)/∇(1, 1) together with the G1 fixed points of ∇(1, 1)/L(1, 1).

We thus have

QG1 ⊆ k ⊕∇(1, 0)F ⊕∇(0, 1)F ⊕ L̄(1, 1)F

But L(1, 1)F can’t be in the G1 socle of Q as then it would also be in the G1 head of the Q∗. The

G1 head of Q∗ is contained in the G1 heads of the induced modules appearing in a good filtration
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of T (3, 3) as T (3, 3) is self dual. Thus

hdG1
(Q∗) ⊆ L(1, 1)⊕5 ⊕ k⊕2 ⊕∇(1, 0)F ⊕∇(0, 1)F.

Hence

QG1 ⊆ k ⊕∇(1, 0)F ⊕∇(0, 1)F.

We now observe from the good filtration of T (3, 3) that ∇(1, 0)F ⊕ ∇(0, 1)F must occur directly

above k in T (3, 3)/L(1, 1). The previous lemma tells us that k cannot extend either ∇(1, 0)F nor

∇(0, 1)F so this is indeed the G1 fixed points of Q. �

We may now prove the following.

Theorem 5.13. The Ext1G1

(

L(α), L(β)
)

for α, β ∈ X1 are given by the following tables. (i) For

(r, s) ∈ X1 with r + s = l − 2, we have

α ↓, β → (r, s) (l − 1, r) (s, l − 1)

(r, s) 0 ∇(0, 1)F ∇(1, 0)F

(l − 1, r) ∇(1, 0)F 0 0

(s, l − 1) ∇(0, 1)F 0 0

(ii) For (r, s) ∈ C and l > 4, the only non-zero entries we have

α ↓, β → (l − s − 2, l − r − 2) (r + s + 1, l − s − 2) (l − r − 2, r + s + 1)

(r, s) k ∇(0, 1)F ∇(1, 0)F

α ↓, β → (r, s) (s, l − r − s − 3) (l − r − s − 3, r)

(l − s − 2, l − r − 2) k ∇(0, 1)F ∇(1, 0)F

If l = 3 then all the entries in the two tables above are replaced by k ⊕∇(0, 1)F ⊕∇(1, 0)F.

Proof. We use the sequence (2) and the previous results to show that the Ext1G1
are as described.

We have to argue as in the previous lemma to do the case l = 3. �

To now determine Ext1G(L(µ), L(λ)) for µ and λ ∈ X+ we need to know the G1 socle of the

tensor products L(1, 0)⊗L(λ) and L(0, 1)⊗L(λ) for λ ∈ X1. We essentially determined the tensor

product in the proofs of propositions 3.2, 3.4, 3.5 and 3.6. We just need to determine the socles

of these tensor products. These are not hard to compute using translation functors and follow

exactly as in the classical case so we will just state the result.
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Proposition 5.14. The G1 socle of the tensor product L(1, 0) ⊗ L(λ) for λ ∈ X1 is the same as

its G socle and is given by the following table.

l λ socG L(1, 0)⊗ L(λ)

all l (0, 0) L(1, 0)

l > 4 (0, s), 1 6 s 6 l − 3 L(1, s) ⊕ L(0, s − 1)

l > 3 (0, l − 2) L(0, l − 3)

l > 4 (r, s), 1 6 r 6 l − 3 and r + s = l − 2 L(r, s − 1) ⊕ L(r − 1, s + 1)

l > 3 (r, 0), 1 6 r 6 l − 2 L(r + 1, 0) ⊕ L(r − 1, 1)

l > 4 (r, s) deep inside C L(r + 1, s) ⊕ L(r − 1, s + 1) ⊕ L(r, s − 1)

all l (0, l − 1) L(0, 1, l − 1) ⊕ L(0, l − 2)

l > 3 (r, l − 1), 1 6 r 6 l − 2 L(r + 1, l − 1) ⊕ L(r, l − 2)

all l (l − 1, l − 1) L(l − 1, l − 2)

l > 3 (1, l − 2) L(2, l − 2) ⊕ L(0, l − 1)

l > 4 (r, l − 2), 2 6 r 6 l − 2 L(r + 1, l − 2) ⊕ L(r, l − 3) ⊕ L(r − 1, l − 3)

l > 4 (r, s), 2 6 r 6 l − 3 and r + s = l − 1 L(r + 1, s) ⊕ L(r − 1, s + 1)

l > 4 (l − 2, 1) L(l − 1, 1) ⊕ L(l − 3, 2)

all l (l − 1, 0) L(l − 2, 1)

l > 3 (l − 1, s), 1 6 s 6 l − 2 L(l − 2, s + 1) ⊕ L(l − 1, s − 1)

l > 4 (l − 2, s), 2 6 s 6 l − 2 L(l − 1, s) ⊕ L(l − 2, s− 1) ⊕ L(l − 3, s + 1)

l > 4 (r, s) deep inside upper alcove L(r + 1, s) ⊕ L(r − 1, s + 1) ⊕ L(r, s − 1)

We may use the dual of the above table to determine L(0, 1) ⊗ L(λ) for λ ∈ X1.

Corollary 5.15. Let λ ∈ X+. Then

socG L(1, 0) ⊗ L(λ) = (socG L(1, 0) ⊗ L(λ′)) ⊗ L(λ′′)F

and

socG L(0, 1) ⊗ L(λ) = (socG L(0, 1) ⊗ L(λ′)) ⊗ L(λ′′)F

Proof. We have

socG L(1, 0)⊗ L(λ) = socG(socG1
(L(1, 0)⊗ L(λ′)) ⊗ L(λ′′)F),

but the G1 socle of L(1, 0)⊗ L(λ′) is the same as its G socle. Steinberg’s tensor product theorem

then tells us that that socG1
(L(1, 0) ⊗ L(λ′)) ⊗ L(λ′′)F is semi-simple as a G-module. �

We may now deduce the following theorem.

Theorem 5.16. Let µ, λ ∈ X+. If µ′ = λ′ then Ext1G(L(µ), L(λ)) ∼= Ext1G(L(µ′′), L(λ′′).

If µ′ 6= λ′ then Ext1G(L(µ), L(λ)) ∼= HomG(L(µ′′), Ext1G1
(L(µ′), L(λ′))(−1) ⊗ L(λ′′).
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We have dim Ext1G(L(µ), L(λ) 6 1.

Proof. This follows using sequence (2) and the previous results. �

We may determine exactly the value of the right hand side of both equations using induction

and the previous lemmas.

6. G1B extensions between the simples

We now use the G1 results to classify the G1B and the G1T extensions between the simple

G1B modules. We use the following.

Proposition 6.1. Let λ, µ ∈ X.

(i) If µ′′ − λ′′ ∈ X+, then

Ext1G1B(L̂(λ), L̂(µ)) ∼= Ext1G(L(λ′), L(µ′) ⊗∇(µ′′ − λ′′)F)

(ii) Suppose µ′′ −λ′′ 6∈ X+. If λ′ = µ′ and there exists α ∈ S and i ∈ N with µ′′ −λ′′ = −liα, then

Ext1G1B(L̂(λ), L̂(µ)) ∼= k. Otherwise Ext1G1B(L̂(λ), L̂(µ)) = 0.

Proof. The proof of this proposition follows exactly as in the classical case [13, proposition 9.21] �

Lemma 6.2. Let η ∈ X1, µ ∈ X+. Then Ext1G(L(η), L(η) ⊗∇(µ)F) ∼= 0.

Proof. We apply the Lyndon-Hochschild-Serre five term exact sequence to this group. Since

Ext1G1
(L(η), L(η)) ∼= 0 we have Ext1G(L(η), L(η)⊗∇(µ)F) ∼= Ext1G/G1

(k,∇(µ)F) ∼= Ext1G(k,∇(µ)) ∼=

0. �

Lemma 6.3. Let η, ζ ∈ X1, with η 6= ζ and µ ∈ X+. Then Ext1G(L(η), L(ζ) ⊗ ∇(µ)F) ∼=

HomG/G1
(k, Ext1G1

(L(η), L(ζ)) ⊗∇(µ)F).

Proof. We apply the Lyndon-Hochschild-Serre five term exact sequence to this group. Since

Hom1
G1

(L(η), L(ζ)) ∼= 0 we have Ext1G(L(η), L(η) ⊗ ∇(µ)F) ∼= HomG/G1
(k, Ext1G1

(L(η), L(ζ)) ⊗

∇(µ)F). �

We now apply these results to our case with G = q-GL3(k) or G = GL3(k). We wish to

determine all the extensions between the simples that appear in a Ẑ(µ). Note that the tables below

will not be symmetric, we do not have Exti
G1B(L̂(µ), L̂(λ)) ∼= Exti

G1B(L̂(λ), L̂(µ)) in general.

Theorem 6.4. (i) Let (r, s) ∈ X1 with r+s = l−2. If µ = l(a, b)+(l−1, r) then Ext1G1B(L̂(λ), L̂(η))

with L̂(λ) and L̂(η) composition factors of Ẑ(µ) is given by the following table.

λ \ η µ l(a − 1, b) + (r, s) l(a + 1, b− 1) + (r, s) l(a, b− 1) + (s, l − 1)

µ 0 0 0 0

l(a − 1, b) + (r, s) k 0 0 0

l(a + 1, b− 1) + (r, s) 0 k 0 0

l(a, b − 1) + (s, l − 1) 0 0 k 0
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(ii) Let (r, s) ∈ X1 with r + s = l− 2. If µ = l(a, b) + (s, l− 1) then Ext1G1B(L̂(λ), L̂(η)) with L̂(λ)

and L̂(η) composition factors of Ẑ(µ) is given by the following table.

λ \ η µ l(a, b − 1) + (r, s) l(a − 1, b + 1) + (r, s) l(a − 1, b) + (l − 1, r)

µ 0 0 0 0

l(a − 1, b) + (r, s) k 0 0 0

l(a + 1, b− 1) + (r, s) 0 k 0 0

l(a, b − 1) + (s, l − 1) 0 0 k 0

(iii) Let (r, s) ∈ X1 with r + s = l − 2. If µ = l(a, b) + (r, s) then Ext1G1B(L̂(λ), L̂(η)) with L̂(λ)

and L̂(η) composition factors of Ẑ(µ) is given by the following table.

λ \ η µ l(a, b − 1) + (l − 1, r) l(a − 1, b) + (s, l − 1) l(a − 1, b − 1) + (r, s)

µ 0 0 0 0

l(a − 1, b) + (r, s) k 0 0 0

l(a + 1, b− 1) + (r, s) k 0 0 0

l(a, b − 1) + (s, l − 1) 0 k k 0

(iv) For (r, s) ∈ C and if µ = l(a, b) + (r, s) then Ext1G1B(L̂(λ), L̂(η)) with L̂(λ) and L̂(η) compo-

sition factors of Ẑ(µ) is given by the following table.

λ \ η µ µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

µ 0 0 0 0 0 0 0 0 0

µ2 k 0 0 0 0 k 0 0 0

µ3 0 k 0 0 0 0 0 0 0

µ4 k 0 0 0 0 0 0 k 0

µ5 0 0 0 k 0 0 0 0 0

µ6 0 k 0 0 k 0 0 0 0

µ7 0 k 0 k 0 0 0 0 k

µ8 0 0 k k 0 0 0 0 0

µ9 0 0 0 0 0 k k k 0

(v) For (r, s) ∈ C and if µ = l(a, b) + (l − s− 2, l − r − 2) then Ext1G1B(L̂(λ), L̂(η)) with L̂(λ) and

L̂(η) composition factors of Ẑ(µ) is given by the following table.
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λ \ η µ1 µ2 µ3 µ µ5 µ6 µ7 µ8 µ9

µ1 0 0 0 0 0 0 k 0 0

µ2 k 0 0 0 k 0 0 k 0

µ3 0 k 0 0 0 0 0 0 k

µ k 0 0 0 0 0 0 k 0

µ5 0 k 0 k 0 0 0 0 0

µ6 0 0 0 0 k 0 0 0 0

µ7 0 0 0 k 0 0 0 0 k

µ8 0 0 0 k 0 0 0 0 0

µ9 0 0 0 0 0 k k k 0

Proof. Most of the Ext groups above can be computed in a straight-forward manner using the

previous results.

We do sometimes need to argue as in the following case for l = 3.

Suppose we are considering case (iv). If λ = µ9 = l(a − 1, b − 1) + (l − s − 2, l − r − 2) then

µ′′−(a−1, b−1) = (1, 1) and so Ext1G1B(L̂(λ), L̂(µ)) ∼= Ext1G(L(l−s−2, l−r−2), L(r, s)⊗∇(1, 1)F) ∼=

0 using lemma 5.11 if l > 4.

If l = 3 we then use the Lyndon-Hochschild-Serre five term exact sequence. We get

0 → Ext1G/G1
(k, HomG1

(L(l − s − 2, l − r − 2), L(r, s)) ⊗∇(1, 1)F)

→ Ext1G(L(l − s − 2, l − r − 2), L(r, s) ⊗∇(1, 1)F)

→ HomG/G1
(k, Ext1G1

(L(l − s − 2, l − r − 2), L(r, s)) ⊗∇(1, 1)F)

→ Ext2G/G1
(k, HomG1

(L(l − s − 2, l − r − 2), L(r, s)) ⊗∇(1, 1)F)

→ Ext2G(L(l − s − 2, l − r − 2), L(r, s) ⊗∇(1, 1)F)

Since HomG1
(L(l − s − 2, l − r − 2), L(r, s)) is zero we have using theorem 5.13

Ext1G(L(l − r − 2, l − s − 2), L(r, s) ⊗∇(1, 1)F)

∼= HomG/G1
(k, Ext1G1

(L(l − r − 2, l − s − 2), L(r, s)) ⊗∇(1, 1)F)

∼= HomG/G1
(k,∇(1, 1)F ⊕∇(0, 1)F ⊗∇(1, 1)F ⊕∇(1, 0)F ⊗∇(1, 1)F)

∼= HomSL3
(k,∇(1, 1) ⊕∇(0, 1) ⊗∇(1, 1) ⊕∇(1, 0) ⊗∇(1, 1))

∼= HomSL3
(k,∇(1, 1)) ⊕ HomG(∇(1, 0),∇(1, 1)) ⊕ HomG(∇(0, 1),∇(1, 1))

∼= 0 �

7. The composition series of induced modules for G1B.

Before deducing the G1B structure of the Ẑ(µ)’s we need some more propositions.
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Proposition 7.1. Suppose λ ∈ C and µ ∈ C̄ lies on a wall. Suppose also that s is a simple

reflection that fixes µ. and that w · λ < ws · λ. We have the following properties.

(i) T µ
λ L(w · λ) ∼= L(w · µ) and T µ

λ L(ws · λ) ∼= 0

(ii) T̂ µ
λ Ẑ(w · λ) ∼= T̂ µ

λ Ẑ(ws · λ) ∼= Ẑ(w · µ)

(iii) We have a short exact sequence

0 → Ẑ(w · λ) → T̂ λ
µ Ẑ(w · µ) → Ẑ(ws · λ) → 0

The socle of T̂ λ
µ Ẑ(w · µ) is L̂(w · λ).

This is the quantum version of [13, II 9.22 (4), (2), (3)] and may be proved as in the classical

case using the results of [2] and [10].

Proposition 7.2. Let λ, µ , w and s be as in the previous proposition. We have HomG1B(Ẑ(ws ·

λ), Ẑ(w · λ)) ∼= HomG1B(Ẑ(w · µ), Ẑ(w · µ)) ∼= k

Proof. Firstly, we have HomG1B(Ẑ(w · µ), Ẑ(w · µ)) ∼= HomB(Ẑ(w · µ), kw·µ) by Frobenious reci-

procity. The latter group is at most one dimensional, as the dimension of the w ·µ weight space in

Ẑ(w · µ) is one. On the other hand HomG1B(Ẑ(w · µ), Ẑ(w · µ)) is certainly non-zero. Thus there

is unique homomorphism (upto scalars), the identity homomorphism.

We may now argue as in the proof of [13, II, proposition 7.19] to show that the map φ in the

following long exact sequence is zero,

0 → HomG1B(Ẑ(ws·λ), Ẑ(w·λ)) → HomG1B(Ẑ(ws·λ), T̂ λ
µ Ẑ(w·µ))

φ
→ HomG1B(Ẑ(ws·λ), Ẑ(ws·λ))

and we thus get the isomorphism as claimed. �

We may now prove the following theorem, We use the following various facts about Ẑ(λ) for

λ ∈ X+:

(i) Ẑ(λ) has simple G1B socle L̂(λ) (see [13, II, 9.6 (1)] and [10, 3.1 (13) (i)])

(ii) Ẑ(λ) has simple G1B head L̂(2(l− 1)ρ−λ)∗ ∼= L̂(2(l− 1)ρ + w0λ + l(w0λ
′′ − λ′)) (see [13,

II, 9.6 (2)] and [10, 3.1 (22)])

(iii) Ẑ(λ)∗ ∼= Ẑ(2(l − 1)ρ − λ) (see [13, II, 9.2 (2)] and [10, 3.1 (21)])

(iv) Ẑ(λ + lµ) ∼= Ẑ(λ) ⊗ klµ (see [13, II, 9.2 (5)], also follows in the quantum case using the

tensor identity).

Strictly speaking the results in the quantum case using [10] are only G1T results. But the above

properties clearly lift to G1B.

Item (iii) above implies that the submodule structure of Ẑ(λ) for λ in a down alcove and the

structure of Ẑ(µ) for µ in an up alcove are inversions of each other. Item (iv) above implies that

the structure for a weight of a particular G1 type is always the same.

Theorem 7.3. The submodule structure of the Ẑ(λ) for λ ∈ X+ is as follows.
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(i) Suppose λ = l(a, b) + (l − 1, l − 1) with (a, b) ∈ X+. Then

Ẑ(λ) = L̂(λ).

(ii) Suppose λ = l(a, b) + (l− 1, r) with (a, b) ∈ X+ and (l − 1, r) ∈ X1. If we set s = l− r − 2

then the module Ẑ(λ) has filtration

L̂(l(a, b − 1) + (s, l − 1))

L̂(l(a + 1, b− 1) + (r, s))

L̂(l(a − 1, b) + (r, s))

L̂(l(a, b) + (l − 1, r)).

(iii) Suppose λ = l(a, b)+ (s, l− 1) with (a, b) ∈ X+ and (s, l− 1) ∈ X1. If we set r = l− s− 2

then the module Ẑ(λ) has filtration

L̂(l(a − 1, b) + (l − 1, r))

L̂(l(a − 1, b + 1) + (r, s))

L̂(l(a, b − 1) + (r, s))

L̂(l(a, b) + (s, l − 1)).

(iv) Suppose λ = l(a, b) + (r, s) with (a, b) ∈ X+, (r, s) ∈ X1 and r + s = l − 2. Then the

module Ẑ(λ) has filtration

L̂(l(a − 1, b − 1) + (r, s))

iiiiiii
UUUUUUU

L̂(l(a, b − 1) + (l − 1, r))

UUUUUUU
L̂(l(a − 1, b) + (s, l − 1))

iiiiiii

L̂(l(a, b) + (r, s)).

(v) Suppose λ = l(a, b) + (r, s) with (a, b) ∈ X+, and (r, s) ∈ C. We let µ1 upto µ9 be as

before, depicted in Figure 1 (a), where the number corresponds to the subscript of µ.
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Then Ẑ(λ) has filtration

L̂(µ9)

kkkkkkkkkk

SSSSSSSSSS

L̂(µ6)

OOOOOOOOOOOOOOOOOOOO
L̂(µ7)

44
44

44
44

44



















L̂(µ8)

pppppppppppppppppppp

L̂(µ5)

FF
FF

L̂(µ3)

xx
xx

L̂(µ4)

GG
GG

L̂(µ2)

ww
ww

L̂(µ1).

(vi) Suppose λ = l(a, b) + (l− s− 2, l− r− 2) with (a, b) ∈ X+, and (r, s) ∈ C. We let µ1 upto

µ9 be as before, depicted in Figure 1 (b), where the number corresponds to the subscript of

µ. Then Ẑ(λ) has filtration

L̂(µ3)

ww
ww GG

GG

L̂(µ2)

44
44

44
44

44

OOOOOOOOOOOOOOOOOOOO

xx
xx

L̂(µ9)

FF
FF



















pppppppppppppppppppp

L̂(µ1) L̂(µ6)

L̂(µ7)

SSSSSSSSSS L̂(µ8) L̂(µ5)

kkkkkkkkkk

L̂(µ4).

Proof. The structures for (i)-(iv) are the only possible ones using the fact that Ẑ(λ) has simple

head and socle as described above and the possible extensions that exist between the composition

factors.

Cases (v) and (vi). The structure depicted has all the possible extensions drawn in. We

need to prove that all these extensions do actually appear. The simples must be in the layers as

described, for otherwise it would contradict the Ẑ(λ) having simple socle L̂(λ) and simple head

L(µ9) (L(µ3)) if λ is a down (up) alcove respectively.

For instance, in case (v) we must have a uniserial subquotient of L̂(µ4), L̂(µ5) and L̂(µ6),

since ˆL(µ5) can only extend one simple below it (namely L̂(µ4)) and one simple above it, (namely

L̂(µ6)). Otherwise L̂(µ5) would either be in the head or socle of Ẑ(λ).
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So for case (v) we can deduce the following structure so far:

L̂(µ9)

kkkkkkkkkk

SSSSSSSSSS

L̂(µ6) L̂(µ7) L̂(µ8)

L̂(µ5)

FF
FF

L̂(µ3)

xx
xx

L̂(µ4)

GG
GG

L̂(µ2)

ww
ww

L̂(µ1).

We get a similar picture (only inverted) for case (vi).

L̂(µ3)

ww
ww GG

GG

L̂(µ2)

xx
xx

L̂(µ9)

FF
FF

L̂(µ1) L̂(µ6)

L̂(µ7)

SSSSSSSSSS L̂(µ8) L̂(µ5)

kkkkkkkkkk

L̂(µ4).

Consider the structure for case (v) so far. The L̂(µ7) must extend at least one of L̂(µ4) or

L̂(µ2). Suppose that it extends L̂(µ4). Now the existence of a homomorphism from Ẑ(µ1) to Ẑ(µ4)

(using proposition 7.2) implies that there is an extension of L̂(µ7) by L̂(µ9) in Ẑ(µ4), as the image

of the homorphism must contain at least L̂(µ4), L̂(µ5), L̂(µ6), L̂(µ7) and L̂(µ9), and it has simple

head L̂(µ9).

Now consider the module Ẑ(η) defined to be Ẑ(µ4)
∗ ⊗ kl(2a−1,2b−1). The weight η is in the

same (down) alcove as the µ8 from Ẑ(µ4). We now consider the dual of the extension of L̂(µ7) by

L̂(µ9) and tensor it by kl(2a−1,2b−1). This extension then appears in Ẑ(η) and working out what

the duals of the simples are gives us an extension of L̂(η4) by L̂(η8). Translation principle then

tells us that our original Ẑ(µ1) has an extension of L̂(µ4) by L̂(µ8).

Considering the homomorphism from Ẑ(µ1) to Ẑ(µ4) again implies that there is an extension

of L̂(µ8) by L̂(µ9) in Ẑ(µ4).
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So we now have for case (v) (assuming that L̂(µ4) extends L̂(µ7))

L̂(µ9)

kkkkkkkkkk

SSSSSSSSSS

L̂(µ6) L̂(µ7)



















L̂(µ8)

pppppppppppppppppppp

L̂(µ5)

FF
FF

L̂(µ3)

xx
xx

L̂(µ4)

GG
GG

L̂(µ2)

ww
ww

L̂(µ1).

For case (vi) we get:

L̂(µ3)

ww
ww GG

GG

L̂(µ2)

xx
xx

L̂(µ9)

FF
FF



















pppppppppppppppppppp

L̂(µ1) L̂(µ6)

L̂(µ7)

SSSSSSSSSS L̂(µ8) L̂(µ5)

kkkkkkkkkk

L̂(µ4).

Now the image of the homomorphism from Ẑ(µ4) to Ẑ(µ8) (which exists using proposition 7.2)

contains an extension of L̂(µ9) and L̂(µ3). Thus there is also an an extension of L̂(µ2) and L̂(µ7)

in the original Ẑ(µ1) for case (v).

Repeating the above argument with µ2 in place of µ4 thus gives us the result. �

8. The good l-filtrations of the induced modules for G

Theorem 8.1. Each ∇(λ) has a l-filtration. This filtration takes the following form:

(i) Suppose λ = l(a, b) + (l − 1, l − 1) with (a, b) ∈ X+. Then

∇(λ) = ∇(a, b)F ⊗ L(l − 1, l − 1).
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(ii) Suppose λ = l(a, b) + (l− 1, r) with (a, b) ∈ X+ and (l − 1, r) ∈ X1. If we set s = l− r − 2

then for a ≡ −1 (mod l), the module ∇(λ) has filtration

∇(a, b − 1)F ⊗ L(s, l − 1)

∇(a + 1, b − 1)F ⊗ L(r, s)

∇(a − 1, b)F ⊗ L(r, s)

∇(a, b)F ⊗ L(l − 1, r)

while for a 6≡ −1 (mod l), ∇(λ) has filtration

∇(a, b − 1)F ⊗ L(s, l − 1)

iiiiiii
TTTTTTT

∇(a + 1, b− 1)F ⊗ L(r, s)

UUUUUUU
∇(a − 1, b)F ⊗ L(r, s)

jjjjjjj

∇(a, b)F ⊗ L(l − 1, r).

(iii) Suppose λ = l(a, b)+ (s, l− 1) with (a, b) ∈ X+ and (s, l− 1) ∈ X1. If we set r = l− s− 2

then for b ≡ −1 (mod l), the module ∇(λ) has filtration

∇(a − 1, b)F ⊗ L(l − 1, r)

∇(a − 1, b + 1)F ⊗ L(r, s)

∇(a, b − 1)F ⊗ L(r, s)

∇(a, b)F ⊗ L(s, l − 1)

while for b 6≡ −1 (mod l), ∇(λ) has filtration

∇(a − 1, b)F ⊗ L(l − 1, r)

iiiiiii
TTTTTTT

∇(a − 1, b + 1)F ⊗ L(r, s)

UUUUUUU
∇(a, b − 1)F ⊗ L(r, s)

jjjjjjj

∇(a, b)F ⊗ L(s, l − 1).

(iv) Suppose λ = l(a, b) + (r, s) with (a, b) ∈ X+, (r, s) ∈ X1 and r + s = l − 2. Then the

module ∇(λ) has filtration

∇(a − 1, b− 1)F ⊗ L(r, s)

iiiiiii
UUUUUUU

∇(a, b − 1)F ⊗ L(l − 1, r)

UUUUUUU
∇(a − 1, b)F ⊗ L(s, l − 1)

iiiiiii

∇(a, b)F ⊗ L(r, s).
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(v) Suppose λ = l(a, 0) + (r, s) with (a, 0) ∈ X+, a > 1 and (r, s) ∈ C then the module ∇(λ)

has filtration

∇(a − 2, 0)F ⊗ L(s, l − r − s − 3)

∇(a − 1, 0)F ⊗ L(l − r − 2, r + s + 1)

∇(a, 0)F ⊗ L(r, s).

(vi) Suppose λ = l(0, b) + (r, s) with (0, b) ∈ X+, b > 1 and (r, s) ∈ C. Then the module ∇(λ)

has filtration

∇(0, b − 2)F ⊗ L(l − r − s − 3, r)

∇(0, b − 1)F ⊗ L(r + s + 1, l − s − 2)

∇(0, b)F ⊗ L(r, s).

(vii) Suppose λ = l(a, b) + (r, s) with (a, b) ∈ X+, a and b > 1, and (r, s) ∈ C. We let µ1 upto

µ9 be as before, depicted in Figure 1 (a), where the number corresponds to the subscript of

µ.

Then for a and b ≡ 0 (mod l), ∇(λ) has filtration

∇l(µ9)

iiiiiiiiiii

UUUUUUUUUUU

∇l(µ6)

QQQQQQQQQQQQQQQQQQQQQ
∇l(µ7)

88
88

88
88

88

��
��

��
��

��

∇l(µ8)

mmmmmmmmmmmmmmmmmmmmm

∇l(µ5)

JJ
JJ

∇l(µ3)

tt
tt

∇l(µ4)

JJJ
J

∇l(µ2)

ttt
t

∇l(µ1).

For a 6≡ 0 (mod l) there is no extension of ∇l(µ5) by ∇l(µ6). For b 6≡ 0 (mod l) there is

no extension of ∇l(µ3) by ∇l(µ8). So for a and b 6≡ 0 (mod l) we have:

∇l(µ9)

ffffffffffffffffff

XXXXXXXXXXXXXXXXXX

jjjjjjjjjj

TTTTTTTTTT

∇l(µ5)

TTTTTTTTTT ∇l(µ6)

XXXXXXXXXXXXXXXXXXX

II
II

∇l(µ7)

II
II

uu
uu

∇l(µ8)

fffffffffffffffffff

uu
uu

∇l(µ3)

jjjjjjjjjj

∇l(µ4)

II
II

∇l(µ2)

uu
uu

∇l(µ1)

and similarly for the other cases for a and b.



30 ALISON E. PARKER

(viii) Suppose λ = l(a, b) + (l− s− 2, l− r− 2) with (a, b) ∈ X+, and (r, s) ∈ C. We let µ1 upto

µ9 be as before, depicted in Figure 1 (b), where the number corresponds to the subscript of

µ. Then for a and b ≡ −1 (mod l), ∇(λ) has filtration

∇l(µ3)

ttt
t

JJJ
J

∇l(µ2)

88
88

88
88

88

QQQQQQQQQQQQQQQQQQQQQ

tt
tt

∇l(µ9)

JJ
JJ

��
��

��
��

��

mmmmmmmmmmmmmmmmmmmmm

∇l(µ1) ∇l(µ6)

∇l(µ7)

UUUUUUUUUUU ∇l(µ8) ∇l(µ5)

iiiiiiiiiii

∇l(µ4).

For a 6≡ −1 (mod l) there is no extension of ∇l(µ5) by ∇l(µ6). For b 6≡ −1 (mod l) there

is no extension of ∇l(µ7) by ∇l(µ1). So for a and b 6≡ −1 (mod l) we have:

∇l(µ3)

tt
tt JJ

JJ

∇l(µ2)

JJ
JJ

XXXXXXXXXXXXXXXXXXX

uu
uu

jjjjjjjjjj
∇l(µ9)

II
II

tt
tt

fffffffffffffffffff

TTTTTTTTTT

∇l(µ1)

XXXXXXXXXXXXXXXXXXX ∇l(µ7)

TTTTTTTTTTT ∇l(µ8) ∇l(µ5)

jjjjjjjjjjj
∇l(µ6)

fffffffffffffffffff

∇l(µ4)

and similarly for the other cases for a and b.

Proof. This may now be proved as in the classical case [15]. �

9. Homorphisms between induced modules for q-GL3(k)

We now show how to generalise the results of [6] to the quantum case. As noted in that

paper, there were two obstacles to this. The first was that we needed an l-filtration of the induced

modules, and the second was that we needed a quantum version of main result of [4]. We can now

prove that this result ([4]) holds for q-GL3(k), but unfortunately not in general. We will assume

that p 6= 0. The case with p = 0 is easier.

We define a lpe-wall for e ∈ N to be a wall for X+ that is fixed by a reflection of the form

sβ,mlpe for some m ∈ Z and β ∈ R.

Theorem 9.1. Suppose that λ, µ ∈ X+ satisfy the following conditions:

(i) µ < λ.

(ii) There exists some e ∈ N such that:

(a) λ and µ are mirror images in some lpe-wall L and

(b) L is the unique lpe-wall between λ and µ (possibly containing λ or µ) parallel to L.
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Then HomG(∇(λ),∇(µ)) 6= 0.

Proof. We may assume that λ is not a Steinberg weight as then the result follows by twisting the

corresponding map for the classical case.

Suppose L is fixed by sβ,mlpe for some m ∈ N and β ∈ R
+. There are two cases to consider.

Case (1): β is a simple root. In this case the theorem reduces to the analogous one for

q-GL2(k) using Levi subgroups and the results of Donkin [10]. See [5, theorem 5.1 and 7.1].

Case (2): β = ρ. In this case, we construct the homomorphism directly.

We first suppose that e = 0 and that λ doesn’t lie in an up alcove. We then claim that the

required map is the one obtained by inducing the map Ẑ(λ) → hd(Ẑ(λ)) from G1B upto G.

We claim that the head of Ẑ(λ) is L̂(µ). We write λ = l(a, b) + (r, s) with (a, b) ∈ X+ and

(r, s) ∈ X1. Now

hd(Ẑ(λ)) = L̂(2(l − 1)ρ − λ)∗

= L̂(l(2 − a, 2 − b) − (r + 2, s + 2))∗

∼= L(−w0(l − r − 2, l − s − 2)) ⊗ k−l(1−a,1−b)

= L(l − s − 2, l − r − 2)) ⊗ k−l(1−a,1−b)

∼= L̂((l − s − 2, l − r − 2) + l(a − 1, b− 1))

Also the condition on L, λ and µ implies that m is the greatest integer such that 〈λ + ρ, ρ̌ 〉 −ml

is positive. We thus have 〈λ + ρ, ρ̌ 〉 = ml + d, where 1 6 d 6 l. Hence

µ = sρ,ml · λ

= λ − (〈λ + ρ, ρ̌ 〉 − ml)ρ

= λ − dρ.

Since 〈λ + ρ, ρ̌ 〉 = l(a + b) + r + s + 2, d is then r + s + 2, as the condition that λ is not in an up

alcove implies that r + s+2 is at most l. Thus µ = (l− s−2, l− r−2)+ l(a−1, b−1), as required.

We note that the image of this map is IndG
G1B L̂(µ) = ∇l(µ).

If e = 0 and λ lies in an up alcove then the required map is that of 7.2. (It has image the

quotient module of ∇(λ) with an l-filtration by ∇l(λ8), ∇l(λ2), ∇l(λ3) and ∇l(λ9).)

We now suppose e > 0. We let ∇l(η) be the G1-head of ∇(λ). We know that η = λ−(r+s+2)ρ,

using the same notation as in the previous case. Note that η′ = µ′, as they are both downward

reflections of λ.

We claim that η′′, (considered as a weight for SL3(k)) is sβ,mpe · µ′′. Thus there is a Carter-

Payne map from

φ : ∇(η′′) → ∇(µ′′).
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We then twist the above map:

Id ⊗ φF : ∇l(η) → ∇l(µ).

This then induces the required map from ∇(λ) to ∇(µ).

We now prove the claim. Consider sβ,mpe ·µ′′ = µ′′− (〈µ′′ +ρ, ρ̌ 〉−mpe)ρ. Now the condition

on L, λ and µ imply that 〈µ + ρ, ρ̌ 〉 = mlpe − d, where 1 6 d 6 lpe. Thus 〈µ′′, ρ̌ 〉 − mpe =

− 1
l (d + 〈µ′ + ρ, ρ̌ 〉). And so

l(sβ,mpe · µ′′) + µ′ = lµ′′ + (d + 〈µ′ + ρ, ρ̌ 〉 − 2l)ρ + µ′

= µ + dρ + (〈η′ + ρ, ρ̌ 〉 − 2l)ρ

= λ − (2l − 〈η′ + ρ, ρ̌ 〉)ρ

= λ − (2l − 〈(l − s − 1, l − r − 1), (1, 1)〉)ρ

= λ − (s + r + 2)ρ

= η.

Thus η′′ = sβ,mpe · µ′′ as required. �

As a corollary we get that all the results of [6] regarding homomorphisms between induced

modules now generalise to the quantum case if l > 3. We just need to replace the pe+1 walls and

reflections with lpe walls and reflections.

In particular we have

Theorem 9.2. Suppose l > 3, then all the HomG(∇(λ),∇(µ)), with λ, µ ∈ X+ are at most

one-dimensional.

The non-zero homomorphisms may be determined by using the appropriate generalisations of

the main theorems of [6].

The characteristic zero case is easier. Here, we only get reflections about l-walls, that is, a

wall fixed by a reflection of the form sβ,ml for some m ∈ Z and β ∈ R. In this case, the only maps

are the l-good maps. This is because ∇l(λ) is always isomorphic to L(λ), thus any map between

induced modules must respect the l-filtration. Hence we have the following.

Theorem 9.3. Suppose p = 0. All the HomG(∇(λ),∇(µ)), with λ, µ ∈ X+ are at most one-

dimensional. Any non-zero map is an l-good map and is described by the appropriate quantum

version of [6, Lemma 3.1].
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