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Abstract

Easdown, East and FitzGerald (2004) gave a sufficient condition for a (factorizable
inverse) monoid to embed as a cofull submonoid of the coset monoid of its group of
units. We show that this condition is also necessary. This yields a simple description
of the class of finite monoids which embed in the coset monoids of their group of
units. We apply our results to give a short proof of the result of McAlister (1980)
that the symmetric inverse semigroup on a finite set X does not embed in the coset
monoid of the symmetric group on X. We also present examples which show that
the word “cofull” may not be removed.
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1 Factorizable Inverse Monoids and Coset Monoids

If M is a monoid then we denote by GG, the group of units of M. We say that a submonoid
of M is cofull if it contains G;. If NV is another monoid and ¢ : M — N an embedding,
then we say that v is cofull if M1) is a cofull submonoid of N.

If M is an inverse monoid then we denote by Ej; the semilattice of idempotents of M.
An inverse monoid M is factorizable it M = E,;Gj;. The study of factorizable inverse
monoids (henceforth FIMs) was initiated in [2]; for related studies see [4, 5, 6, 10] and
references therein.

Let G be a group and denote by S(G) the join semilattice of all subgroups of G. The
join HV K of two subgroups H, K € §(G) is defined to be (H U K), the smallest subgroup
of G containing HK. Now let

C(G) = {Hg|H € S(G), g € G}
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be the set of all cosets of all subgroups of GG. An associative product * is defined on C(G),
for H, K € S(G) and g,l € G, by

(Hg) + (K1) = (HV gKg~")gl,

the smallest coset of G containing HgK (. The set C(G) is a FIM under * with identity {1},
known as the coset monoid of G. The coset monoid was introduced in [8, 9]; see also [7].
Following is a collection of some elementary properties of coset monoids; these, along with
other properties, are stated in [7].

Lemma 1 Let G be a group. Then
(i) Ecq) = S(G);
(i) Gew) = {{g}|9€ G} =G; and

(iii) the subgroups of C(G) are precisely the sections of G (a section of G is a quotient of
a subgroup of G). a

The following was proved in [7].

Theorem 2 (McAlister) Let X be a set. Then

(i) the symmetric inverse semigroup Lx embeds in the coset monoid C(Gy) of the sym-
metric group Gy on a set'Y with |Y| = |X|+1; and

(ii) Zx does not embed in C(Gx) if X is finite and nonempty. O

It follows by Theorem 2(i) and the Wagner-Preston Theorem that any inverse monoid
(indeed any inverse semigroup) embeds in the coset monoid of some group. An interesting
question that arises is “given an inverse monoid M, what is the minimum cardinality of a
group G for which an embedding M — C(G) exists?” Now suppose that ¥ : M — C(G) is
an embedding of an inverse monoid M in the coset monoid of a group G. By Lemma 1(iii),
the image of GGj; under VU is a section of GG, showing that the cardinality of GG is bounded
below by the cardinality of G;. Thus, another natural question arises: “Which inverse
monoids M embed in C(Gp)?” The goal of this article is to give necessary and sufficient
conditions for an inverse monoid M to embed as a cofull submonoid of C(G ).

Let M be an inverse monoid and write £ = E; and G = G. For e € E let

Ge={g9€Gleg=e}.

It is easy to check that each G. is a subgroup of G, and that G,V Gy C G for each
e, f € E. Define a map

Yy E—S(G):e— G, for each e € E.

Let € denote the class of factorizable inverse monoids M for which 1, is a semilattice
embedding. The following was proved in [5].



Theorem 3 (Easdown, East, FitzGerald) A monoid M embeds as a cofull submonoid
of C(Gun) if M € 6. 0

This theorem was proved by showing that if M € ¥, then the map
M — C(G) : eg — Geg for each e € F and g € G

is a cofull embedding. Our main goal is to show that the condition M € % is also necessary
for a monoid to embed as a cofull submonoid of C(G ). In addition we show that the word
“cofull” may be removed within the class of finite (but not infinite) inverse monoids.

2 Cofull Embeddings

Our goal in this section is to show that a monoid M embeds as a cofull submonoid of
C(Gy) if and only if M € €.

Lemma 4 Any cofull submonoid of a factorizable inverse monoid is a factorizable inverse
monoid.

Proof Suppose that N is a cofull submonoid of a FIM M, and choose m € N. Then
m = eg for some e € Ey; and g € Gy;. Since N is cofull, we have g7 € N and so
mt = gle =gl eg)gt = g'mg' € N, showing that N is inverse. We also have
e =mg !t € N so that N is factorizable. O

Theorem 5 A monoid M embeds as a cofull submonoid of C(G ) if and only if M € €.

Proof The “if” part of the theorem is true by Theorem 3. To show the converse, it
suffices to show that N € € for every cofull submonoid N of C(Gy;). Write G = G, and
G = Gee) = {{9} } g€ G}. Now N is a FIM by Lemma 4, so it remains only to show
that

Yy Ey — S(Gy)

is an embedding. Now Ey = S(G) N N, and Gy = G since N is cofull. Further, if
H € Ey, then HYyy = H = {{h} ‘ h € H}. It follows that ¢ is an embedding since

HV K = HV K for any subgroups H, K € S(G). a

As a corollary, we have the following.
Theorem 6 A finite monoid M embeds in C(Gyy) if and only if M € €.

Proof Write G = Gj. Any embedding ¥ : M — C(G) gives rise to an embedding
UG — Ge(e) = G since the image of G under W, being finite, cannot be contained in a
proper section of G. Since G is finite, ¥ is an isomorphism whence ¥ is cofull, and we are
done by Theorem 5. O

We now apply Theorem 6 to provide an alternative proof of Theorem 2(ii).
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Corollary 7 (McAlister) Let X be a finite nonempty set. Then Ix does not embed

Proof Put G = Gy = G7,. For A C X denote by id4 the identity map on A so that
Er, ={ida| A C X}. Then for each A C X,

GidA:{ﬂ'EG‘CLW:a (VaeA)}

is the pointwise stabilizer of A, which we will denote by Stab(A). Now if x € X, then
Stab(X) = Stab(X \ {z}) = {idx} so that ¢z, is not injective. We are now done by
Theorem 6. a

We remark that if X is any set with |X| > 2, then the map 7, is not a semilattice
homomorphism since if z,y € X with z # y then, writing A = X \ {z} and B = X \ {y},
we have

Gia, V Gia, = Stab(A) V Stab(B) = Stab(A) = Stab(B) = {idx}
while the transposition which interchanges z and ¥ is in

Stab(X \ {z,y}) = Stab(AN B) = Gia,,., = Gidoidy-

3 Other Embeddings

In this final section we consider examples of FIMs M which embed in C(G ;) but do not
belong to €. These FIMs are necessarily infinite, and the embeddings are not cofull.

Example 8 Let X be an infinite set. Then the symmetric inverse semigroup Zx ¢ ¢ by
the comments after the proof of Corollary 7. On the other hand, Zx does embed in the
coset monoid of the symmetric group Gx = Gz, by Theorem 2(i).

Now Zx (indeed E7, ) is uncountable for any infinite set X. Our second example is a
countable FIM M for which |Ey/| = 3 and rank(Gy;) = 1. Here for a group G we have
written rank(G) for the minimal cardinality of a set which generates G (as a group).

Example 9 Let G = (x) be the infinite cyclic group generated by z, and let GY be the
semigroup obtained by adjoining a zero y to G. Let M = (GY)* be the semigroup obtained
by adjoing a new zero z to GY. It is easy to check that M is a FIM with Gj; = G and
Ey ={1,y,z}. We also have G, = G, = G so that M ¢ €. Now define

xr +—
UV:M—CG):{ y — (2%
z

Then one may easily check that ¥ is an embedding.
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Our final example is also a countable FIM M although in this case we have |E)y| = 2

and rank(Gp) = 2.

Example 10 Let G = (x,y) be the free group freely generated by {z,y}. Define a
homomorphism
0:G—G:x 22 Yy

and put K = (2%, y?), the image of p. Let B = G/N where N is the normal closure in G of
{zyxy~lx~ly~'}. So B has presentation (z,y | ryr = yry) and is isomorphic to the braid
group on 3 strings; see [1]. It is well known that Nz? and Ny? generate a free subgroup
of B of rank 2; see for example [3]. It follows that N N K = {1}.

Now let £ = {0, 1} which we consider as a semilattice under multiplication, and put
M =FE xG. So M is a FIM with Ey, = (E,1) = E and Gy = (1,G) = G, and M ¢ €
since G(1,1) = G(o1) = {(1, 1)} Define

. [ (L,9) — {ge} for each g € G
v MHC(G) : { (0,9) — N(ggp) for each g € G.

Then V¥ is a homomorphism since N is normal in G and ¢ is a homomorphism. To show
that U is injective, suppose that e;,e5 € E and g1, go € G such that

(61791)‘11 - (62,92)11’-

Then we clearly must have e; = e;. Suppose first that e; = e; = 1. Then

{19} = (e1,91)¥ = (€2, 92)V = {g2p}

It then follows that g; = go since ¢ is injective and so (e, g1) = (€2, g2). Finally, suppose
that e; = e; = 0. Then

N(gip) = (e1,91)¥ = (€2, 92)¥ = N(gap)

from which it follows that (9195 )¢ = (g1¢)(g20)~' € N. But then (g1g, ') = 1 since
NN K = {1}, and so g1g, ' = 1 since ¢ is injective, whence g; = g» and (e, 1) = (ea, g2).
This completes the proof that W is injective.

While the monoids M considered in Examples 9 and 10 had different values of |Ey|
and rank(G)y), they shared the property that |E)y,| + rank(Gjs) = 4. It turns out that 4
is the minimum value of |Ey;| + rank(Gy,) for any FIM M ¢ € which embeds in C(G ).

Proposition 11 Suppose that M ¢ € is a FIM for which there exists an embedding
U : M — C(Gy). Then |Epy| 4 rank(Gyy) > 4.

Proof Write £ = Ej; and G = GG, and suppose that |E| + rank(G) < 3. Since M ¢ €,

we have |E| > 2, and since U is injective, we have rank(G) > 1. It then follows that |E| = 2
and rank(G) = 1. Write E = {1, e} where 1 is the identity of M. Since M ¢ € we must
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have G, = {1}. Since M is infinite, G must be an infinite cyclic group generated by x say,
and since ¥ is an embedding, we have ¥ = {2’} and eV = (z’) for some 4,j € Z \ {0}.
But then ex? # e since G, = {1}, yet

(ex)W = (eW) x (/W) = (27) % {2V} = (272" = (27) = eV

contradicting the injectivity of W. This completes the proof. a
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