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SOME RESULTS OBTAINED BY APPLICATION OF THE LLT
ALGORITHM
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ABSTRACT. For every Hecke algebra of type A, we may define a decomposition
matrix; the structure of each such matrix is well-known, but in general there
is no way to compute the entries. An exception is the Hecke algebra Ho =
Hc,w(Sn), where w is a root of unity in C. Here a recursive algorithm, the
LLT algorithm, will produce the decomposition matrices — in fact, the resulting
matrix provides a ‘first approximation’ to the decomposition matrix of an
arbitrary Hecke algebra of type A.

The LLT algorithm is, however, recursive on n. We show that, in the case
of some simple partitions, it is possible to use the algorithm to obtain general
results; in particular, given a Specht module corresponding to a partition with
at most three parts, we will find its composition factors. We also give an
indication of the situation in which the partition in question has four parts.

1. INTRODUCTION

In 1996, a recursive algorithm was published, which the authors claimed could de-
termine the decomposition matrices of the Iwahori—Hecke algebra Hg = HC,w(Gn),
where w was a primitive eth root of unity in C. Apart from being interesting in
their own right, the decomposition matrices for Hy will provide information about
an arbitrary Hecke algebra H = Hp 4(6,,), including the symmetric group algebra
FeG,,.

This claim [4] has since been proved [1], and the resulting algorithm is known as
the LLT algorithm. However, it is recursive on n, and even with specially designed
computer programs, for example the GAP share package Specht [ST95, 7], it is
impractical to obtain results for large n. Nevertheless, in the case of some simple
partitions, it has been possible to obtain explicit results. We concentrate here on
partitions with at most three parts; we will determine the composition factors of
any Specht module corresponding to such a partition. More detailed proofs of our
results and further information concerning partitions with at most four parts appear
in [5]; the arguments applied are similar to those given.

We begin by establishing some notation. We fix an integer e > 2. Throughout,
Ho will denote the Iwahori-Hecke algebra Hc ., (S,) where w is a primitive eth
root of unity in C. It has been shown that Hj is a cellular algebra; accordingly for
each partition A of n, we define a cell Ho-module S* (known as the Specht module)
and a Ho-module D*. We use the notation of Dipper and James [2] rather than
taking the conjugate dual modules of some of the literature. Hence we define the
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decomposition matrix of Ho: for A, partitions of n and A e-regular, set d,x =
[S¥ : D*] to be the composition multiplicity of D* in S#. The matrix D = (d,»)
where A, u are partitions of n and ) is e-regular is called the decomposition matrix
of Ho; since {S* | X a partition of n} form a complete set of pairwise inequivalent
cell modules of Hp, and {D* | A an e-regular partition of n} form a complete set
of pairwise inequivalent irreducible Hy-modules, it agrees with the usual definition
of a decomposition matrix.
We define a partial order on the set of partitions of n by saying that A> u if and
only if
k k

SN =Y i for all k

i=1 i=1
and write Ao p if A> p and A # p. Suppose that A and p are partitions of n with
A being e-regular. Then

(1) d,\)\ =1 and
(2) dux =0 unless A > p.
Hence by arranging the rows and columns of D in a suitable order, we get that D

is lower unitriangular.
The LLT algorithm will compute these decomposition matrices.

2. THE LLT ALGORITHM

We begin by describing the LLT algorithm.

Definition. Let A = (A1, A2, ...) be a partition. Then the diagram of A\, denoted
[A], is the set of nodes {(4,7) | 1 <j < \; and ¢ > 1}.

The e-residue diagram of A, is the diagram obtained by replacing each node by
the number (j — ¢) mod e and the e-ladder diagram of A is the diagram obtained
by replacing each node by the number i — j + (j — 1)e.

Example. Let A = (4,2,1) and e = 3. Then the diagram, e-residue diagram and
e-ladder diagram of A are respectively given by:

* ok 01 2 0 0 2 4 6
2 0 1 3
1 2

Definition. A node 7 ¢ [)] is said to be addable if [A U~] is the diagram of a
partition. A node v € [}] is said to be removable if [A\ 7] is the diagram of a
partition.

Example. Let A = (5,3,3,1). Then the removable nodes are those indicated by
an underscore in the first diagram and the addable nodes those indicated by a dot
in the second.

* ok

% % % %
|% % *
EE
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Definition. Let A, u be partitions and suppose the e-residue diagram of u is formed

by adding d nodes, all of residue i, to the e-residue diagram of \. Write A RN L
Define

F(\) = Z Ny

PR

where N;(A, ) is given by

Ni(\, pn) = Z (#{7' | v' an addable i-node of u above 7y}
SISIIOANRY

— #{7' | 7/ a removable i-node of A above 7})
The term v may be regarded simply as a parameter.

Definition. The LLT algorithm can now be implemented. The algorithm works
by calculating the ‘crystallized decomposition matrix’ of Hy. This is a lower uni-
triangular matrix with the same structure as the decomposition matrix of Hgy, but
whose lower triangular entries are elements of vN[v], where 0 is included as a nat-
ural number. The decomposition matrix of Hy is then obtained by setting v = 1.
If A is an e-regular partition of n, define B()\) to be the column of the crystallized
decomposition matrix indexed by A. Since the LLT algorithm is recursive, we as-
sume that we know B(u) where p is a partition of m and either m < n or m =n
and A > u. This is reasonable, since if n = 1 the crystallized decomposition matrix
is simply the identity matrix and if ;4 dominates no other e-regular partition of n
then B(p) = p.
To find B(\) for given A, we operate the LLT algorithm as follows.
(1) Write down the e-residue diagram of A. Construct the partition 7 by re-
moving those nodes in [A\] with maximal ladder number. Suppose there are
d such nodes and that they have (common) e-residue .
(2) By assumption, we know B(7). Set C\ = FB(7) with F?B(r) defined in
the obvious manner from Ff(7'). Then Cy is of the form

Cy = Z con(v)v

ADv

=B(\) = > an(v)B)
AD>v
where o, (v) € N[v 4+ v~ 1] and ¢, (v) € N[v,v™1].

(3) Find the most dominant partition, vg, such that ¢, (v) does not belong to
uNJw]. If no such partition exists then B(A) = C and we are done. Other-
wise, a2 (v) is the unique polynomial in v 4+ v~! such that the coefficient
of v in a,,x(v) is equal to the coefficient of v in ¢, (v) for all i < 0.

Replace Cy with the element Cy — ayyx(v)B(1p) and repeat step 3 until
all the coefficients ¢, (v) belong to vN[v] for A > v.

Example. Consider A = (3,2) and e = 2. We wish to find B(3,2).

01 2 .. * %k
1 9 . Hence 7 is given by 3

where we have removed 2 nodes, both of e-residue 0.

(1) Find 7. The e-ladder diagram of A is
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(2) Looking up 7 = (2,1) we find that B(r) = (2,1). We calculate C =
F2B(7):

=
+
O = O
+
O = O
o =

(3) Since this is of the correct form,
B(3,2) = (3,2) +v(3,1%) +v*(2%,1).

Example. Consider A = (5) and e = 2. We wish to find B(5).

(1) Find 7. The e-ladder diagram of Ais 0 1 2 3 4 . Hence 7 is given
by % % % % where we have removed 1 node, of e-residue 0.

(2) Looking up 7 = (4) we find that B(7) = (4) +v(3,1) + v(2,12) + v2(1%).
We calculate C = F§ B(7):

01 01 v 01 0 v 0 1 v? 0 01 010
+1 +1+ 1£>
0 0
1
0 10 v 01 0 v 01 0 v? 0 1 v? 0
1 0 1 1 1 0 1
+ + 0 + 0 + 0 + 0.
1
0

(3) This is not of the correct form. The partition v = (3,2) has coefficient
1 ¢ vN[v]. Hence a,x(v) = 1. We subtract B(3,2) once from C) to get

(5) + (3,2) + 2v(3,1%) +v%(2%,1) +v*(1°) — [(3,2) + v(3,1%) + v*(2%,1)]
= (5) +v(3,12) + v*(1%).

This is of the correct form, hence
B(5) = (5) + v(3,1%) + v*(1°).

Remark 2.1. There are two very useful facts which are not immediately apparent
from this description. These are as follows.

e For a given partition  of n and d,i € N suppose that FZB(u) is of the
form

A+ Z coa (V)
AD>v
for polynomials ¢, (v) € N[v]. Then B()\) = FZB(u).

e The partial order on the set of partitions of n gives that if v has exactly
s parts and p exactly ¢ parts with s < ¢ then p ¥ v. Suppose we only
consider some dominant partitions, that is, those partitions with at most s
parts. Given a partition A, we would like to find out which such dominant
Specht modules contain D* as a composition factor. The format of the
LLT algorithm means that we can achieve this by simply ignoring, at every
step, those partitions with more than s parts.
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3. PARTITIONS WITH AT MOST 3 PARTS

Definition. Let B.(\) be the truncated column of the crystallized decomposition
matrix indexed by A corresponding to only the rows containing partitions with at
most s parts. Clearly if A itself has more than s parts then B.(A) = 0. For the rest
of Section 3, we consider B5(\), denoted simply B'(\).

Theorem 3.1. Let 2 < e < oo and suppose A = (A1, A\2) is a one or two part
e-reqular partion of (A1 + A2) = n. Suppose that

AM—XA=ae+i—1
)\2 = b€ +] — 1
where 0 < 4,5 < e. Define
mo = be — 1
mp —mo =ae — 1
so that A = (m1 +i+j,ma+j). Also if (i+j) > e, let
I=(i+j)—e.
Then B'()\) is given by the following sums of partitions.

i j=0:
(ma, m2)
i=0,j>0:
a=1,b=0:
(m1 + 4, m2 + 5)
a>2,b=0:
(m1+j,ma +j) +v(mi +j —e,ma+e,j)
a>1,b>1:

(m1 + j,ma + j) +v(my + j,ma, j) + v*(m1, ma + j, j)

i>0,j=0:
a=0,b=1:

(m1+i,m2)
a=0,b>2:

(my +1i,ma) + v(my, ma —e+i,e)
a>1,b>1:

(m1 +i,ma) +v(my, ma + i) + v3(my, ma, 1)

,j>0i+j<e:
a=0,b=0:
(my 4+ i+ j,ma + j)
a=1,b0=0:
(m1 + 1+ j,me + j) +v(my + j,ma + i+ j)
a>2,b=0:
(my 41+ j,me+j) +v(mi+ j,me+i+j)+v(mi+i+j—emo+e,j)+
vi(mi+j —e,ma+e,i+j)
a=0,b=1:
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(m1+i+j,ma+3)+v(my+i+7,ma,j)

a=0,b>2:
(m1+i+j,mo+j) +o(m+i+j,ma,j)+v(my+j,me+i+j—ee)+
vi(mi,me +i+j—ee+j)

a>1,b>1:
(mi1+i+jg,ma+j)+v(mi+j,me+i+j)+v(ms+i+j,me,j)+
v2(my + j,ma, i+ j) + v (my,me + i+ j,5) + v3(my,ma + j,i + j)

i+j=¢e:
a=0,b=0:
(m1 +e,ma+j)
a=1,b=0:
(m1+e,ma+j) +v(my + j,ma+e)
a>2,b=0:
(m1 +e,ma +j) +v(my + j,ma +e) +v(my, ma + e, j)
a=0,b=1:
(m1 4+ e, ma + j) +v(m1 + e, ma, j)
a=1,b=1:
(my +e,ma 4 j) +v(my + j,ma + e) + v(m1 + e, ma, j) + v*(m1,ma + j, )
a>2,b=1:
(m1 +e,ma +j) +v(mi + j,ma2 +e) + v(mi + e, ma, j) +v(mi,m2 +e,5)+
v2(m1, ma + j,e)

a=0,b>2:
(m1 4 e,ma + j) +v(m1 + e, ma, j) + v(mi + j,ma,e)
a=1,b>2:

(m1 +e,ma + j) +v(mi + j,mz2 +e) +v(mi + e, ma, j) +v(mi + j,ma, e)+
v2(m1, ma + j,€)

a>2,b>2:
(m1 4+ e,ma +j) +v(mi + j,me + €) + v(imi + e,ma, j) + v(m1 + j,ma, e)+
v(my,ma + e, j) +v*(mi,ma + j,e)

1+j>e:

a=0,b=0:
(m1+e+I,ma+j)+v(mi+emo+j,I)

a=1,b=0:
(m1+e+l,m2+j)+v(m1 +e,m2+j,1)+v(m1 +]7m2+6+1)+
v2(my +j,ma +e, 1)

a>2,b=0:
(m1+e+1,me+j)+v(my +ema+j,I)+v(my+j,ma+e+I)+
vi(my + j,ma +e, 1) +v(my + I,ma +e,j) + v (m1,ma + e+ 1,7)

a=0,b=1:
(m1+e+1I,mo+j) +v(mi +e,me+ 4, I) +v(mi +e+1,mz, j)+
v2(my +e,my +1,5)

a=1,b=1:
(m1+e+1I,me+j)+v(my +ema+j,I)+v(my+j,ma+e+I)+
vi(my +j,ma +e, 1) +v(my +e+ I,ma, j) +v2(my +e,ma+1,5)+
v2(m1 +I,m2+j,e)+113(m1,m2+j,e+])

a>2,b=1:
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(m1+e+1I,me+j)+v(my +e,ma+j,I)+v(my+j,ma+e+I)+
v2(my + j,me +e, 1) +v(my +e+I,ma, j) +vi(my +e,mo+1,5)+
v(my +I,ma +e,j) +v2(my,ma +e+1,5) +v2(my + I,ma+ j,e)+
v3(my,ma +j,e+ 1)

a=0,b>2:
(mi+e+I,ma+7)+v(ms+emo+j,I)+v(mi+e+1,mo,j)+
v2(my +e,ma+1,7) +v(mi + j,ma + I,€) + v2(mq + j,ma,e + 1)

a=1,b>2:
(mi+e+I,ma+j)+vim +e,me+j,I)+v(ims+j,me+e+ 1)+
vi(my +j,ma +e, 1) +v(my +e+ I,ma, j) +v2(my +e,ma+1,5)+
v(my +j,ma + I e) +v2(my + j,ma, e + I) +v2(mq + I,ma + j,€)+
v3(my,ma +j,e+ 1)

a>2,b>2:
(mi+e+I,ma+j)+vim +e,me+j,I)+v(ims+j,me+e+ 1)+
vi(my +j,ma +e, 1) +v(my +e+ I,ma, j) +v2(my +e,ma+1,5)+
v(my +j,ma + I e) +v2(my + j,ma, e + I) +v(my + I,ma + e, j)+
vi(mi,ma +e+1,5) +v2(my + I,ma +j,e) +v3(mi,ma +j,e+ 1)

The proof will follow.
Corollary 3.2. We recover the decomposition matriz by setting v = 1. If X is a

partition with at most 2 parts and p a partition with at most 3 parts then [S* : D]
is either 0 or 1 for any irreducible D,

Remark 3.3. If e = 2 then the case a = 0 does not occur and the only cases for
(i,7) are (1 = 0,7 =0),(¢ =1, =0),(¢ =0,j = 1) and (i +j = e). In these
situations, Theorem 3.1 still holds.

Example. Suppose e = 3 and A = (8,6). Using the definitions above, we get that
(4,7) = (0,1), (m1,mz2) = (7,5) and (a,b) = (1,2). If we look up this case above,
we find that

B'(A) = (m1 +jyma +j) +v(ma + 5, ma, j) +v*(my, ma + 5. 5)

= (8,6) +v(8,5,1) + v*(7,6,1)

and that D&% is a composition factor of S §®51) and §T61)  each with
multiplicity 1.
Theorem 3.4 (The column addition theorem). [6] Let A, u be partitions of n
where A = (A1,...,As) and p = (p1,...,put). Suppose

Moo=tk A4k ko k)
l
/LO:(Ml-i-k,...,)\t-i-k,k’,...,k’)

l
are such that Ao, po are partitions of n + lk and \g is e-reqular. Then

[S*: D)‘] = [SHo: D’\O].

Corollary 3.5. Given any e-reqular partition X\, we may use Theorem 3.1 to read
off the multiplicity [S* : D] for any Specht module S* such that y has at most 3
parts.
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Proof. Consider an e-regular partition A. If A has at most 2 parts, then Corollary
3.5 follows from Theorem 3.1, and if A has more than 3 parts then it cannot be a
composition factor of any Specht module S* where p has at most 3 parts. Consider
A = (A1, A2, A3) having exactly 3 parts. From Theorem 3.1, we know which Specht
modules corresponding to partitions with at most 2 parts contain D* as a compo-
sition factor. But S(#1:#2:43) contains a composition factor D(A1:22:23) if and only
if pg > A3 and S(#1=As:m2=A3,13=A3) contains a composition factor DM —A3:A2=As)
which information is known. |

Now let A = (A1, A2, A\3) be a partition with at most 3 parts. Write
= (s )
where «; is the e-residue of the last node on line ¢, with the convention that if
Ao = 0 then ag = e — 2 and if A3 = 0 then a3 = e — 3, that is, if we add a node to
line 7, that node will have residue «; + 1. Note «; is only defined up to modulus

e; no distinction will be made between a; and «a; + e. Let = denote equivalence
modulo e. Otherwise the notation is that defined in Theorem 3.1.

Proof of Theorem 3.1. A full proof of Theorem 3.1 is given in [5]. Here we only
prove most cases when a,b > 1, and the case that b = 0 and a > 2. It is a simple
matter to prove the remaining instances by induction, the proofs being very similar
to those given, but it is necessary to consider each one individually.

Our proof uses some general results (see [6]); it is possible avoid these and
proceed using only the LLT algorithm, but this is even more time consuming. For
the remaining cases, the proof is by induction.

General Results:

(1) dux # 0 only if A and p have the same e-core.

(2) Carter’s criterion: Set h(i,j) to be the hook length of node (4, ), that is
h(i,j) = Xi + N —i — j + 1 where X" denotes the partion conjugate to .
Over a field of characteristic 0, set v.(k) = 0 if e | k and —1 otherwise.
Then if ve(h(a,c)) = ve(h(b,c)) for all nodes (a,c) and (b, ¢) in [A] we have
that S* is irreducible.

(1) 4,5 = 0: Recall that ma = e — 1 and my = e — 2. This partition has e-core
(2e — 2,e — 1). If the Specht module corresponding to a partition p has D(mim2)
as a composition factor, then p has e-core (2e — 2,e — 1). Suppose pu = (u1, 2, i43)
has such an e-core. Form the partition v = (v1,v9,1v3) by removing all possible
horizontal e-rim hooks, that is hooks of leg length 0, from u so that v; = u; for all
iand v3, vy — 3, V] — Vg < €.

Now suppose that v2 —v3 < e — 1. Since p and hence v has e-core (2e — 2,e — 1),
we have that v > e — 1 and hence we can remove a rim hook beginning at the
node (2,v2) and working downwards. But this produces a partition whose second
part is less than 3 where 3 < e — 1 and which cannot have the correct e-core.
Thus v — v3 = e — 1. A similar argument shows that 11 — v = e — 1. Hence
v=(v3+2e—2,v3+e—1,v3) (where v3 < e) is an e-core, and for it to have the
correct form, we must have that v3 = 0. But v was formed by removing horizontal
hooks from p. Thus the only partitions with at most 3 parts and with such an
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e-core are of the form (re — 2,se — 1,te) for some integers r, s,t and by Carter’s
criterion, these are irreducible.
Hence B'(m1,ma) = (mq,ms).

Now assume that ¢ > 0 and 7 > 0 unless otherwise stated.

(2) 4 =0;a,b > 1: Proof is by induction on i for 1 < i < e.
i=1: By (1), B (m1,m2) = (m1,m2). Then F}! ,B’'(m1, ms) is given by

e—3 e—3 e—3 le=2 e—2 e—3 e—3
(m1 mo 0 <m1+1 mo 0 +

’U( e—3 e—2 873> +,U2<673 e—3 ef2>

mi mo + 1 0 mi ma 1
which, since it is of the correct form, is equal to B'(m1 + 1, ma).
2 <i < e: Assume true for ¢ — 1. Then F}' ;B'(my +i— 1,ms) is given by

1 —4 e—3 e—3 e—3 1—4 e—3 2 e—3 e—3 1—4
(m1+i—1 ma 0 >+U< mi ma+i—1 0 >+U<m1 ma i—l)
Li=3 /7 i-3 e—3 e—3 e—3 i—3 e—3 2/ e—3 e—3 i-3
( m1+1i mo 0 ) +’U( mi mo+141 0 ) +v ( mi mo % )
since e —3 %4 —3,i—4 and m; — mg,mg > e — 1.

(3) i = 0;a,b > 1: Proof is by induction on j for 1 < j < e.
j =1: By (1), B'(m1,m2) = (m1,m2). Then F? ,B’(m1, m2) is given by

e—3 e—3 e—3 2,e=2 e—2 e—2 e—3
( 0 ) (m1+1 mo+1 0 ) +
672 e—3 e—2 2 e—3 e—2 e—2
’U( mi1+1 mo 1 ) +v(m1 m2+1 1 )

2 < j < e: Assume true for j — 1. Then F 3B’(m1 +j—1,mo+j—1)is given by

j—4 j—4 e—3 ]—4 e—3 j—4
(m1+j—1 ma4j—1 0 T miti-1 me G-1 ) T
2( e—3 j—4 j—4 2,j=3 ( j—3 j—3 e—3
”(ml metj-1 j—1 mitj mati 0 +

j—3 e—3 j-3 2( e-3 j—3 j—3
v . . v . .
(m1+J mao J + mi ma2+3j

sincee —3#j —3,j —4 and m; —mg,mg > e — 1.

(4)i+j<eja,b>1: If j = e — 1, this case does not occur. Hence fix j with
1< j <e—1. Proof is by induction on ¢ for 1 <i < e — j.
1 =1: By (3), Fjl_QB’(ml + j,ma2 + j) is given by

j—3 j—3 e—3 j—3 e—3 j-—3 2 e—3 j—3 -3
(m1+j ma+j 0 >+“< mi+j ma )+U(m1 metj )

Li=2 ( j—2 j —3 -3 j—3 j—2 -3
J J e J e
<m1+3+1 m2+j5 0 ) +v< mi+j m2+j5+1 0 ) +
j—2 e—3 j—3 2( j—-3 e—-3 j-—2
”( mititl me ) J”’(mlﬂ' ma j+1) +
2 e—3 j—2 j—3 3( e-=3 j—3 j—2
”<m1 ma i1 ) J”)(ml mo + j j+1)

2 < i< e—j: Assume true for i — 1. Then leﬂ 3B'(m1+i+j—1,ma+j)is
given by

i+j—4 j—3 e—3 =3  it+j—4 e—3
(m1+i+j71 ma2+j 0 )Jr”( mit+j matiti—1 0 >+

itj—4 e—3 j—3 2/ j—3 e—3 i+j—4
”( mititi—1 ma ] )+U(m1+j ma z'+j—1> +

,U2(e—3 itj—4 q—3> +v3( e-3 j—3 z:+g:—4>

my ma+i+j—1 j my ma+j i+j—1
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1i+5-3 i+j—3 j—3 e—3 j—3 i+j—3 e—3
(m1+i+j ma+j 0 ) Jr“( mi+j matitj 0 > T
i+j—3 e—-3 j—3 2( j—=3 e—3 i+j—3
”( mititj ma g ) T (m1+j ms i > +
2( e-3 i+j-3 j—3 3( e—3 j—3  i+j—3
v (m1 me+i+j T my me+j  i+j )
sincei+j—4#j—3,e—3andi+j—3#*j—3,e—3and m; —mo,m >e— 1.

(5)i+j=-e;a,b=1: Note that m; = m; — ms = e — 1. Fixing j, proof comes
from (4) and (3).

By (3), unless j = e — 1, FL ;B'(m1 + e — 1,ma + j) is given by

(e—4 e+j—3 e—3> +v< e+j—3 e—4 e—3> +

mi1+e—1 mo+j 0 m1 + j mz+e—1 0

v( e—4 e—3 g+j—3> +v2(j—3 e—3 e—4> +

m;+e—1 ma J mi1+j me2 e—1

2 e—3 e—4 7 —3 3 e—3 j—3 e—4
v (m1 msos+e—1 j >+U(m1 mo + J e—l)
Le=3 /7 c_3 j—3 e—3 ji—3 e—3 e—3
(m1+i+j mo2+35 0 > +U< mi+j3 ma+i+j5 O ) +
e—3 e—3 j5—3 2 e—3 j5—3 e—3 - s
”( mititi ma  j ) v ( mi mati i+j ) where i +j =e.
If j = e—1then i =1, and by (3) F}_,B'(my + j,ma + j) is given by

(j—3 ji—3 e—3> Jrv(j—3 e—3 j—3> Jrvg( e—3 j—3 j—3>

mi1+j m2+j O mi1+j m2 J mi ma+j J
Lj=2 7 e—-3 ji—3 e—3 ji—3 e—3 e—3
<m1+3+1 mz2+j5 0 ) +v< mi+j m2+j5+1 0 ) +
e—3 e—3 j-—3 2 e—3 j—3 e—3 h s
) g o © re 1 =e.
U( m1+j+1 m2 J ) +v (m1 ma+j Jj+1 ) where 1+ 5 ¢

(6) i +7 > e;a,b=1: Note that mgo = mj; —ms = e—1. Case j = 1 does not occur,
so fix j with 2 < j < e and use induction on [ for 1 < I < j.
I=1(Gi+j=e+1): By (5), FL,B'(m1 +e,ms + j) is given by

e—3 Jj—3 e—3 j—3 e—3 e—3
<m1+i+j—1 ma+j 0 )+”< mi+j matiti—1 0 >+

e—3 e—3 j-—-3 2 e—3 j—3 e—3
ot 370 ) (s )

Le=2 7/ c_2 j—3 e—3 e—3 j—3 e—2
— . .
(m1+e+1 mz2+j 0 > +U< mi+e mo+j 1 ) +
Jj—3 e—2 e+j—3 2( 7—3 e—3 e—2
’U( mi+j m2t+e+l 0 ) +v(m1+j ma+e 1 ) +
e—2 e—3 j7-—3 2( e—3 e—2 j—3
U( mi +e+1 mo J ) +’U <m1+e mao+1 3 >+

2 e—2 e+j5—3 e—3 3 e—3 e+j5—3 e—2
”<m1+1 matj e )Jr” mi ma e+1)

2 < < j: Assume true for [ — 1. Then F} ;B'(mi+e+1—1,mo+j) is given by
I -4 j—3 e—3 e—3 j—3 I—-4
(m1+e+171 ma+3 O ) +’U< mi+e mao+j 171> +
j—3 I -4 e—3 2( 7—3 e—3 I—-4
’U( mi+j3 mat+e4+I—1 0 ) +v<m1+j mo + e 171> +
I -4 e—3 j5-—3 2 e—3 I -4 j—3
(m1+e+1—1 ma j >+U(m1+e ma+1—-1 j >+
2 T4 j—3 -3 3/ e—=3 j—3 I-—-4
mi mo+j e+ 1-—1
e
0

mi+I—1 ma+tj e v

Letl=3 ¢ 1_3 j—3 e—3 j—3 I1-3

= R G e
2

mi1+e+1 ma2+j
j—3 I-3 e—3 j—3 e—3 I-3
U( mi+j m2t+e+l 0 ) +v(m1+j ma+e I ) +
of T-3 e—3 j—3 -3 1-3 -3\,
mi+e+1 mo J 1+e mo+1I j

+ (
2f I—-3 j—3 e—3 3/ e—3 j—3 I-3
v ( j ) +v ( mo+j e+l )

3@

3
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sincel] —4#j—3,e—3and [ —3#j—3,e—3and a,b=1.

The proof for the case i + j > e where

(1) a=land b>2
(2) a>2and b=1
(3) a,b>2

is then very similar to the proofs of (5) and (6).
Let us now assume that Theorem 3.1 holds for b = 0 and a = 1; this can be
easily shown by induction. We will prove the case that b =0 and a > 2.

(7)1 =0;a = 2;b=0: Note that mg = —1, m; — ma = 2e — 1. Use induction on j
for1<j<e.
j = 1: By assumption, F! ,B’(my, ma + j) is given by
((373 e—2 873) +’U( e—2 e—3 673)
my 0 0 mi+1—e e—1 0
le=2 -2 -2 -3 -2 -3 -2
S ) (e 2 )
(Note mg+j=0and m; —e+1=e—1.)
2 < j < e: Assume true for j — 1. Then F? 3B'(my +j —1,ma+j — 1) is given by
(j—4 j—4 e—3> +v<j_4 e—3 j—4)
mi1+j—1 ma2+j—1 0 mi+j—e—1 ma2+e j—1
2£>3(j_3 ji—3 e_3> +v(j_3 e—3 j—3>

mi1+j m2+j 0 mi+j—e mate j
since j —4 # e — 3.

(8) i +j <e;a=2;b=0: Note that me = -1, my —mg=2e—1. Case j =e—1
does not occur, so fix j with 1 < j < e—1 and use induction on i for 1 <i < e—j.
i =1: By (7), F}_yB'(my1 4 j,ma + j) is given by

i—-3 j-3 e—3 4o 773 e—3 j-3
mi1+j ma2+37 0 mi1+j—e ma+te J
1j=2 / j_2 j—3 e—3 j—3 j—2 e—3
(m1+j+1 ma+j O ) +U( mi+j m2+j+1 0 ) +
j—2 e—3 j—3 2 (-3 e—3 j-—2
U( mi+j—e+1 ma+4+e j ) +v (m1+j—e ma +e j+1>
. . . 1 . . . . .
2 <4 < j: Assume true for i — 1. Then F ; 3 B'(m; +i+j—1,mz+j) is given by
i+j—4 ji—3 e—3 ji—3 itj—4 e—3
(nn+i+j71 ma2+j 0 )‘*”(nn+j matiti—1 0 ) T
(i+j—4 e—3 j—3> + 02 j—3 e—3 i+j—4>

mi+i+j—e—1 ma+te j mi+j—e mate i+j—1
Litj=3 ( i+j-3 j—-3 e—3 i—3 i+j-3 e-3
<m1+z+J ma2+j 0 ) +U( mi1+j ma2+i+j 0 ) +

of iti—3 e—3 j—3 42 (-3 e—3 i+j—3
mi+i+j—e ma2+e j mi1+j—e ma2+e i+j

sincei+j—4#j—3,e—3andi+j—3#%j—3,e—3.

(9) i+ j =e;a=2;b=0: Note that ms = —1, my — my = 2e — 1. Fixing j, proof
comes from (7) and (8).
By (8),if j <e—1, FL 3B'(my + e — 1,mz + j) is given by
e—4 j—3 e—3 Jj—3 e—4 e—3
(mlJrefl mo + J 0 ) +U< mi1 + 7 mo +e—1 0 )

e—4 e—3 Jj—3 2( j—3 e—3 e—4
+o( ) e 1)

m1—1 ma2+e mi+j—e ma+te

l,e—3 _ P _ P _ _
e(eS ]383)+U<J3 e—3 83>+

mi+i+j m2+j mi1+j me+i+j
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e—3 e—3 j-—3
v( mi+i+j—e mate j )
since j —3#e—3,e—4.
If j =e—1then i =1 and by (7) FL 3B'(m1 + j, ma + j) is given by

e—4 e—4 e—3 Y e—4 e—3 e—4
mi1+j m2+3j O mi+j—e mate j

Le=3 7/ c_3 j—3 e—3 ji—3 e—3 e—3
—
(m1+j+1 matj 0 ) +U( mitj matj+l 0 ) T
e—3 e—3 j—3 .
v( madi—etl mate )(Notemg—i—e—j.)

(10)i+j > e;a=2;b=0: Note that mg = —1, m; —mg = 2e — 1. Case j =1
does not occur, so fix j with 2 < j < e and use induction on I, for 1 < I < j.
I=1(G+j=e+1): By (9), FL,B'(my +e,ms + j) is given by

e—3 j—3 e—3 j—3 e—3 e—3
mi4iti—1 matj O Tl maritio1 0 >+

e—3 e—3 j—3 Le=2 7 c_2 j—3 e—3
’U( m1 mo+t1+3—1 3 ) mi +e+1 ma + J 0 +

e—3 j—3 e—2 j—3 e—2 e—3
”( mite matj 1 )+U< mitj matetl 0 )

+
,02(]’—3 e—3 e—2 +v(e—2 e—3 j—3> +

mi1+j m2+e 1 mi+1 ma+e j

)
Pl e 370)

my ma2+e+1 j
2 < I < j: Assume true for I —1. Then F} ;B'(mi+e+1—1,ms+j) is given by
I—4 i—3 e—3 e—3 ji—3 I—4
<m1+e+1—1 ma2+j 0 >+U( mi+e ma+j I—1> +
j—3 I—4 e—3 20f j—3 e—3 I-—4
’U( mi+j3 mat+e4+I—-1 0 ) +v(m1+j mo + € 171> +
I—4 e—3 j—3 2 [ e—-3 I-4 ji—3
v<m1+171 mo+e j >+U (ml me+e+I1—-1 g )
1,I-3 / 1_3 j—3 e—3 e—3 j-3 I-3
(m1+e+1 ma2+j 0 >+U( mi+e mo+j I >+
+

j—3 I-3 e—3 2(j-3 e-3 I-3
”( mi+j matet+I 0 ) T <m1+j mate I
I-3 e—3 j-3 2 (e—-3 I-3 j—3
v<m1+1 ma+e j +v mi ma+e+I j )
since] —4#j—3,e—3and [ —3#j—3,e—3.

(11) @ > 2;b = 0: We only need to prove the case when a = 3,4 = 0,5 = 1. The
proof for all other cases of a = 3,b = 0 then follows exactly from (7 — 10) above,
and the case a > 3 follows by an obvious induction.
By (9), F/_yB'(m1 +j — 1,ma + j) is given by

e—3 j—3 e—3 j—3 e—3 e—3
(m1+j71 ma2+j3 0 ) +U( mi+j—e mo+ji+e—1 0 ) +

v e—3 e—3 j—3
mi+j—e—1 ma2+e j

le—2 ; ; ; ;

> j—3 Jj—3 e—3 J—3 j—3 e—3
(m1+J me+j 0 ) +(m1+j*8 mz+j+e 0 ) +
ji—3 e—3 j—3 ji—3 e—3 j—3

v( j ) +1}( mi1+j—e m2+e jJ ) +

mi+j—e ma2+4e J
1)2 e—3 j—3 j—3
my—e ma+e+j j

The coefficient of (my + j — e,m2+ j + €,0) is equal to 1 so this equation is not of
the correct form. However, by (3) B’(m1 + j —e,ma + j + €,0) is given by

(ml +j_67m2 +.7+e)+v(m1 +j—e,m2+e,j)+v2(m1 —e,m2+e+j7j).
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Hence
B'(my 4 j,ma +j) = (m1 + j,ma +j) +v(mi +j —e,ma +e,j).
O
We now use the information from Theorem 3.1 to deduce the following Theorem.

Theorem 3.6. Lete > 3. (See Remark 3.8.) Consider the Specht module S(#1:#2:#3).
For x € N, define |z| such that x| =2 mod e and 0 < |z| < e. Let

I=lpm +2|
k= |p2 +1]
s = |us]

and let the following shorthand denote the given inequalities:
o o= —pu3<e—1
o fi=pr—pz>e—1
o Y= —pe<e—1
e J:=p1 —pue>e—1
Label the partitions with at most 3 parts which correspond to the irreducible
modules as follows.

()(Nl,uz,%)
(1 =1+ kK po+1—Fk, p3)
(up—l+k+ep+l—k—e us3)
(1 — 1l +kyps—k+s,uzs+1—3s)
(m1—l+k+epu—k+s—eus+1—s)
(1 =1+ s, p2, p3 +1—5)
(1, p2 —k+s,pu3 +k —s)
(M1+€aﬂ2—k+3—e7l~t3+/€_3)
(1 —l+s,puo+1—kpus+k—s)
(1 —l+s+ep+l—k—epus+k—s)
(w1 —l+kpu—k+s+epu+l—s—e)
(m1—l+k+ep—k+sus+l—s—e)
(i —l4+k+2e,us—k+s—eus+l—s—e)
(1 —l+s+epuo,us+1—s—e)
(1,2 —k+s+eus+k—s—e)
(1 +ep2—k+s,us+k—s—e)
(b1 —l+s,uot+e+l—kust+k—s—e)
(up—l+s+eus+l—kus+k—s—e)
(i1 —l+s+2e,us+l—k—eus+k—s—e)
(up—l+k+eu—k+s+epus+1—s—2e)
(1 — U+ s+ 2e, o, us +1— s — 2e)
(1 —l+s+ep+l—k+epus+k—s—2e)
(11 + e, p2, 13 —€)
(1 —l+kpus+1—k+e pus—e)
5) (1 —l+k+epa+1—kus—e)

The composition factors of SH1:12:13) are given by the following tables. All the
partitions listed in 1 — 25 above are distinct, and each composition factor occurs
with multiplicity 1.
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tpu3 =0

po <e—1

p2 >e—1

po <e—1

n2 > e—1

k>1=0

k>1>0
1>k

B:1<us<e

S x x| x
SN X x
% * x * * x
~ * x * * x
© X X X X[ x| x]|x
1 *
~ x x
[ X *x X
N * * x * x
~ XX R x| K| X X *x EIEIBIES
ted o e
I3 \a} 3 3 3 [sf a8 Kol Kef
A AT (R A el V) 2 [ it @w ~ ~c
AL AT A AA N A A A
<@ | |~ e | @ [~ @» ~ |« 2 K3 @€ ~
A IALHA AA A A N A
~ |~ | @ |~ |2 [ ~ ~C |~ @ ~ ~c w

o

] x

N x x

] x| x x| x

(=)

2 x

] x|

©

2 x| [x]x x| x

¥

2 |« x x| x

<

X x| x x|

X x| x

= x|

™ x

. x| x

|| e [ x x|

o I o
3|3 3 3|3

(=] en]) [en] o o
A A A
< | [~ < ~
A A A
— |~ |2 -~ 3




re < ug < 2e

D
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S x x x

N x| % * *

Q * * | % x x X

2 x

< x x x

S :

N e x *

2 x x x

| * * * x * x

& X

= o X x

H x x

> x x

SN *

0 * * x *

R~ x * X

© * * * * x

e *

~ *

) * x

~ x * x x

M EIEIEIEE: x| * x x x x x x

= Stkel = & = & = &
3 Q|3 3 3 3 3 3 3

Dfofe|B|~=|n 3 ® ~ e wn 3 ~
A A A A A A A N A
e |2 [~ [ [ @ [~ ~ < @ ~ ~ @« <
A A THA I A A A A A A
|~ | @ |~ | |2 » — < ® < — »




E:ps > 2e

R x x x| % x

Ww x| * * * *x

] x x x x x

N x

% I [ [ [ %

N «| |*

2 *|*

2 x| [x|x]|x x x

= x x

N x x| x| |x x

M * * * * *

I [x x X |3 [ [ [ [ x| x * *

2 N

R x| % x x x

= x| | x

2 N x

oY x

© X * * *

>~ x * X

© * * NEIES * *

Iy x

~ x x

I, x x| % x

~ x x x x

IR IEIEIE x X[ | [ x x x

= &= o |cle | oo |ete | = &= = &=
3 3 [sl kel Aol ol Ke] Kol Aol 3 3 3 3

w|nleln|~|x < @« ~ 3 w < ~
AT IEA A A A A A A A
2 e [~ | | ® = ~ <2 ® ~ ~ » i
A A]IHA I A A A A A A
| | |~ |2 |2 » — < @ < — »

HTAT AVHNIS

91
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The proof uses the following Lemma, in which, for a Specht module S*, we note
the composition factors of S#* which correspond to partitions with at most 2 parts.
(As previously noted, the multiplicity of each such composition factor is 1.)

Lemma 3.7. Lete > 3 and pn = (1, o, 43). We use the notation of Theorem 3.6.

Suppose us = 0. Then
(1) If I = k then S"*:#2) has a composition factor DH1:#2),
2) Ifl >k and us < e —1 then S1b2) pas g composition factor D(r,u2)
I
3) Ifl >k and s > e — 1 then Shim2) pag composition factors D#1k2) gnd
I
D(uyﬁ-k—l—&-e,ug—k-&-l—e) .
(4) If k>1=0 and ps > e — 1 then S"H2) has composition factors DH1:#2)
and Dwtk—lpz—k+l)
(5) If k > 1 =0 and s < e—1 then S":#2) has a composition factors D#H1:#2),
(6) Ifk > 1> 0 then S*1:#2) has composition factors DW#2) gnd D k=l —k+l)
Suppose 0 < us < e andl =k =0. Then
(1) SWask2:8) has composition factors DWisk2trs) Dlitepztus=e) gp g Dtis.uz)
Suppose 0 < pz < e andl =0 and k # 0. Then

(1) If s = k then SW12:13) has a composition factor DWitHsH2),

(2) If s > k then SWur2:13) has composition factors DWithtenatus—e—k)
D(mitus,pz) ond Dtkpetus—k)

(3) If k > s and po < e—1 then SW1:#2:3) has a composition factor D#H1H#s:#2)

(4) Ifk > s and s > e—1 then S(#1:#2:3) has composition factors D1tk p2+ius=k)
and DW1ths,p2)

Suppose 0 < pz < e and l #0 and k = 0. Then

(1) If s =1 and iy = e—1 and py — po > e — 1 then SH1H2:13) has composition
factors DWr2t13) gpd D(itepztus—e)

(2) If s =1 and py = e—1 and pu; —pa < e—1 then SWH1:12:13) has a composition
factor D(mtepatus—e)

(3) If s =1 and iy # e—1 and pu; — oy > e—1 then SWH1:12:13) has a composition
factor D(rH2tns)

(4) If s > 1 and iy = e—1 and puy — po > e — 1 then SH1H2:13) has composition
factors D(myuzﬂts)7 D(u1+e,u2+u3*e),D(u1+u3*l,u2+l) and DWitpste—lpz—etl)

(5) If s > 1 and iy = e—1 and ju; — o < e—1 then SW1:#2:13) has a composition
factor Dwatpste—lpz—etl)

(6) If s > 1 and iy # e—1 and puy — po > e — 1 then SH1H2:13) has composition
factors D(M11H2+M3)’D(H1+€7M2+M3—€) and DWtus—lpz+l)

(7) Ifl > s and py = e—1 then SW1:H2:13) has composition factors D(HiH2Frs)
D(mitepstps—e) ond D(wituste—luz—etl)

(8) Ifl > s and g # e — 1 then SH1:H2:13) has composition factors D12+ 1)
and D#tuste—luz—e+l)

Suppose sz = e. Then

(1) If k > 1> 0 then Shin2.13) pag g composition factor D(Batus,p2)
(2) If k > 1> 0 and pu1 — po < e — 1 then Slunu2.13) glso has a composition
factor DW=tttk patus—k+l)

(3) If Il > k > 0 and py > 2e — 1 then SW1#283) has a composition factor
D(p1tus—lt+k,pe—k+l)
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(4) If k> 1 =0 then SW12:13) has a composition factor DHFitHs:12),
(5) If k > 1 =0 and p1 — p2 < e — 1 then SW:12:13) glso has a composition
factor Dtk patps—k)
(6) If I > k =0 and then S"1:#2:13) has a composition factor D +rs=bpz+l),
Suppose e < pu3z < 2e — 1. Then

(1) If 1 =0 and k > s then S(m2:18) has g composition factor DWaTHs:12)

(2) Ifl =0 and k > s and py —pz < e—1 then SUH2:43) also has a composition
factor D(l‘fl“rk,‘u,er‘quk)'

(3) If k=0 andl > s then S(un2.13) has g composition factor DWitrs—bua+l)

Moreover, only the above Specht modules contain composition factors correspond-
ing to 1 or 2 part partitions and these contain only the 1 or 2 part composition
factors listed above.

Proof. The proof follows by consideration of Theorem 3.1. We shall now describe
the situation whenever pus > e; the other cases follow similarly.

Consider S#1:#2:13) where p3 > e. We wish to determine which partitions A =
(A1, A2) are such that D* is a composition factor of S*. Write A = (my+i+j, ma+j),
as in the notation of Theorem 3.1. Then p is of one of the following forms:

(ml +jam256+1)7
(mlamQ +j,€+[)7
(m1,ma+i+j—ee+j).

Now suppose A = (m1 + e+ I,ms + j), as in the notation of Theorem 3.1, and
= (my + j,ma,e + I). Then S* has a composition factor D* if and only if A
satisfies b > 2 and i 4+ j > e. However A is a partition such that b > 2 and i+ j > e
if and only if u = (m1 4 j,ma,e + I) is a partition such that, in the notation of
Theorem 3.6, k =0and ! > s and e < pu3 < 2e — 1. Then

A=(mite+I,mo+j)=(u+ps—1Lp+1).

Hence if pn = (p1, po, pi3) satisfies e < puz < 2¢ —1 and k = 0 and [ > s then S* has
a composition factor D(#1t+us—luz+l)

Now, if A = (m1 + e+ I,ma+ j) and p = (my,m2 + j,e + I) then S* has a
composition factor D* if and only if A satisfies a,b > 1 and i 4+ j > e. Moreover,
A= (my+i+j,me+j) is a partition such that a,b > 1 and i+ j > e if and only if
w=(mi1+j,mso,e+1I)is a partition such that { =0 and k > s and e < pu3z < 2e—1.
Hence if pn = (p1, po, pi3) satisfies e < puz < 2¢ —1 and I = 0 and k > s then S* has
a composition factor D(#1FrsH2)

Finally, if A = (m1 + i+ j,me +j) and u = (m1,mas + i+ j — e,e + j) then
S has a composition factor D* if and only if A satisfies @ = 0 and b > 2 and
i+ 7 < e. Moreover, A is a partition such that a = 0and b > 2 and ¢+ j < e
if and only if p = (my,m2 +4i+ j —e,e+ j) is a partition such that I = 0 and
k>sand u; —pus <e—1and e < puz < 2e — 1. Hence if u = (u1, po, p3) satisfies
e<pus<2e—1landl!=0andk > sand pu; —pu2 < e—1then S* has a composition
factor D tkpatps—k),

O

The proof of Theorem 3.6 can then be deduced from Lemma 3.7 and Theorem
3.4 (the column addition theorem). We give some examples.
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Example. Suppose that g = (p1, pio, p13) is such that s >l =k and 1 < u3 <ee.
Then S(#1:#2:13) hag a composition factor D1:A2:23) if and only if us > A3 and
S(1=As,p2=As,113=A3) hag g composition factor DW=23:22-%3)  Pix o with 0 < o <
s and let
v=(v1,va,v3) = (1 — @, g — @, i3 — Q).

Now by Lemma 3.7, if S has a composition factor D(€1€2) then either o = pus
ora=1=k.

If o« = pg then S(1¥2) has a composition factor D*1:*2). Hence S(#1:#2:43) has

a composition factor
D(,ul 2, 13) .

If @ =1 = k then S(*1:¥2¥3) has composition factors

D(V1,V2+V3) D(V1+€,V2+V3—€) and D(V1+V3,V2)
, .

Hence (noting that us = s and I = k), S(misp2,13) has composition factors

D(H17M2+S—k,u3—s+k)’ Dmtepets—kte,ps—s+k) o4 plts—luz,pz—s+l)
These are all the composition factors of S*.

Example. Assume that the results of Theorem 3.6 hold for 0 < p3 < e hold, and
suppose that g = (u1, po, pg) is such that I > k = s and ps > e. Let

v=(v1,v9,v3) = (11 — p3 + e, 12 — i3 + €, €)
and define I’ = |y + 2|; then I’ = [ — k. Then S(“1:¥2¥3) has composition factors
D(Vl,VQ,Ug) D(Ul*l/Jre,l/QJrl,*e,VS)

D(Vlfl'Jre,ug,Ungl'fe) D(Ul*l/Jre,l/QJrl,,l/g*e)

Hence S(#1:#2:13) hag composition factors
D(H17M27M3) D(ul—l+k+e,u2+l—k—e,ug)

D(#l*l+k+€7#27#3+l*k78) D(#l*l*k+€7#2+l*k7#3*€)_
These are all the composition factors of S*.

Remark 3.8. If e = 3, Theorem 3.6 holds in all cases except whenever A =
(m,m,m). Then S* does not contain a composition factor D* (= 0), but all other
entries are consistent. If e = 2 then Theorem 3.6 will give all the composition
factors of any Specht module S(*1:*2:23)  but may also produce some 2-singular
(zero) composition factors. We now consider this situation in more detail. While
the truncated columns B’(A) when e = 2 were classified (using other methods) by
James and Mathas in 1996 [3], the composition factors of the Specht modules were
never explicitly computed.

We first produce an analogue of Lemma 3.7. Note that all the composition
factors must be 2-regular, and let = denote equivalence mod 2.

Lemma 3.9. Let e = 2.

Suppose us = 0. Then

(1) If p1 > po then SW0H2) has a composition factor DH1:#2)
(2) If g1 = po and pp # 0 then SW12) has a composition factor D1 F1r2=1)



20 SINEAD LYLE

Suppose uz = 1. Then
1) If pp =0 and po = 1 then SWH0r2:13) has composition factors DHiT1nz2)
I I
and DWi+2pn2=1),
2) If uy =0 and ps = 1 and pq —po > 1 then SWH1H2:13) glso has a composition
( I I 1 —p D
factor D(Hp2t+1)
(3) If 1 = po = 0 then SW:12:13) has a composition factor D1 F1H2)
4) If pr = po = 1 and p1 — po # 0 then SWHLH2:13) has o composition factor
= p = p
D(p1sp2+1)
5) If i1 = pe = 1 and pg = 1 then SWLH213) has o composition factor
mo=p I
D(1+2,u2—1)
Suppose us = 2. Then
(1) If p1 = po = 0 then SW:12:13) has a composition factor D1 F2:42)
2) If tn = po = 1 and p1 > po then SH1E2:43) has o composition factor
= p p > p
Dwitlpa+l)
Moreover, only the above Specht modules contain composition factors correspond-
ing to 1 or 2 part partitions and these contain only the 1 or 2 part composition
factors listed above.

Using Lemma 3.9 and the column addition theorem, we may deduce the following
analogue of Theorem 3.6. We will use the more convenient notation of [3].

Theorem 3.10. Let e = 2 and suppose (1, p2, p3) = (a1, a2, a3) mod 2. Label
the partitions (A1, A2, A3) corresponding to the irreducible modules as follows.

(1) (p1, p2)

(1 + 1,2 —1)
(11, pas pi3)

(b1 + 1, p2 =1, p3)

(p1, p2 + 1, 03 — 1)

(1 + 1, po, 3 — 1)

(1 +2,p2 — 1, 3 — 1)

(w1 + 1,2+ 1,03 — 2)

) (Ml + 2, o, 3 — 2)

The composition factors of SWH2:13) gre given by the following tables. All the
partitions listed in 1 —9 above are distinct, and each composition factor occurs with
multiplicity 1.

A:ps=0
Then SH1) o2 ppa)

B:puy>1,u3=0

(a1, a2) 1 2
(0,1) or (1,0)
(0,0) or (1,1) | * *

*
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C: Hn3 = 1
(a1, az, ag) 3 4 5 6 7
(1,1,1) pn1 > po o > [3 * * *
M2 = [3 * *
H1 = p2 H2 > 13 *
K2 = 13 *
(0,0,1) pn1 > pe po > ug + 1 * * *
p2 = p3 +1 * *
H1 = p2 po > p3 + 1 * *
po = p3 +1 *
0,1,1) w1 > pe +1 | pe > ps * * * *
M2 = [3 * *
p1 = p2 +1 | p2 > ps * * *
K2 = 13 *
(1,0,1) *
D:ps>2

(a1, az, as3) 3[4 [5 [6 [7 8 9
(0,0,0) or (1,1,1) | p1 > po Mo > pg * | x| * *
M2 = H3 * *
p1 = p2 p2 > j3 * *
M2 = H3 *
(0,0,1) or (1,1,0) | pu1 > p2 po >p3+1 | * * * *
po =3 +1 * * *
p1 = p2 p2 > p3 +1 * *
p2 = p3 +1 *
(1,0,0) or (0,1,1) | p1 > p2+1 | p2 > ps * * * *
M2 = H3 * *
1 =p2+1 | po > pg * * *
M2 = H3 *
(0,1,0) or (1,0,1) *

4. PARTITIONS WITH AT MOST FOUR PARTS

Now that we have obtained the composition factors for all Specht modules cor-
responding to partitions with at most three parts, it is pertinent to ask whether
the same methods will work for partitions with four parts, or indeed for s parts for
any integer s. It has been shown [5] that for four part partitions this is indeed true;
however the analogue of Theorem 3.1, written in the form of tables, takes up some
68 pages. We will not reproduce them here! However, we give a quick indication of
the notation used.

Let 2 < e < oo and suppose A = (A1, A2, A3) is a one, two or three part e-regular
partion of (A1 + A2 + A3) = n. Suppose that

AM—XA=ae+i—1
)\27)\3:b6+j71
A3=ce+k—1
where 0 < 7, j, k < e. Define
m3 =ce—1

mo —msg =be — 1

mp —mo =ae — 1
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so that A = (my +i+4+j+ k,ma+j + k,mz + k). The column Bj(\) depends on
the integers a, b, ¢, and on which of the following identities holds for 4, j, k. Assume
that 4, j, k£ > 0 unless otherwise stated.

e i,5,k=0 o it+j+k<e

e k=0 o i +j+k=e

e i,k=0 o itj<ejtk<eitjtk>e
o k=0,1+j5<e e i +j=¢ejt+k<e

o k=0,i+j=ce e i+j7>ejtk<e

o k=0,1+j7>e o i +j<ejt+k=e

o ,7=0 e i+j=¢jt+k=c¢€

o j=0i+k<e e i +j>ejt+k=e

e j=0,i+k=c¢e e i+j<ejt+tk>e

o j=0i+k>e o i+j=ejt+k>e

o i=0,7+k<e o it+j>ejthk>eitj+k<2e
o i =0,j+k=¢e e i+j+k=2e

e i=0,j+k>e o i+j+k>2e

The results can be used to show that the maximum multiplicity of a composition
factor D* in a Specht module S(#1:#2:13:14) i 4 and that this multiplicity occurs;
also, given an integer m, there exists a Specht module S(#1:42:13:14) with at least
m composition factors.

(1]
2]
3]
[4]
[5]
[6]

7]
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