Errata for 'Unitary Reflection Groups'

Gustav I. Lehrer and Donald E. Taylor

27 March, 2023

Page 2, line 6	The citation should be to 210, not 209.
Page 16, line 7	Change ' M of V ' to 'of V '.
Page 21, line 15	Change ' $\mu(A)w\Sigma = \Sigma$ ' to ' $\mu(A)W\Sigma = \Sigma$ '.
Page 23, line 11	Change 'primitive group' to 'a primitive group'.
Page 24, line -4	Change $g.h := (h_{g(1)}, h_{g(2)}, \dots, h_{g(n)})$ to
	$g.h := (h_{g^{-1}(1)}, h_{g^{-1}(2)}, \dots, h_{g^{-1}(n)}).$
Page 26, line -2	Proposition 2.10 should read: If $n > 1$, then $G(m, p, n)$ is an
	imprimitive unitary reflection group. If $m > 1$, then $G(m, p, n)$ is
	irreducible except when $(m, p, n) = (2, 2, 2)$.
Page 29, line -16	Change 'then H is conjugate to' to 'then $m \ge 4$ and H is conjugate to'.
Page 49, line -6	Change 'by g ' to 'by G '.
Page 49, line -5	Change 'hence $gP = P$ ' to 'hence $gP = P$ for all $g \in G$ '.
<i>Page</i> 55, <i>lines</i> -1 , -2	
	'The k^{th} graded component of $M \otimes N$ is $\bigoplus_{i=0}^k M_i \otimes N_{k-i}$ and so
	the coefficient of t^k in $P_{M\otimes N}(g,t)$ is
	$\sum_{i=0}^{k} \operatorname{trace}(g, M_i) \operatorname{trace}(g, N_{k-i})$.
Page 72, lines $13 \cdots 1$	•
	$R(q)T$ fixes 1 and hence leaves its orthogonal complement $\mathbb{C}j$
	invariant. Consequently $R(q)T(j) = \alpha^2 j$ for some $\alpha \in \mathbb{C}$. In fact
	$\alpha \in S^1$ because $R(q)T$ preserves the hermitian form. Thus
	$T = L(\alpha)R(q^{-1}\alpha)$.
Page 84, line 13	Change 'exponent of G ' to 'exponent of G '.
Page 104, line -13	Include: 'and let $B_n^{(k)}$ be the line system for the group $G(k, 1, n)$ '.
Page 104, line -4	Change ' $n \ge 4$ ' to ' $n \ge 5$ '.
Page 139, line 9	Additional explanation: If V_{λ} were H -invariant, then V_{λ} would be a
	sum of isotypic components of the H -module V . Since H is a normal
	subgroup of G , the images of V_{λ} under the action of G would be a
	system of imprimitivity for G .
Page 154, line -8	Change ' $\ell \in S$ ' to ' $\ell \in \mathfrak{L}$ '.
Page 157, line -7	Change ' $u.v \in L$ ' to ' $u, v \in L$ '.
Page 164, line 13	Change ' $W(\mathcal{N}_4)$ ' to ' $W(\mathcal{N}_4)$ '.

```
Page 166, line 15
                        Add the sentence 'By construction, the group G(3,3,6) is a subgroup
                        of W(\mathcal{K}_6) and therefore W(\mathcal{K}_6) contains a central element of order 6.
Page 172, line -7
                        In the summation, change 'k = 0' to 'k = 1'.
                        Change 'Lemma 4.14' to 'Theorem 4.14'.
Page 172, line -1
Page 174, line 6
                        Change 'Lemma 9.8' to 'Lemma 9.7'.
Page 211, line −9
                        Change the display to
                                       0 = P_0 \subseteq P_1 \subseteq \cdots \subseteq P_r \subseteq S/\mathcal{I}(A) = \mathbb{C}[A]
Page 236, line 16
                        Change 'occurrences of 1' to 'occurrences of \zeta'.
Page 269, line −10
                        Change 'Harish-Chandra' to 'Harish-Chandra'.
                        Remove '\mathcal{D}_3^{(3)} \perp \mathcal{A}_2' from the entry for \mathcal{K}_5.
Page 277, line 13
Page 249, line 2
                        In order for Corollary A.10 to hold we need to specify that R is an
                        affine domain; that is, R is an integral domain which is finitely
                        generated as a K-algebra, where K is a field.
Page 249, line -6
                        Replace 'dim N' with 'dim R'_N'.
                        Replace 'dim M' with 'dim R_M'.
Page 249, line -5
                        Replace 'R_0' with 'R''.
Page 249, line -2
                        Replace '1985' with '2003'.
Page 281, line -16
```