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Given a field k, an affine domain over k is an integral domain A which is finitely
generated as a k-algebra; that is A ' k[x1, . . . , xn]/p for some prime ideal p of a
polynomial ring k[x1, . . . , xn].

The dimension of A (denoted by dimA) is the supremum of the integers n such that
A contains a chain p0 ⊂ p1 ⊂ · · · ⊂ pn of prime ideals. The height of a prime ideal p
of A is the dimension of the localisation Ap of A at p; that is, ht p = dimAp.

Theorem 1. Let p be a prime ideal of an affine domain A and suppose that ht p = 1.
Then dimA/p = dimA− 1.

The purpose of this note is to prove this theorem, based on the following results.

(i) A polynomial ring over a field is a unique factorisation domain.

(ii) Chapter 5 of [1] on (a) integral dependence, (b) the ‘going-up’ theorem, and (c) the
‘going-down’ theorem.

(iii) Noether’s normalisation theorem as in [2, Theorem A.12].

The following lemma is a revised version of [2, Lemma A.13].

Lemma 2. Let A ⊆ B be integral domains, A integrally closed, B integral over A. Then
dimA = dimB and for all prime ideals q of B, the ideal p = q∩A is a prime ideal of A
such that ht p = ht q and dimA/p = dimB/q.

Proof. By the ‘going-up’ theorem, given a chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ ps = p ⊂ p1 ⊂ · · · ⊂ pn

of A, there is a chain of prime ideals qs ⊂ · · · ⊂ qn of B such that pi = qi ∩ A for s ≤
i ≤ n. And by the ‘going-down’ theorem there is a chain of prime ideals q′0 ⊂ · · · ⊂ q′s
of B such that pi = q′i ∩A for 0 ≤ i ≤ s. Thus ht p ≤ ht q and dimA/p ≤ dimB/q.

Conversely, if
q0 ⊂ q1 ⊂ · · · ⊂ qs = q ⊂ q1 ⊂ · · · ⊂ qn

is a chain of prime ideals of B, then the ideals pi = qi ∩ A form a chain of distinct
prime ideals of A. Hence ht p ≥ ht q and dimA/p ≥ dimB/q. It follows that we have
equalities ht p = ht q and dimA/p = dimB/q. In particular, dimA = dimB.



Lemma 3 (Nagata [3, Lemma (14.1)]). Let A = k[x1, . . . , xn] be a polynomial ring over
a field k. If f is an element of A which is not in k, then there exist algebraically
independent elements y1, y2, . . . , yn in A with y1 = f such that A is integral over
k[y1, . . . , yn].

Proof. Given n-tuples of integers d = (d1, . . . , dn) and e = (e1, . . . , en) then xe =
xe1

1 x
e2
2 · · ·x

en
n is a monomial in A and we define its weight to be d1e1 + · · · + dnen.

Choose d with d1 = 1 so that no two monomials in f have the same weight and put

yi = xi−xdi1 for 2 ≤ i ≤ n. Then f = axh1 +g(x1, y2, . . . , yn) where g is a polynomial
whose degree in x1 is less than h and where a ∈ k is the coefficient of the term
with the highest weight in f . Thus x1 is integral over B = k[f ,y2, . . . , yn] and hence

xi = yi + xdi1 is integral over B for 2 ≤ i ≤ n. Therefore A is integral over B and
consequently the elements f , y2, . . . , yn are algebraically independent.

Lemma 4 (Nagata [3, Theorem (13.1)]). If A is a unique factorisation domain then every
prime ideal p of height 1 in A is a principal ideal.

Proof. Every nonzero element of A is a product of irreducible elements. Therefore, if
0 6= r ∈ p, where p is a prime ideal, it follows that p contains an irreducible factor f
of r . In a unique factorisation domain, every irreducible element is prime and so the
ideal (f ) is prime. Thus if htp = 1, then (f ) = p.

Remark 5. Nagata also proved the converse of this result. Namely, if A is a Noetherian
integral domain in which every prime ideal of height 1 is principal, then A is a unique
factorisation domain. To prove this it suffices to show that every irreducible element
is prime and this follows directly from Krull’s principal ideal theorem.

Lemma 6. If k is a field and A = k[x1, . . . , xn], then dimA = n.

Proof. The chain of prime ideals 0 ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn) has length
n and therefore dimA ≥ n. The proof proceeds by induction on n and the lemma is
certainly true when n = 0. So suppose that n > 0 and let 0 = p0 ⊂ p1 ⊂ · · · ⊂ pm be a
chain of prime ideals of A. We shall prove that m ≤ n.

Choose a non-zero element r ∈ p1. Then r is a product of irreducible polynomials
and since p1 is prime, an irreducible factor of r belongs to p1. Thus we may suppose
that p1 = (f ), for some f . By Lemma 3 there exist algebraically independent elements
y1 = f , y2, . . . , yn in A such that A is integral over B = k[y1, . . . , yn]. Therefore
0 ⊂ p1∩B ⊂ · · · ⊂ pm∩B is a chain of prime ideals of B of length m and their images
modulo q = p1∩B form a chain of prime ideals of lengthm−1 in B/q ' k[y2, . . . , yn].
By induction m− 1 ≤ n− 1 and so m ≤ n, as required.

Proof of Theorem 1. We begin with a prime ideal p in an affine domain A over a field
k such that ht p = 1. By Noether’s normalisation theorem there are algebraically
independent elements x1, . . . , xn in A such that A is integral over the polynomial
ring B = k[x1, . . . , xn].
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By Lemma 2 the ideal q = p∩ B is a prime ideal of B, ht(q) = 1, dimA/p = dimB/q,
and dimA = dimB. Thus we may replace A by B and assume that A = k[x1, . . . , xn].

It follows from Lemma 4 that there exists f ∈ A such that p = (f ). By Lemma 3,
there exist algebraically independent elements y1 = f , y2, . . . , yn in A such that A is
integral over C = k[y1, . . . , yn]. By another application of Lemma 2 we may suppose
that A = C . That is, we have reduced to the situation where p is the prime ideal (y1)
in the polynomial ring A = k[y1, . . . , yn]. Then A/p ' k[y2, . . . , yn] and by Lemma 6
we have dimA/p = n− 1 = dimA− 1, as required.
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