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Given a field k, an affine domain over k is an integral domain A which is finitely
generated as a k-algebra; that is A ~ k[x1,...,x]/p for some prime ideal p of a
polynomial ring k[x1,...,Xn].

The dimension of A (denoted by dim A) is the supremum of the integers n such that
A contains a chain pg C p; C - - - C p,, of prime ideals. The height of a prime ideal p
of A is the dimension of the localisation Ay, of A at p; that is, htp = dim A,.

Theorem 1. Let p be a prime ideal of an affine domain A and suppose that htp = 1.
Then dimA/p = dim A — 1.

The purpose of this note is to prove this theorem, based on the following results.
(i) A polynomial ring over a field is a unique factorisation domain.

(ii) Chapter 5 of [1] on (a) integral dependence, (b) the ‘going-up’ theorem, and (c) the
‘going-down’ theorem.

(iii) Noether’s normalisation theorem as in [2, Theorem A.12].
The following lemma is a revised version of [2, Lemma A.13].

Lemma 2. Let A < B be integral domains, A integrally closed, B integral over A. Then
dim A = dim B and for all prime ideals ¢ of B, the ideal p = G N A is a prime ideal of A
such that htp = htg and dim A/p = dim B/q.

Proof. By the ‘going-up’ theorem, given a chain of prime ideals

PoCPIC---CPps=pCP1 C---ChHn
of A, there is a chain of prime ideals g; C - - - C g5, of B such that p; = g; N A for s <
i < n. And by the ‘going-down’ theorem there is a chain of prime ideals gy C - - - C g5

of B such that p; = q; N A for 0 < i < 5. Thus htp < htgand dimA/p < dimB/g.
Conversely, if
GCqaC---CG=qCqC---Caqn
is a chain of prime ideals of B, then the ideals p; = ¢; N A form a chain of distinct

prime ideals of A. Hence htp > htg and dim A/p > dimB/q. It follows that we have
equalities htp = htg and dim A/p = dim B/g. In particular, dim A = dim B. O



Lemma 3 (Nagata [3, Lemma (14.1)]). Let A = k[x1,...,Xn] be a polynomial ring over
a field k. If f is an element of A which is not in k, then there exist algebraically
independent elements vy, V2, ..., Yn In A with y1 = f such that A is integral over
kl[y1,...,nl.

Proof. Given n-tuples of integers d = (dy,...,dn) and e = (e1,...,en) then x¢ =
x{'x3% - - - xy" is a monomial in A and we define its weight to be diej + - - - + dnen.
Choose d with d; = 1 so that no two monomials in f have the same weight and put
Vi = Xj —xfi for2 <i<mn.Then f = ax{‘+g(x1,yz, ..., Yn) Where g is a polynomial
whose degree in x; is less than h and where a € k is the coefficient of the term
with the highest weight in f. Thus x; is integral over B = k[ f, y2,..., Y»] and hence
Xi = Y+ xfi is integral over B for 2 < i < n. Therefore A is integral over B and
consequently the elements f, y», ..., Y, are algebraically independent. O

Lemma 4 (Nagata [3, Theorem (13.1)]). If A is a unique factorisation domain then every
prime ideal p of height 1 in A is a principal ideal.

Proof. Every nonzero element of A is a product of irreducible elements. Therefore, if
0 # r € p, where p is a prime ideal, it follows that p contains an irreducible factor f
of . In a unique factorisation domain, every irreducible element is prime and so the
ideal (f) is prime. Thus if htp = 1, then (f) = p. O

Remark 5. Nagata also proved the converse of this result. Namely, if A is a Noetherian
integral domain in which every prime ideal of height 1 is principal, then A is a unique
factorisation domain. To prove this it suffices to show that every irreducible element
is prime and this follows directly from Krull’s principal ideal theorem.

Lemma 6. If k is a field and A = k[x1,...,xXn], thendim A = n.

Proof. The chain of prime ideals 0 C (x1) C (x1,x2) C - -+ C (x1,...,Xn) has length
n and therefore dim A > n. The proof proceeds by induction on »n and the lemma is
certainly true when n = 0. So suppose thatn > 0andlet0O=po Cp; C--- Cpm bea
chain of prime ideals of A. We shall prove that m < n.

Choose a non-zero element v € p;. Then r is a product of irreducible polynomials
and since p; is prime, an irreducible factor of ¥ belongs to p;. Thus we may suppose
that p; = (f), for some f. By Lemma 3 there exist algebraically independent elements
v1 = f, ¥2, ..., Yn in A such that A is integral over B = k[y1,...,Yn]. Therefore

OCpinBC---CpmnBisachain of prime ideals of B of length m and their images
modulo g = p; N B form a chain of prime ideals of length m —1in B/q ~ k[y2,..., Vnl.
By induction m — 1 < n — 1 and so m < n, as required. O

Proof of Theorem 1. We begin with a prime ideal p in an affine domain A over a field
k such that htp = 1. By Noether’s normalisation theorem there are algebraically
independent elements xi, ..., X, in A such that A is integral over the polynomial
ring B = k[x1,...,Xn].



By Lemma 2 the ideal ¢ = p N B is a prime ideal of B, ht(q) = 1, dim A/p = dim B/gq,
and dim A = dim B. Thus we may replace A by B and assume that A = k[x1,...,Xn].

It follows from Lemma 4 that there exists f € A such that p = (f). By Lemma 3,
there exist algebraically independent elements y; = f, ¥2, ..., ¥, in A such that A is
integral over C = k[y1,...,Vn]. By another application of Lemma 2 we may suppose
that A = C. That is, we have reduced to the situation where p is the prime ideal (y1)
in the polynomial ring A = k[y1,...,Vn]. Then A/p ~ k[y>,..., Yn] and by Lemma 6
we have dimA/p=n —1 =dimA — 1, as required. O
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