
An Introduction to MAGMA

Don Taylor

The University of Sydney

13 February 2012

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 1 / 31

A little history

MAGMA is a programming language for computer algebra, geometry,
combinatorics and number theory. It has extensive support for group
theoretic computations and can handle permutation groups, matrix groups
and finitely-presented groups. A more complete list of applications will be
given later.

The language was developed by John Cannon and his team at the
University of Sydney and was released in December 1993. It replaced
CAYLEY, also developed by John Cannon.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 2 / 31

MAGMA 2.18

The name ‘MAGMA’ comes from Bourbaki (and Serre) where it is used to
denote a set with one or more binary operations without any additional
axioms. Thus a magma is the most basic of algebraic structures.

Today, in 2012, Version 2.18 of MAGMA is a huge system with more than
5000 pages of documentation in 13 volumes.

MAGMA can be used both interactively and as a programming language.
The core of MAGMA is programmed in C but a large part of its functionality
resides in package files written in the MAGMA user language.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 3 / 31

Outline

The following topics will be illustrated by examples drawn from a selection
of MAGMA packages.

1 Using MAGMA interactively
É Using files.
É Printing.
É The help system.

2 Essential data structures: sets, sequences, records and associative
arrays.

3 Functions and procedures, function expressions and maps.
4 MAGMA’s type system and coercion.
5 The MAGMA language and styles of programming.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 4 / 31

The MAGMA design

The design principles underpinning both the user language and system
architecture are based on ideas from universal algebra and category theory.

The MAGMA language attempts to approximate the usual mathematical
modes of thought and notation as closely as possible. In particular, the
principal constructs in the user language are sets, algebraic structures such
as groups, rings and fields and morphisms.

[The following three slides are from the MAGMA documentation.]

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 5 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA language

Imperative language with standard imperative-style statements and
procedures
A functional subset providing closures, higher-order functions, and
partial evaluation
General aggregate data types based on algebraic notions: set,
sequence, mapping, magma
Universal structure constructors providing a general mechanism for the
construction of magmas and mappings
Simple but powerful notation for constructing sets and sequences in a
natural mathematical style
Set and sequence operations which are implemented with a strong
emphasis on efficiency
Coercion between magmas (including automatic coercion)
A package mechanism to support modular program construction

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 6 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The MAGMA environment

Command completion and interactive line editing
History system with recall and editing of previous lines
A hierarchical online help facility
Packages containing user-defined intrinsics with automatic compilation
Environment variables for configuring style of output, etc.
Get/set functions and procedures for configuring style, etc.
Verbose options for built-in functions
Logging of output, redirection of I/O
Special file type for fully-featured file I/O
Ability to execute system commands from within Magma
Input/output pipes for communication with external programs

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 7 / 31

The main components of MAGMA

The MAGMA Language and
System
Groups
Semigroups and Monoids
Rings and Fields
Commutative Rings
Linear Algebra and Module
Theory
Lattices and Quadratic Forms
Algebras

Representation Theory
Homological Algebra
Lie Theory
Algebraic Geometry
Finite Incidence Geometry
Differential Galois Theory
Error-correcting Codes
Cryptography
Mathematical Databases

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 8 / 31

Interacting with MAGMA

To start, simply type
magma

To stop, type Ctrl-D or
> quit;

Every instruction to MAGMA must end with a semicolon (;) but don’t
type the > sign—this is MAGMA’s prompt character.

When developing MAGMA programs it is useful to put the commands in a
file. To load the commands from a file named lecture1.m, type

> load "lecture1.m";

If you would like MAGMA to pause after each line of input, use

> iload "lecture1.m";

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 9 / 31

Using MAGMA interactively — Tab completion

Suppose that you want to find the first few Legendre polynomials. There
are many ways to achieve this in MAGMA.

One of the first things to do is to check the documentation to find out if
there is already a function which does what you want.

Alternatively you can use the MAGMA help system. For example, if you type
Legendre at a MAGMA prompt and then press the Tab key you will see the
following:

> Legendre
LegendreEquation LegendrePolynomial
LegendreModel LegendreSymbol

If you now type P followed by Tab and a semicolon:

> LegendrePolynomial;

you will see some information about how to use this function.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 10 / 31

Using MAGMA interactively — the Help system
To get more detailed information, put a question mark before the name of
the command:
> ?LegendrePolynomial

Depending on how MAGMA is installed either a web browser will open
showing the online help for the function or MAGMA’s internal help system
will provide information about the command.

To print the 7th Legendre polynomial simply issue the command
> LegendrePolynomial(7);

The output is
429/16*$.1^7 - 693/16*$.1^5 + 315/16*$.1^3 - 35/16*$.1

To get more readable output it is possible to assign a more useful name,
such as z, to the indeterminate $.1. We shall see how to do this on the
next slide.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 11 / 31

Legendre Polynomials: Rodrigues’ formula
Suppose that you didn’t discover that MAGMA has a built-in function for
Legendre polynomials. In that case you can define them yourself using
either a direct or recursive formula.

For the direct method we use Rodrigue’s formula

Pn(z) =
1

2n n!
dn

dzn
(z2− 1)n.

To set this up in MAGMA we need the polynomial ring in the indeterminate
z over the rational numbers.

> R<z> := PolynomialRing(Rationals());
> P := func< n | Derivative((z^2-1)^n,n)/(2^n*Factorial(n))>;
> P(7);
429/16*z^7 - 693/16*z^5 + 315/16*z^3 - 35/16*z

> P(7) eq LegendrePolynomial(7);
true

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 12 / 31

Legendre Polynomials: a recurrence relation
Another way to define the Legendre polynomials is via the recurrence
relation

nPn(z) = (2n− 1)zPn−1(z)+ (n− 1)Pn−2(z), P0(z) = 1, P1(z) = z.

Using this definition in MAGMA illustrates

assignment :=
sequences [<expression> : n in range]

the select expression
recursive definitions using Self

the range expression: [a..b by c]

> L := [n eq 0 select 1 else n eq 1 select z else
> ((2*n-1)*z*Self(n)-(n-1)*Self(n-1))/n : n in [0..7]];
> L[8];
429/16*z^7 - 693/16*z^5 + 315/16*z^3 - 35/16*z

Note that MAGMA sequences are indexed from 1, not 0.
Don Taylor (The University of Sydney) Magma Programming 13 February 2012 13 / 31

Number systems
The number systems in MAGMA go well beyond the usual provision of
integers, rationals and real numbers. MAGMA has extensive support for
many types of rings, finite fields, and local and global number fields.

To illustrate this, construct the cyclotomic field E=Q[ω], where ω3 = 1
and then define three matrices over E.
> E<w> := CyclotomicField(3);
> E;
Cyclotomic Field of order 3 and degree 2
> a := Matrix(2,2,[E| w, 0, w^2, 1]);
> b := Matrix(2,2,[E| 1, -w^2, 0, w]);
> c := Matrix(2,2,[E| 2*w+1, 2*w, w^2, -w]);

It turns out that the group generated by a and b has order 24, but the
group generated by a and c is infinite.
> G1 := sub<GL(2,E) | a, b >;
> G2 := sub<GL(2,E) | a, c >;
> #G1, IsFinite(G2);
24 false

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 14 / 31

Strings
Strings are enclosed in double quotes and the backslash character is used
as an escape. That is, to obtain a double quote, a backslash, a newline or
tab, you would type \", \\, \n or \t.

Use IntegerToString to convert an integer to a string.

The expression s * t is the concatenation of strings s and t.

> base := "E";
> for n := 6 to 8 do // or you could use n in [6,7,8]
for> print base*IntegerToString(n);
for> end for;
E6
E7
E8

As in languages such as C++ and Java, // introduces a comment which
extends to the end of the line and /* comment text */ is a comment
which may span several lines.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 15 / 31

Boolean values and relational operators
MAGMA has the usual two Boolean constants true and false and the
usual connectives and, or, xor and not.

But unlike many other programming languages MAGMA uses abbreviations
rather than symbols for its relational operators. For example, to determine
whether x is less than or equal to y you type x le y not x <= y.

MAGMA code meaning

x eq y x= y
x ne y x 6= y
x lt y x< y
x le y x≤ y
x gt y x> y
x ge y x≥ y

x in A x ∈A

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 16 / 31

Data structures: sequences and tuples

Only elements of a common structure are allowed in sets or sequences. The
common structure is its universe.

Sequences
> a := [2,3,5,7,11];
> b := [x^2 : x in a];
> T := [x : x in Sym(5) | Order(x) eq 2];
> Universe(a);
Integer Ring

A tuple is an element of a Cartesian product.

Tuples
> X := [< x , Order(x) > : x in Sym(3)];
> Universe(X):Minimal;
Cartesian Product<GrpPerm: $, Degree 3, Order 2 * 3, Integer Ring>

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 17 / 31

Data structures: sets and indexed sets

As in mathematics, sets do not contain duplicate elements and there is no
preferred order of the elements.

Sets
> V := VectorSpace(GaloisField(4),4);
> G := SpecialUnitaryGroup(4,2);
> e := { V.1^g : g in G };
> #e;
135

An indexed set is a set whose elements are linearly ordered.

Indexed Sets
> A := {@ 3,3,2,1,5,3,5 @};
> print A;
{@ 3,2,1,5 @}
> print A[3];
1

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 18 / 31

Data structures: lists
Lists are ordered collections of objects of any type; that is, a list does not
require its members to belong to a common universe.

Lists
> L := [* 3, G.1 *] where G is SymmetricGroup(4);
> L;
[* 3,

(1, 2, 3, 4),
*]
> Append(~L, "symmetric group");
> L;
[* 3,

(1, 2, 3, 4),
symmetric group

*]

If L is a list or a sequence, Append(~L,x) adds the element x to the end
of L, modifying L in place. The command M := Append(L,x) leaves L
unchanged.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 19 / 31

Data structures: records

Records are a useful and flexible way to store the results of a computation
in fields indexed by field names.

For example, in carrying out a depth-first search to find a directed spanning
forest of a digraph, you might encode the current state of the search as a
record which is updated each time your procedure visits a node.

Records
context := recformat< forest, rho, counter >;

state := rec< context | // n is the number of nodes
forest := [{Integers()|} : i in [1..n]],
rho := [0 : i in [1..n]], // rank of the current node
counter := 0 // number of nodes processed
>;

At the end of the computation state‘forest should hold a sequence of
directed trees.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 20 / 31

Data structures: attributes

An attribute of a category (such as the category GrpMat of matrix groups)
is a value which can be attached to an instance of the category and
accessed via named fields in the way that the fields of a record are accessed.

> G := CoxeterGroup(GrpMat,"H4");
> G‘Order;
14400

You can define your own attributes using the command
AddAttribute(C,F), where C is a category and F is the name of the
attribute (as a string).

An example will be given on the last slide.

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 21 / 31

Data structures: associative arrays

An associative array is a sequence which can be indexed by arbitrary
members of a given universe. In other programming languages this data
structure is called a dictionary, table or hash map.

Associative arrays
> A := AssociativeArray();
> for n in [6,7,8] do
> name := "E"*IntegerToString(n);
> A[name] := CoxeterGroup(name);
> end for;
> Order(A["E6"]);
51840

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 22 / 31

Functions and procedures
In MAGMA there is distinction between functions and procedures : a function
returns (possibly several) values; a procedure does not return a value.

> BinaryOctahedral := function()
> P<x> := PolynomialRing(IntegerRing());
> K<i,q> := NumberField([x^2+1,x^2-2]);
> a := [g/2 : g in [-i-1, -i+1, -i-1, i-1]];
> c := [(1-i)/q,0,0,(1+i)/q];
> return sub< GL(2,K) | a, c >;
> end function;

A procedure can modify an argument, such as A provided it occurs in the
argument list as a reference variable, written ~A.

The following procedure adds m times row i to row j of the matrix A.
> addrow := procedure(~A, i, j, m)
> n := Ncols(A);
> for k := 1 to n do A[j,k] +:= m*A[i,k]; end for;
> end procedure;

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 23 / 31

Maps

When MAGMA constructs a subgroup of a group it also returns a map from
the subgroup to the group.

> G := Sym(5);
> H,f := sub< G | (1,2)(3,4), (1,2,3,4) >;
> f;
Mapping from: GrpPerm: H to GrpPerm: G

There are several ways to create maps. Here is one way to create the
Frobenius homomorphism of a finite field.
> q := 3;
> F<iota> := GF(q^2);
> sigma := map< F -> F | x :-> x^q >;
> sigma(iota+2);
iota^5

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 24 / 31

Control structures

while
while boolean do statements; end while;

repeat-until
repeat statements; until boolean;

for
for i := a to b by c do statements; end for;
for i in S do statements; end for;

if-then-else
if boolean then statements;
elif boolean then statements;
else statements;
end if;

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 25 / 31

Other useful statements and expressions

case expressions
case statements
select statements
error and error if statements
try — catch e — end try

continue

break

where ... is

exists

forall

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 26 / 31

MAGMA’s type system

(Almost) every object in MAGMA belongs to a category, also known as the
type of the object. In addition, every object has a parent.

> G := Alt(4); // the alternating group on {1,2,3,4}
> G;
Permutation group G acting on a set of cardinality 4
Order = 12 = 2^2 * 3

(1, 2)(3, 4)
(1, 2, 3)

> Type(G);
GrpPerm
> Parent(G);
Power Structure of GrpPerm
> Generic(G);
Symmetric group acting on a set of cardinality 4
Order = 24 = 2^3 * 3

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 27 / 31

Coercion
Suppose that V is a vector space of dimension 3 over the rational numbers.
In MAGMA the elements of V are triples of rational numbers; i.e., row
vectors. However, a triple [2,3,7] represented as a sequence will not be
recognised as an element of V .

> V := VectorSpace(Rationals(),3);
> v := [2,3,7];
> v in V;

> > v in V;
∧

Runtime error in ’in’: Bad argument types

In order to have MAGMA recognise v as an element of V it must be coerced
into V .
> vec := V!v;
> vec in V;
true

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 28 / 31

Styles of programming

MAGMA is an imperative, call by value, lexically scoped, dynamically typed
programming language, with an essentially functional subset.

An imperative language manipulates data directly by assignment statements
and control structures such as loops and if-else constructions. You can do
this in MAGMA.

A functional programming language achieves its goals by composing
functions without side-effects. In MAGMA you can do this too.

Functions are a fundamental part of MAGMA programming and they are
first-class. That is, they can be assigned to variables, stored in data
structures and returned from other functions. They can invoke themselves
recursively and participate in mutual recursion.

MAGMA also has procedures and unlike a function a procedure does not
return a value but it may modify its arguments (provided they are declared
as reference variables).

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 29 / 31

Styles of programming — closures

A closure is a function that has access to local variables from a larger
scope, namely the context in which it is defined.

> add_three := function()
> y := 3;
> return func< x | x + y >;
> end function;
> y := 7;
> add_three()(10);
13
> add_factory := function(y)
> return func< x | x + y >;
> end function;
>
> add3 := add_factory(3);
> add3(10);
13

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 30 / 31

Final example: efficient recursion
The Chebyshev polynomials Tn(z) (of the first kind) may be defined by the
recursion

Tn(z) = 2zTn−1(z)−Tn−2(z), T0(z) = 1, T1(z) = z

> AddAttribute(Rng,"cheb_poly");

> chebyshev := function(n)
> chebyshev_ := procedure(~Z,z,n)
> if not IsDefined(Z‘cheb_poly,n+1) then $$(~Z,z,n-1);
> Append(~Z‘cheb_poly, 2*z*Z‘cheb_poly[n]-Z‘cheb_poly[n-1]);
> end if;
> end procedure;
>
> P<z> := PolynomialRing(Integers());
> P‘cheb_poly := [P| 1, z];
> chebyshev_(~P,z,n);
> return P‘cheb_poly[n+1];
> end function;
> time _ := chebyshev(500);
Time: 0.030

Don Taylor (The University of Sydney) Magma Programming 13 February 2012 31 / 31

