Errata for the book

Low-dimensional geometry: from euclidean surfaces to hyperbolic knots

A somewhat frustrating fact of life is that, however hard you try, it seems impossible to get rid of all misprints and minor mistakes in a math text. This one is no exception. I am very grateful to Maria Dyachkova, Laure Flapan and, in particular, the Annapolis group (Mark Kidwell, Mark Meyerson, Dave Ruth and Max Wakefield) for pointing out a large number of them. Here is a current list of misprints and corrections. A negative line number means that one should count from the bottom of the page.

Francis Bonahon

Page 5, line 3: d(x, y) = |x - y|.

Page 13, line -8: ... at the junction of γ and γ' .)

Page 15, line 3: $\varphi(x) = (\lambda x, \lambda y)$

Page 18, line 3: ... = $\left| \ln \frac{y_1}{y_0} \right|$.

Page 20, Figure 2.4: One needs to exchange $\varphi_2 \circ \varphi_1(P)$ and $\varphi_2 \circ \varphi_1(Q)$.

Page 24, line 13: ... plane is of one of the two types ...

Page 39, line -5: ... on opposite sides of b_{PQ} , in the sense ...

Page 27, line 18 $z = -\frac{d}{c}$.

Page 43, lines 9–10: ... with euclidean radius $y \sinh r$ and with euclidean center $(x, y \cosh r)$.

Page 43, line -13: Area_{hyp}
$$(D) = \iint_{\Phi(D)} \frac{4}{(1-x^2-y^2)^2} \, dx \, dy.$$

Page 43, line -10: $\cdots = \iint_D f(\Phi(x,y)) |\det D_{(x,y)}\Phi| dx dy.$ **Page 43, line -8:** ... the determinant det $D_{(x,y)}\Phi$ of ... **Page 43, line -7:** ... differential map $D_{(x,y)}\Phi$. **Page 43, line -4:** $P = (0,1) = \Phi^{-1}(0)$. Page 45, line -9: $\|\vec{v}\|_{\text{proj}} = \frac{d_{\text{euc}}(A, B)}{2d_{\text{euc}}(A, P)d_{\text{euc}}(B, P)} \|\vec{v}\|_{\text{euc}}.$ **Page 45, line -2:** $d_{\text{proj}}(P,Q) = \frac{1}{2} \log \frac{d_{\text{euc}}(A,Q)d_{\text{euc}}(B,P)}{d_{\text{euc}}(A,P)d_{\text{euc}}(B,Q)}$. Page 51, line 21: ... each plane Π'' orthogonal ... Page 81, line 15: ... delimited by four edges, has no vertex ... Page 83, line -4: ... by spherical isometries. **Page 84, line 14:** ... of the product $X \times X$. Page 90, line 2: ... restriction ... **Page 93, line 15:** $\varphi_3(a, y) = (b, c + d - y)$. **Page 99, line -3:** ... of h and k_y and ... **Page 110, lines -4 and -3:** $\frac{\partial v}{\partial x} = -2\pi \operatorname{sech} t \sin(2\pi x), \quad \frac{\partial v}{\partial y} = 2\pi \operatorname{sech}^2 t \cos(2\pi x), \quad \frac{\partial w}{\partial x} = 2\pi \operatorname{sech} t \cos(2\pi x), \text{ and } \quad \frac{\partial w}{\partial y} = 2\pi \operatorname{sech}^2 t \sin(2\pi x).$ **Page 111, line 3:** $\int_{a}^{s_2} \|D_{z(s)}\rho(z'(s))\|_{euc} ds$ **Page 163, line -12:** $\{z \in \mathbb{H}^2; n \leq \text{Re}(z) \leq n+1\}$ **Page 163, line -6:** ... the vertical half-lines $\operatorname{Re}(z) = a_n$ and $\operatorname{Re}(z) = a_{n+1}, \ldots$ **Page 164, line -13:** ... the vertical half-line of equation $\operatorname{Re}(z) =$ a_{∞}, \ldots **Page 164, line -9:** ... along the line $\text{Im}(z) = a_{\infty} \dots [[\text{Obviously, I}]]$ am challenged when it comes to Im and Re !]]

2

Page 166, line 6: ... one easily sees that φ is bijective.

Page 166, line 7: ... that φ is actually ...

Page 183, Exercise 6.13: $U_0 = \varphi_2^{-1} \circ \varphi_4^{-1}(V_0)$

Page 188, line -6: $\leq \bar{d}'(\bar{P},\bar{Q}) + \bar{d}'(\bar{Q},\bar{R}) + 2\varepsilon$

Page 188, line -4: Since this holds for every $\varepsilon > 0, \ldots$

Page 191, line 6: Also, let \widehat{Q} denote the point of $\widehat{B}_d(P,\varepsilon)$ corresponding to $Q \in B_d(P,\varepsilon)$.

Page 191, line 11: ... the quotient map $X \to \overline{X}$ is ...

Page 191, line 13: Let $Q, Q' \in B_d(P, \varepsilon)$.

Page 193, line 13: ... so that $\gamma_{i_j} = \gamma_j^{-1}$. As a consequence, the rule $j \mapsto i_j$ defines ...

Page 200, line 5: Since $Q \in \beta_{P_0\gamma(P_0)}, \ldots$

Page 202, line 5: ... a group of isometries ...

Page 202, line -5: for every $\gamma \in \Gamma, \ldots$

Page 203, line 5: $\gamma(P_0) \in B_d(P_0, \varepsilon)$

Page 204, line 6: to construct an isometry

Page 236, line 4: $\varphi(z, u) = \left(\frac{az+b}{cz+d} - \frac{|cu|^2}{c(cz+d)(|cz+d|^2+|cu|^2)}, \dots\right)$

Page 360, line 12: ... f(x) is arbitrarily close to $f(x_0)$...

Page 360, line 13: ... sufficiently close to x_0 .