Errata for the book
 Low-dimensional geometry:
 from euclidean surfaces to hyperbolic knots

A somewhat frustrating fact of life is that, however hard you try, it seems impossible to get rid of all misprints and minor mistakes in a math text. This one is no exception. I am very grateful to Maria Dyachkova, Laure Flapan and, in particular, the Annapolis group (Mark Kidwell, Mark Meyerson, Dave Ruth and Max Wakefield) for pointing out a large number of them. Here is a current list of misprints and corrections. A negative line number means that one should count from the bottom of the page.

Francis Bonahon

Page 5, line 3: $d(x, y)=|x-y|$.
Page 13, line -8: ... at the junction of γ and γ^{\prime}.)
Page 15, line 3: $\varphi(x)=(\lambda x, \lambda y)$
Page 18, line 3: $\ldots=\left|\ln \frac{y_{1}}{y_{0}}\right|$.
Page 20, Figure 2.4: One needs to exchange $\varphi_{2} \circ \varphi_{1}(P)$ and $\varphi_{2} \circ$ $\varphi_{1}(Q)$.

Page 24, line 13: ... plane is of one of the two types ...
Page 39, line -5: \ldots on opposite sides of $b_{P Q}$, in the sense \ldots
Page 27, line $18 z=-\frac{d}{c}$.
Page 43, lines 9-10: ... with euclidean radius $y \sinh r$ and with euclidean center $(x, y \cosh r)$.

Page 43, line -13: $\operatorname{Area}_{\mathrm{hyp}}(D)=\iint_{\Phi(D)} \frac{4}{\left(1-x^{2}-y^{2}\right)^{2}} d x d y$.

Page 43, line -10: $\cdots=\iint_{D} f(\Phi(x, y))\left|\operatorname{det} D_{(x, y)} \Phi\right| d x d y$.
Page 43, line -8: ... the determinant det $D_{(x, y)} \Phi$ of \ldots
Page 43, line -7: ... differential map $D_{(x, y)} \Phi$.
Page 43, line -4: $P=(0,1)=\Phi^{-1}(0)$.
Page 45, line -9: $\|\vec{v}\|_{\text {proj }}=\frac{d_{\text {euc }}(A, B)}{2 d_{\text {euc }}(A, P) d_{\text {euc }}(B, P)}\|\vec{v}\|_{\text {euc }}$.
Page 45, line -2: $d_{\text {proj }}(P, Q)=\frac{1}{2} \log \frac{d_{\text {euc }}(A, Q) d_{\text {euc }}(B, P)}{d_{\text {euc }}(A, P) d_{\text {euc }}(B, Q)}$.
Page 51, line 21: ... each plane $\Pi^{\prime \prime}$ orthogonal...
Page 81, line 15: ... delimited by four edges, has no vertex ...
Page 83, line -4: ... by spherical isometries.
Page 84, line 14: ... of the product $X \times X$.
Page 90, line 2: ... restriction ...
Page 93, line 15: $\varphi_{3}(a, y)=(b, c+d-y)$.
Page 99, line -3: \ldots of h and k_{y} and \ldots
Page 110, lines -4 and -3: $\frac{\partial v}{\partial x}=-2 \pi \operatorname{sech} t \sin (2 \pi x), \frac{\partial v}{\partial y}=$ $2 \pi \operatorname{sech}^{2} t \cos (2 \pi x), \frac{\partial w}{\partial x}=2 \pi \operatorname{sech} t \cos (2 \pi x)$, and $\frac{\partial w}{\partial y}=2 \pi \operatorname{sech}^{2} t \sin (2 \pi x)$.
Page 111, line 3: $\int_{s_{1}}^{s_{2}}\left\|D_{z(s)} \rho\left(z^{\prime}(s)\right)\right\|_{\text {euc }} d s$
Page 163, line -12: $\left\{z \in \mathbb{H}^{2} ; n \leqslant \operatorname{Re}(z) \leqslant n+1\right\}$
Page 163, line -6: \ldots the vertical half-lines $\operatorname{Re}(z)=a_{n}$ and $\operatorname{Re}(z)=a_{n+1}, \ldots$

Page 164, line -13: ... the vertical half-line of equation $\operatorname{Re}(z)=$ a_{∞}, \ldots

Page 164, line -9: ... along the line $\operatorname{Im}(z)=a_{\infty} \ldots$ [[Obviously, I am challenged when it comes to Im and Re !]]

Page 166, line 6: ... one easily sees that φ is bijective.
Page 166, line 7: ... that φ is actually ...
Page 183, Exercise 6.13: $U_{0}=\varphi_{2}^{-1} \circ \varphi_{4}^{-1}\left(V_{0}\right)$
Page 188, line -6: $\leqslant \bar{d}^{\prime}(\bar{P}, \bar{Q})+\bar{d}^{\prime}(\bar{Q}, \bar{R})+2 \varepsilon$
Page 188, line -4: Since this holds for every $\varepsilon>0, \ldots$
Page 191, line 6: Also, let \widehat{Q} denote the point of $\widehat{B}_{d}(P, \varepsilon)$ corresponding to $Q \in B_{d}(P, \varepsilon)$.

Page 191, line 11: \ldots the quotient $\operatorname{map} X \rightarrow \bar{X}$ is \ldots
Page 191, line 13: Let $Q, Q^{\prime} \in B_{d}(P, \varepsilon)$.
Page 193, line 13: \ldots so that $\gamma_{i_{j}}=\gamma_{j}^{-1}$. As a consequence, the rule $j \mapsto i_{j}$ defines...

Page 200, line 5: Since $Q \in \beta_{P_{0} \gamma\left(P_{0}\right)}, \ldots$
Page 202, line 5: ... a group of isometries ...
Page 202, line -5: for every $\gamma \in \Gamma, \ldots$
Page 203, line 5: $\gamma\left(P_{0}\right) \in B_{d}\left(P_{0}, \varepsilon\right)$
Page 204, line 6: to construct an isometry
Page 236, line 4: $\varphi(z, u)=\left(\frac{a z+b}{c z+d}-\frac{|c u|^{2}}{c(c z+d)\left(|c z+d|^{2}+|c u|^{2}\right)}, \ldots\right)$
Page 360, line 12: $\ldots f(x)$ is arbitrarily close to $f\left(x_{0}\right) \ldots$
Page 360, line 13: ... sufficiently close to x_{0}.

