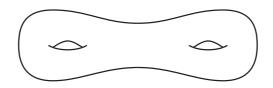
Topology & Groups Michaelmas 2008 Question Sheet 6

Questions with an asterisk * beside them are primarily aimed at 4th year students.

- 1. Recall that G*H denotes the free product of groups G and H. Let $\alpha: G \to G*H$ be one of the canonical homomorphisms. Find a homomorphism $\pi: G*H \to G$ such that $\pi\alpha = \mathrm{id}_G$. Deduce that α is injective.
- * 2. Any element of G * H is represented by a word in the alphabet $G \cup H$. We may perform the following operations to such a word, without changing the element of G * H that it represents:
 - (I) if successive letters g_1 and g_2 belong to G (or they both belong to H), then amalgamate them to form the letter g_3 , where $g_3 = g_1g_2$ in G (or H);
 - (II) if some letter is the identity in G or H, remove it.

Each of these operations shortens the word, and so eventually we will reach a stage a where they cannot be performed any further. The resulting word is $g_1h_1g_2h_2...g_nh_n$, where $g_i \in G$ and $h_i \in H$, and each g_i and each h_i is non-trivial, except possibly g_1 and/or h_n . We then say that this word is reduced. Prove that each element of G*H has a unique reduced representative. [Hint: emulate the proof of IV.8 by formulating and proving a suitable version of IV.9.]

- 3. (i) Let T be the torus, which is obtained from the square by the usual side identifications. Let D be a small open disc at the centre of the square. Let X be the space obtained from T by removing D. Let ∂D be the boundary curve of D, and let b be a basepoint on ∂D. Prove that π₁(X, b) is isomorphic to a free group on two generators.
 - (ii) What word in these generators does the loop ∂D spell?
 - (iii) Now let S be the surface 'with two handles', as shown on the following page. Show that S can be obtained by taking two copies of X and gluing them along the two copies of ∂D .
 - (iv) Deduce that $\pi_1(S)$ is an amalgameted free product.



- 4. Construct simply-connected covering spaces of the following spaces:
 - (i) the Möbius band,
 - (ii) $S^2 \vee S^1$,
 - (iii) $\mathbb{R}^2 \{\text{point}\}.$