1. If $G_{1}=\left\langle X_{1} \mid R_{1}\right\rangle$ and $G_{2}=\left\langle X_{2} \mid R_{2}\right\rangle$, supply (with proof) a presentation for $G_{1} \times G_{2}$. Deduce that if G_{1} and G_{2} are finitely presented, then so is $G_{1} \times G_{2}$.
2. Show that $\left\langle a, b \mid a b a^{-1} b^{-1}, a^{5} b^{2}, a^{2} b\right\rangle$ is the trivial group. [Hint: don't try to use Tietze transformations.]
3. Show that the group of symmetries of a regular n-sided polygon is $\left\langle a, b \mid a^{n}, b^{2}, a b a b\right\rangle$. [Hint: you will find it useful to show that $\left\langle a, b \mid a^{n}, b^{2}, a b a b\right\rangle$ has at most $2 n$ elements.]
4. Show that $\left\langle a, b \mid a b a b^{-1}\right\rangle \cong\left\langle c, d \mid c^{2} d^{2}\right\rangle$, by setting up an explicit isomorphism between them. [Hint: Note that in the first group, $(a b)(a b)=(a b a) b=b^{2}$.]
5. Prove that the push-out of

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\text { id }} \mathbb{Z} \\
& \downarrow \times 2 \\
& \mathbb{Z}
\end{aligned}
$$

is isomorphic to \mathbb{Z}.
6. Show that the group $\langle x, y \mid x y x=y x y\rangle$ is isomorphic to the push-out of

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \\
& \downarrow \times 3 \\
& \mathbb{Z}
\end{aligned}
$$

[Hint: consider the elements $x y$ and $y x y$.] Is this an amalgamated free product?
7. A group-theoretic property P is known as semi-decidable if there is an algorithm that starts with a finite presentation of a group G and either terminates with a 'yes' answer if G has property P, or does not terminate if G does not have property P. Prove that the following properties of a group are semi-decidable:
(i) being abelian;
(ii) being free;
(iii) being a specific finite group (which is given by its multiplication table);
(iv) being finite.

