Math3402 Problem set 9

Question 1: Show that any linear operator T on a finite dimensional normed space X is bounded. Hint: use the linear combinations lemma from lectures.

Question 2: Let $x, y \in \mathbb{R}^{n}$, and define an inner product by

$$
\langle x, y\rangle=g_{i j} x^{i} y^{j},
$$

where we are summing over $1 \leq i, j \leq n$. What properties must the matrix $g_{i j}$ satisfy for this to qualify as an inner product? Can $g_{i j}$ be diagonalised? Show that any inner product on \mathbb{R}^{n} may be written in this form.

Question 3: Let V be a real inner product space. Show the polarization identity

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

Challenge question: It was shown in lectures that a norm induced by an inner product satisfies the parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

Show that if a norm on a vector space V satisfies this equality, then the polarization identity may be used to define an inner product on V satisfying $\|x\|=\sqrt{\langle x, x\rangle}$. A similar result holds for complex vector spaces.

Hint: To show $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$, consider the parallelogram equality with $x=u+v$, then with $x=u-v$, and subtract the latter equation from the former. Rewrite this equation in terms of inner products, and consider what one gets by setting $z=u$, and what one can get by a substitution. To show that $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$, use the fact that $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ to show this result for α a positive integer, then extend to rational numbers, and finally to real numbers (don't forget negative numbers).

