Math3402 Problem Set 8

Question 1: Consider two non-negative numbers a_0 and b_0 . Define sequences a_n and b_n by

$$a_{n+1} = \frac{a_n + b_n}{2}, \qquad b_{n+1} = \sqrt{a_n b_n}.$$

i) What does the AM-GM inequality tell us about a_n and b_n ?

ii) Using part *i*), Show that a_n is a non-increasing sequence bounded below, while b_n is a non-decreasing sequence bounded above.

iii) Explain why this means a_n and b_n are convergent sequences, and show that their limit $M(a_0, b_0)$ is the same. $M(a_0, b_0)$ is called the arithmetic-geometric mean of a_0 and b_0 .

iv) Explain why $M(a_0, b_0) = M(\frac{a_0+b_0}{2}, \sqrt{a_0b_0}).$

Question 2: Let $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then for a, b > 0, use Jensen's inequality to show that for any $\varepsilon > 0$,

$$ab \le \varepsilon \frac{a^p}{p} + \varepsilon^{-q/p} \frac{b^q}{q}.$$

Question 3: *i*) Show that a norm is a convex function. *ii*) Show that for any normed space $(V, ||\cdot||)$, the closed unit ball

$$B_1(0) = \{x \in V : ||x|| \le 1\}$$

is a convex set.

Question 4: Show that the following are norms on \mathbb{R}^2 , and in each case sketch the closed unit ball $\overline{B}_1(0)$: *i)* $||x||_1 = |x| + |y|$ *ii)* $||x||_2 = (x^2 + y^2)^{1/2}$

iii) $||x||_{\infty} = max\{|x|, |y|\}$

Question 5: Let V be a normed space and $W \subset V$ a subspace. Show that the closure \overline{W} of W is also a subspace.