Math3402 Problem Set 8

Question 1: Consider two non-negative numbers a_{0} and b_{0}. Define sequences a_{n} and b_{n} by

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

i) What does the AM-GM inequality tell us about a_{n} and b_{n} ?
ii) Using part i), Show that a_{n} is a non-increasing sequence bounded below, while b_{n} is a non-decreasing sequence bounded above.
iii) Explain why this means a_{n} and b_{n} are convergent sequences, and show that their limit $M\left(a_{0}, b_{0}\right)$ is the same. $M\left(a_{0}, b_{0}\right)$ is called the arithmetic-geometric mean of a_{0} and b_{0}.
iv) Explain why $M\left(a_{0}, b_{0}\right)=M\left(\frac{a_{0}+b_{0}}{2}, \sqrt{a_{0} b_{0}}\right)$.

Question 2: Let $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Then for $a, b>0$, use Jensen's inequality to show that for any $\varepsilon>0$,

$$
a b \leq \varepsilon \frac{a^{p}}{p}+\varepsilon^{-q / p} \frac{b^{q}}{q} .
$$

Question 3: i) Show that a norm is a convex function.
ii) Show that for any normed space $(V,\|\cdot\|)$, the closed unit ball

$$
\bar{B}_{1}(0)=\{x \in V:\|x\| \leq 1\}
$$

is a convex set.

Question 4: Show that the following are norms on \mathbb{R}^{2}, and in each case sketch the closed unit ball $\bar{B}_{1}(0)$:
i) $\|x\|_{1}=|x|+|y|$
ii) $\|x\|_{2}=\left(x^{2}+y^{2}\right)^{1 / 2}$
iii) $\|x\|_{\infty}=\max \{|x|,|y|\}$

Question 5: Let V be a normed space and $W \subset V$ a subspace. Show that the closure \bar{W} of W is also a subspace.

