Problem Set 7

- Q59 Which of the following subsets of $C(\mathbb{R}) = C(\mathbb{R}, \mathbb{R})$ are pointwise bounded? Which are equicontinuous?
 - (a) The set $\{f_n\}$, where $f_n(x) = x + \sin(nx)$.
 - (b) The set $\{g_n\}$, where $g_n(x) = n + \sin(x)$.
 - (c) The set $\{h_n\}$, where $h_n(x) = |x|^{1/n}$.
 - (d) The set $\{k_n\}$, where $k_n(x) = n \sin(x/n)$.
- Q60 Let \mathcal{F} be a set of differentiable functions $f: [a, b] \to \mathbb{R}$ with the property that there is a constant M > 0 and a point $x_0 \in [a, b]$, such that $|f(x_0)| \leq M$ and $|f'(x)| \leq M$ for all $x \in [a, b]$ and all $f \in \mathcal{F}$.

Show that $\overline{\mathcal{F}}$ is compact in the space C[a, b]. (Hint: Use the mean value theorem.)

Q61 Let (X, \mathcal{O}) be a topological space, (Y, d) be a metric space and Fun(X, Y) be the set of all continuous functions $X \to Y$. Suppose $\mathcal{F} \subseteq \operatorname{Fun}(X, Y)$ has the property that for all $f, g \in \mathcal{F}$, the set

$$\{d(f(x), g(x)) \mid x \in X\} \subseteq \mathbb{R}$$

is bounded with respect to the Euclidean metric on \mathbb{R} . Define $d_{\infty}: \mathcal{F} \times \mathcal{F} \to \mathbb{R}$ by

$$d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}.$$

- (a) The function d_{∞} defines a metric on \mathcal{F} .
- (b) If X is compact, then the set $\mathcal{F} = C(X,Y)$ has the above property, and hence $(C(X,Y), d_{\infty})$ is a metric space.
- (c) If X is compact and Y is complete, then $(C(X,Y), d_{\infty})$ is a complete metric space. Hint: This is a little lengthy. Pick an arbitrary Cauchy sequence (f_n) in C(X,Y), and use the completeness of Y to construct a *candidate* limit function. Is this function continuous? Is it the limit of the sequence?