Problem Set 6

Q53 Let $(X_{\alpha}, \mathcal{O}_{\alpha})$ be a topological space for each $\alpha \in I$, where I is an arbitrary index set. Let

$$(X = \prod_{\alpha \in I} X_{\alpha}, \mathcal{O}_{prod})$$

be the product space. Show that $(x_n)_{n \in \mathbb{N}} \subseteq X$ converges to $x \in X$ if and only if $(p_\alpha(x_n))_{n \in \mathbb{N}} \subseteq X_\alpha$ congerges to $p_\alpha(x)$ for each $\alpha \in I$. In words: Convergence in X is the same as componentwise convergence.

- Q54 (a) Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces and give $X \times Y$ the product topology. If $A \subseteq X$ and $B \subseteq Y$ are closed subsets, show that $A \times B \subseteq X \times Y$ is closed.
 - (b) Give an example of a closed subset of $\mathbb{R} \times \mathbb{R}$ such that the projection of the set onto the first factor is not closed.
- Q55 Give an example of a non-Hausdorff space containing a compact subset that is not closed.
- Q56 Let (X, \mathcal{O}_X) be a topological space and K_1, \ldots, K_n be compact subsets of X. Show that their union, $\bigcup_{i=1}^n K_i$, is also compact.
- Q57 Let X = (0, 1) and let

$$\mathcal{O} = \{ A \subseteq \mathbb{R} \mid A = \emptyset \text{ or } A = (0,1) \text{ or } A = (0,1-1/n) \text{ for } n \ge 2 \}.$$

Show that every proper open subset of X is compact. Is X compact?

Q58 Let $X = \mathbb{R}$ and consider the co-countable topology:

 $\mathcal{O} = \{ A \subseteq \mathbb{R} \mid A = \emptyset \text{ or } \mathbb{R} \setminus A \text{ is countable} \}.$

Is [0,1] compact in (X, \mathcal{O}) ? What are the compact sets in (X, \mathcal{O}) ?