Problem Set 5

- Q45 Show that the function $\mathbb{R} \to [-1, 1]$ defined by $x \mapsto \sin(x)$ is open but not closed with respect to the usual topologies on the spaces involved.
- Q46 Find more examples of functions that are open but not closed. Similarly, find more examples of functions that are closed but not open.
- Q47 Suppose $f: Y \to X_1 \times \ldots \times X_n$ is a function, where Y and each X_k are topological spaces and the range is given the product topology. Show that f is continuous if and only if each coordinate function $p_k \circ f: Y \to X_k$ is continuous.
- Q48 Let $f: X \to Y$ be a function of topological spaces and give $X \times Y$ the product topology. Let $G(f) = \{(x, f(x)) \mid x \in X\}$ be the graph of f. Show that f is continuous if and only if the function $p_X|_{G(f)}: G(f) \to X$ is a homeomorphism, where G(f) is given the subspace topology and $p_X: X \times Y \to X$ is the coordinate projection onto X.
- Q49 Let X be a set. Given any collection $\mathcal{S} \subseteq \mathcal{P}(X)$, show that

$$\{U_1 \cap \dots \cup U_n \mid U_k \in \mathcal{S}, n \in \mathbb{N}\} \cup \{X\}$$

is a basis for a topology on X.

Q50 The following is an additional example to Question 3 on Assignment 3. Consider:

$$G = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{Q} \setminus \{0\} \right\}.$$

Show that \overline{X} is not T_0 , but it is uncountable, there are precisely six open subsets of \overline{X} and there are points in \overline{X} which are dense.

Discussion: The sets G consist of homeomorphisms of $(\mathbb{R}^2, \mathcal{O}_{\mathbb{E}})$, and each set has the structure of a group. The quotient space is often denoted \mathbb{R}^2/G , and one says that G acts on \mathbb{R}^2 . Such group actions on spaces occur naturally in many different contexts, and the examples show that the topological properties of the quotient spaces depend on the group.

- Q51 Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be topological spaces and $y_0 \in Y$. Show that (X, \mathcal{O}_X) is homeomorphic with $X \times \{y_0\}$, where the latter is given the subspace topology from the product topology on $X \times Y$.
- Q52 Let $(X_{\alpha}, \mathcal{O}_{\alpha})$ be a connected topological space for each $\alpha \in I$, where I is an arbitrary index set. Show that the product space

$$(\prod_{\alpha \in I} X_{\alpha}, \mathcal{O}_{prod})$$

is also connected.

Hint: Given $x \in X = \prod_{\alpha \in I} X_{\alpha}$, consider the set

 $S_x = \{y \in X \mid p_\alpha(y) = p_\alpha(x) \text{ for all but finitely many } \alpha\}.$

If Y is the component of X containing x, show that $S_x \subseteq Y$. Also show that $\overline{S_x} = X$.