Problem Set 4

Q31 Let (X, d) be a metric space. Show that if $A \subseteq X$ is totally bounded, then \bar{A} is also totally bounded.

Q32 Let (X, \mathcal{O}) be a second countable space. Show that every open cover of X has a countable subcover.

Q33 Suppose $\left(X, \mathcal{O}_{X}\right)$ is a separable space and $\left(Y, \mathcal{O}_{Y}\right)$ is a topological space. If there is a surjective, continuous function $f: X \rightarrow Y$, then $\left(Y, \mathcal{O}_{Y}\right)$ is also separable.

Q34 The separation properties T_{0}, \ldots, T_{4} are topological properties.
Q35 Show that the open unit ball $B_{1}((0,0)) \subset \mathbb{R}^{2}$ is homeomorphic to the open square $(-1,1) \times$ $(-1,1)$ with respect to the Euclidean topology.

Q36 Show that the open unit ball $B_{1}((0,0)) \subset \mathbb{R}^{2}$ is homeomorphic to the open upper half plane $(0, \infty) \times \mathbb{R}$ with respect to the Euclidean topology.

Q37 Suppose $\left(X, \mathcal{O}_{X}\right)$ is a topological space and $\left(Y, \mathcal{O}_{Y}\right)$ is a Hausdorff space. Let $f, g: X \rightarrow Y$ be continuous functions. Show that $\{x \in X \mid f(x)=g(x)\}$ is a closed subset of X.

Q38 Let $\left(X, \mathcal{O}_{X}\right)$ be a topological space and suppose that the subset A of X is connected (i.e. $\left(A, \mathcal{O}_{A}\right)$ is a connected topological space, where \mathcal{O}_{A} is the subspace topology).

If $B \subseteq X$ satisfies $A \subseteq B \subseteq \bar{A}$, then B is connected.
Q39 Let $\left(X, \mathcal{O}_{X}\right)$ be a topological space and suppose that the subsets A and B of X are connected.
If $\bar{A} \cap B \neq \emptyset$, then $A \cup B$ is connected.
Q40 Which of the following sets $X \subset \mathbb{R}^{2}$ are connected with respect to the subspace topology from $\left(\mathbb{R}^{2}, \mathcal{O}_{\mathbb{E}}\right)$?
(a) $X=\{(x, y) \mid x y=1$ and $x, y>0\} \cup\{(x, 0) \mid x \in \mathbb{R}\}$
(b) Let $C_{n}=\left\{(x, y) \left\lvert\,\left(x-\frac{1}{n}\right)^{2}+y^{2}=\frac{1}{n^{2}}\right.\right\}$ for each $n \in \mathbb{Z}$, and $X=\bigcup_{n \in \mathbb{Z}} C_{n}$
(c) $\quad X=((\mathbb{Q} \times \mathbb{R}) \cup(\mathbb{R} \times \mathbb{Q})) \backslash(\mathbb{Q} \times \mathbb{Q})$

Q41 Is the set $\{(x, y) \mid x=0,-1 \leq y \leq 1\} \cup\left\{\left.\left(x, \sin \frac{\pi}{x}\right) \right\rvert\, 0<x \leq 1\right\}$ connected with respect to the subspace topology from $\left(\mathbb{R}^{2}, \mathcal{O}_{\mathbb{E}}\right)$? Is it path connected?

Q42 Let $\left(X, \mathcal{O}_{X}\right)$ be a topological space. The point $p \in X$ is a cut point of X if $X \backslash\{p\}$ is disconnected. Show that the property of having a cut point is a topological property.

Q43 Let $a, b \in \mathbb{R}$ with $a<b$. Show that no two of the intervals $(a, b),(a, b]$ and $[a, b]$ are homeomorphic with respect to the subspace topology from $\left(\mathbb{R}, \mathcal{O}_{\mathbb{E}}\right)$.

Q44 Let $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ be the unit circle in \mathbb{R}^{2}, and suppose $f: S^{1} \rightarrow \mathbb{R}$ is a continuous function (with respect to the Euclidean topologies). Show that there exists a pair of antipodal points with the same image, i.e. there exists $z \in S^{1}$ such that $f(z)=f(-z)$. (Hint: adapt a trick from the lectures.)

