Problem Set 4

- Q31 Let (X, d) be a metric space. Show that if $A \subseteq X$ is totally bounded, then \overline{A} is also totally bounded.
- Q32 Let (X, \mathcal{O}) be a second countable space. Show that every open cover of X has a countable subcover.
- Q33 Suppose (X, \mathcal{O}_X) is a separable space and (Y, \mathcal{O}_Y) is a topological space. If there is a surjective, continuous function $f: X \to Y$, then (Y, \mathcal{O}_Y) is also separable.
- Q34 The separation properties T_0, \ldots, T_4 are topological properties.
- Q35 Show that the open unit ball $B_1((0,0)) \subset \mathbb{R}^2$ is homeomorphic to the open square $(-1,1) \times (-1,1)$ with respect to the Euclidean topology.
- Q36 Show that the open unit ball $B_1((0,0)) \subset \mathbb{R}^2$ is homeomorphic to the open upper half plane $(0,\infty) \times \mathbb{R}$ with respect to the Euclidean topology.
- Q37 Suppose (X, \mathcal{O}_X) is a topological space and (Y, \mathcal{O}_Y) is a Hausdorff space. Let $f, g: X \to Y$ be continuous functions. Show that $\{x \in X \mid f(x) = g(x)\}$ is a closed subset of X.
- Q38 Let (X, \mathcal{O}_X) be a topological space and suppose that the subset A of X is connected (i.e. (A, \mathcal{O}_A) is a connected topological space, where \mathcal{O}_A is the subspace topology). If $B \subseteq X$ satisfies $A \subseteq B \subseteq \overline{A}$, then B is connected.
- Q39 Let (X, O_X) be a topological space and suppose that the subsets A and B of X are connected.
 If A ∩ B ≠ Ø, then A ∪ B is connected.
- Q40 Which of the following sets $X \subset \mathbb{R}^2$ are connected with respect to the subspace topology from $(\mathbb{R}^2, \mathcal{O}_{\mathbb{E}})$?
 - (a) $X = \{(x, y) \mid xy = 1 \text{ and } x, y > 0\} \cup \{(x, 0) \mid x \in \mathbb{R}\}$
 - (b) Let $C_n = \{(x, y) \mid (x \frac{1}{n})^2 + y^2 = \frac{1}{n^2}\}$ for each $n \in \mathbb{Z}$, and $X = \bigcup_{n \in \mathbb{Z}} C_n$
 - (c) $X = ((\mathbb{Q} \times \mathbb{R}) \cup (\mathbb{R} \times \mathbb{Q})) \setminus (\mathbb{Q} \times \mathbb{Q})$
- Q41 Is the set $\{(x, y) \mid x = 0, -1 \le y \le 1\} \cup \{(x, \sin \frac{\pi}{x}) \mid 0 < x \le 1\}$ connected with respect to the subspace topology from $(\mathbb{R}^2, \mathcal{O}_{\mathbb{E}})$? Is it path connected?
- Q42 Let (X, \mathcal{O}_X) be a topological space. The point $p \in X$ is a *cut point* of X if $X \setminus \{p\}$ is disconnected. Show that the property of having a cut point is a topological property.
- Q43 Let $a, b \in \mathbb{R}$ with a < b. Show that no two of the intervals (a, b), (a, b] and [a, b] are homeomorphic with respect to the subspace topology from $(\mathbb{R}, \mathcal{O}_{\mathbb{E}})$.
- Q44 Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ be the unit circle in \mathbb{R}^2 , and suppose $f: S^1 \to \mathbb{R}$ is a continuous function (with respect to the Euclidean topologies). Show that there exists a pair of antipodal points with the same image, i.e. there exists $z \in S^1$ such that f(z) = f(-z). (Hint: adapt a trick from the lectures.)