Problem Set 2

- Q09 Let (X, d) be a metric space, and let $A \subseteq X$. Show that if the limit of each convergent sequence in A is also in A, then A is closed. (This is the reverse implication of 1.16).
- Q10 Let (X, d) be a metric space. Show that $A \subseteq X$ is bounded if and only if there are $x \in X$ and R > 0, such that $A \subseteq B_R(x)$.
- Q11 (a) A closed subset of a complete metric space is complete.(b) A complete subset of an arbitrary metric space is closed.
- Q12 [Puzzle] Find a statement using closed sets that is equivalent to the Heine-Borel property.
- Q13 Two metrics d_1 and d_2 on the non-empty set X are *equivalent* if there are constants a, b > 0, such that

$$a d_1(x,y) \le d_2(x,y) \le b d_1(x,y)$$

for all $x, y \in X$. Prove the following statements:

- (a) The sequence $(x_n)_{n \in \mathbb{N}}$ is convergent (resp. Cauchy) with respect to d_1 if and only if it is convergent (resp. Cauchy) with respect to d_2 .
- (b) The subset $A \subseteq X$ is open (resp. closed, compact) with respect to d_1 if and only if it is open (resp. closed, compact) with respect to d_2 .
- (c) The function $f: X \to Y$, where Y is a metric space, is continuous (resp. uniformly continuous) with respect to d_1 if and only if it is continuous (resp. uniformly continuous) with respect to d_2 .
- Q14 Let (X, d) be a compact metric space. Show that for every open cover $U = \{U_{\alpha} \mid \alpha \in I\}$ there exists $\varepsilon > 0$, such that for each $x \in X$ there is $\alpha \in I$ such that $B_{\varepsilon}(x) \subseteq U_{\alpha}$. The number ε is called a *Lebesgue number for U*.
- Q15 Let (X, d_X) and (Y, d_Y) be metric spaces. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by $d((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$

Prove that d is a metric on
$$X \times Y$$
. This is called the *product metric* on $X \times Y$

Q16 Let (X, d_X) and (Y, d_Y) be metric spaces. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by $d((x_1, y_1), (x_2, y_2)) = \min\{d_X(x_1, x_2), d_Y(y_1, y_2)\}.$

Is d is a metric on $X \times Y$?

Q17 Let (X, d_X) and (Y, d_Y) be metric spaces. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by $d((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2).$

Is d is a metric on $X \times Y$?

Q18 Let (X, d_X) and (Y, d_Y) be metric spaces. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by $d((x_1, y_1), (x_2, y_2)) = \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}.$

Is d is a metric on $X \times Y$?

Q19 Show that the Euclidean metric on \mathbb{R}^2 and the product metric on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ inherited from the Euclidean metric on \mathbb{R} (see Q15) are equivalent.