Problem Set 2

Q09 Let (X, d) be a metric space, and let $A \subseteq X$. Show that if the limit of each convergent sequence in A is also in A, then A is closed. (This is the reverse implication of 1.16).

Q10 Let (X, d) be a metric space. Show that $A \subseteq X$ is bounded if and only if there are $x \in X$ and $R>0$, such that $A \subseteq B_{R}(x)$.

Q11 (a) A closed subset of a complete metric space is complete.
(b) A complete subset of an arbitrary metric space is closed.

Q12 [Puzzle] Find a statement using closed sets that is equivalent to the Heine-Borel property.
Q13 Two metrics d_{1} and d_{2} on the non-empty set X are equivalent if there are constants $a, b>0$, such that

$$
a d_{1}(x, y) \leq d_{2}(x, y) \leq b d_{1}(x, y)
$$

for all $x, y \in X$. Prove the following statements:
(a) The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent (resp. Cauchy) with respect to d_{1} if and only if it is convergent (resp. Cauchy) with respect to d_{2}.
(b) The subset $A \subseteq X$ is open (resp. closed, compact) with respect to d_{1} if and only if it is open (resp. closed, compact) with respect to d_{2}.
(c) The function $f: X \rightarrow Y$, where Y is a metric space, is continuous (resp. uniformly continuous) with respect to d_{1} if and only if it is continuous (resp. uniformly continuous) with respect to d_{2}.

Q14 Let (X, d) be a compact metric space. Show that for every open cover $U=\left\{U_{\alpha} \mid \alpha \in I\right\}$ there exists $\varepsilon>0$, such that for each $x \in X$ there is $\alpha \in I$ such that $B_{\varepsilon}(x) \subseteq U_{\alpha}$. The number ε is called a Lebesgue number for U.

Q15 Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define $d:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}$ by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}
$$

Prove that d is a metric on $X \times Y$. This is called the product metric on $X \times Y$.
Q16 Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define $d:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}$ by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\min \left\{d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right\}
$$

Is d is a metric on $X \times Y$?
Q17 Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define $d:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}$ by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)
$$

Is d is a metric on $X \times Y$?
Q18 Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define $d:(X \times Y) \times(X \times Y) \rightarrow \mathbb{R}$ by

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}}
$$

Is d is a metric on $X \times Y$?
Q19 Show that the Euclidean metric on \mathbb{R}^{2} and the product metric on $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$ inherited from the Euclidean metric on \mathbb{R} (see Q15) are equivalent.

