Problem Set 1

- Q1 Let (X, d) be a metric space. Show that the axioms of a metric imply $d(x, y) \ge 0$ for all $x, y \in X$.
- Q2 Let (X, d) be a metric space. Show that below function $d': X \times X \to \mathbb{R}$ defines a metric on X.

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

- Q3 Why is \mathbb{Q}^n with the induced metric from Euclidean space \mathbb{R}^n not complete?
- Q4 Prove Proposition 1.18: If a sequence of continuous functions of metric spaces converges uniformly to a function, then the limiting function is also continuous.
- Q5 Let $X = \mathbb{R}^2$ and denote d the Euclidean metric. Let $\mathbf{0} = (0, 0)$, and define

$$d_0(x,y) = \begin{cases} d(x,y) & \text{if } x \text{ and } y \text{ lie on the same ray from the origin;} \\ d(x,\mathbf{0}) + d(\mathbf{0},y) & \text{otherwise.} \end{cases}$$

Show that d_0 is a metric on X. (This is called the SNCF metric, with Paris at the origin...)

- Q6 Let (X, d) be a metric space. Consider the function $f: [0, \infty) \to [0, \infty)$ having the following properties:
 - (a) f is non-decreasing, i.e. $f(a) \le f(b)$ if $0 \le a \le b$;
 - (b) f(x) = 0 if and only if x = 0;
 - (c) $f(a+b) \le f(a) + f(b)$ for all $a, b \in [0, \infty)$.

For $x, y \in X$, define $d_f(x, y) = f(d(x, y))$. Show that d_f is a metric on X. Moreover, show that the following functions have the above three properties: f(t) = kt, where k > 0; $f(t) = t^{\alpha}$, where $0 < \alpha \le 1$; and $f(t) = \frac{t}{t+1}$.

Q7 Let p be a prime number. Define the p-adic absolute value function $|\cdot|_p$ on \mathbb{Q} by setting $|x|_p = 0$ when x = 0 and $|x|_p = p^{-k}$ when $x = p^k \cdot \frac{m}{n}$, where m and n are non-zero integers which are not divisible by p. Show that for $x, y \in \mathbb{Q}$,

$$|x+y|_p \le \max\{|x|_p, |y|_p\},\$$

and that $d(x, y) = |x - y|_p$ defines a metric on Q. This is called the *p*-adic metric. In fact, $d(x, z) \leq \max\{d(x, y), d(y, z)\}$, which is stronger than the triangle inequality. A metric satisfying this condition is called an *ultrametric*.

Q8 Let

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right|$$

for $n, m \in \mathbb{N}$. Then d is a metric.

- (a) Let $E \subset \mathbb{N}$ be the set of positive even numbers. Find diam(E) and diam $(\mathbb{N} \setminus E)$ in (\mathbb{N}, d) .
- (b) For a fixed $n \in \mathbb{N}$, find all elements of $B_{\frac{1}{2n}}(n)$ and $B_{\frac{1}{2n}}(2n)$.