Math3402 Assignment 5

Due Thursday May 12th

Question 1: Suppose \mathbb{R}^n is equipped with a norm $\|\cdot\|$, and let x(t) be a differentiable path in \mathbb{R}^n . Show that

$$\frac{d}{dt}||x(t)|| \le \left\|\frac{d}{dt}x(t)\right\|,$$

when the left-hand-side exists. Explain why the limit can be placed inside the norm.

Question 2: Show that a normed space X is homeomorphic to the open ball $B_1(0) = \{x \in X : ||x|| < 1\} \subset X$. Hint: Consider the mapping $x \to \frac{1}{1+||x||}x$.

Question 3: Let B(X, X) be the space of bounded linear operators from X to itself and let S be the subset consisting of the invertible operators. Show that S is open in the topology induced by the operator norm.

Question 4: Let T be an element of B(X, X) (the bounded linear operators from X to X), and let W be a subset of X. Show that $T(\overline{W}) \subseteq \overline{T(W)}$. Show furthermore that if T has bounded inverse, then in fact $T(\overline{W}) = \overline{T(W)}$.