Assignment 4

Due Thursday, 21 April, at 17:00 in the assignment box for MATH3402. The box is located on **Level 3** in the Mathematics (Priestley) building (67). It is in the **white lot of boxes** (there are two lots, to find ours, turn left as you come from the stairs).

Please use a cover sheet!

Clearly state your assumptions and conclusions, and justify all steps in your work.

Marks will be deducted for sloppy working.

You may assume that $(C(X,Y), d_{\infty})$ is a complete metric space, where (X, \mathcal{O}) is a *compact* topological space, (Y, ρ) is a *complete* metric space, and

$$d_{\infty}(f,g) = \sup\{\rho(f(x),g(x)) \mid x \in X\}.$$

- Q1 Let (X, d) and (Y, ρ) be metric spaces. A surjective function $f: X \to Y$ is an *isometry* if $\rho(f(x), f(y)) = d(x, y)$ for all $x, y \in X$.
 - (a) Show that an isometry is injective.
 - (b) Show that an isometry is a homeomorphism.
 - (c) Show that the set of all isometries, $\text{Isom}(X, Y) \subseteq C(X, Y)$, is equicontinuous.
- Q2 Let (X,d) be a compact metric space. Suppose $(g_n)_{n\in\mathbb{N}}$ and $(h_n)_{n\in\mathbb{N}}$ are sequences of isometries, $g_n, h_n \colon X \to X$, which converge in $(C(X,X), d_\infty)$ to $g \colon X \to X$ and $h \colon X \to X$ respectively. Show that the sequence $(g_n \circ h_n)_{n\in\mathbb{N}}$ converges to $g \circ h$.
- Q3 Let (X, d) be a compact metric space.
 - (a) Let $(f_n)_{n \in \mathbb{N}}$ be any sequence of isometries $f_n \colon X \to X$. Show that a subsequence of $(f_n)_{n \in \mathbb{N}}$ converges in C(X, X), and that its limit is an isometry.
 - (b) Let $(f_{n_k})_{k \in \mathbb{N}}$ be a convergent subsequence from part (a), and denote the limiting isometry f. Does the sequence $(f_{n_k}^{-1})_{n \in \mathbb{N}}$ converge to f^{-1} ?