Problem Set 3

Q19 Let X be a normed space and $f \in X^{\prime}$.
Show that $f \in X^{*}$ if and only if ker f is closed (in the norm topology).
Q20 Let X be the normed space with underlying vector space \mathbb{R}^{2} and norm defined by

$$
\|(x, y)\|=\max \{|x|,|y|,|x+y|\}
$$

(a) Sketch the unit ball of this norm.
(b) Find the dual norm (i.e. the operator norm) on X^{*} by determining its unit ball.
(c) Is X isometric with X^{*} ?

Q21 Let X, Y and Z be normed spaces over the same field, and $S \in \mathfrak{B}(X, Y), T \in \mathfrak{B}(Y, Z)$. Show that $(T S)^{*}=S^{*} T^{*}$.

Q22 (a) Show that two equivalent norms on the same vector space induce the same topology.
(b) Show that if $\left(X,\|\cdot\|_{0}\right)$ is complete and $\|\cdot\|_{1}$ equivalent to $\|\cdot\|_{0}$, then $\left(X,\|\cdot\|_{1}\right)$ is complete.

Q23 Show that $C[a, b]$ with the uniform norm is complete.
Q24 Check the details in the proof of the "Completion Theorem 2.28":
(a) \sim is an equivalence relation;
(b) the vector space structure and the norm on \widehat{X} are well-defined;
(c) the candidate sequence $\left(y_{k}\right)_{k \in \mathbb{N}}$ is Cauchy and the limit of $\left(\hat{x}_{n}\right)_{n \in \mathbb{N}}$.

Q25 (a) Let X be a normed space and Z be a subspace that is closed in the norm topology. Define the quotient norm on the quotient space X / Z by:

$$
\|x+Z\|=\inf \{\|y\| \mid y \in x+Z\}=\inf \{\|x+z\| \mid z \in Z\}
$$

Show that this is a well-defined norm.
(b) Does the subspace Z need to be closed in the above?
(c) Let X and Y be normed spaces and $T \in \mathfrak{B}(X, Y)$. Let $\bar{T}: X / \operatorname{ker}(T) \rightarrow Y$ be the linear map induced by T. Let $Z=\operatorname{ker}(T)$ and give X / Z the quotient norm (why is this possible?). Show that $\bar{T} \in \mathfrak{B}(X / Z, Y)$ and $\|\bar{T}\|=\|T\|$.

Q26 Let V be the vector space of all scalar sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$ with at most finitely many non-zero terms. For $1 \leq p \leq \infty$, let $X_{p}=\left(V,\|\cdot\|_{p}\right)$, where

$$
\|x\|_{p}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p} \quad(1 \leq p<\infty)
$$

and

$$
\|x\|_{\infty}=\max \left\{\left|x_{k}\right| \mid 1 \leq k \leq \infty\right\}
$$

You may assume that each space X_{p} is a normed space.
For $1 \leq r, s \leq \infty$, let $T_{r, s}: X_{r} \rightarrow X_{s}$ be the formal identity map $T_{r, s} x=x$. Then $T_{r, s}$ is a linear operator.
(a) Show that if $r \leq s$, then $T_{r, s}$ is bounded and $\left\|T_{r, s}\right\|=1$.
(b) Show that if $r>s$, then $T_{r, s}$ is unbounded.

