Problem Set 3

- Q19 Let X be a normed space and $f \in X'$. Show that $f \in X^*$ if and only if ker f is closed (in the norm topology).
- Q20 Let X be the normed space with underlying vector space \mathbb{R}^2 and norm defined by

$$||(x,y)|| = \max\{|x|, |y|, |x+y|\}.$$

- (a) Sketch the unit ball of this norm.
- (b) Find the dual norm (i.e. the operator norm) on X^* by determining its unit ball.
- (c) Is X isometric with X^* ?
- Q21 Let X, Y and Z be normed spaces over the same field, and $S \in \mathfrak{B}(X,Y)$, $T \in \mathfrak{B}(Y,Z)$. Show that $(TS)^* = S^*T^*$.
- Q22 (a) Show that two equivalent norms on the same vector space induce the same topology.
 - (b) Show that if $(X, || \cdot ||_0)$ is complete and $|| \cdot ||_1$ equivalent to $|| \cdot ||_0$, then $(X, || \cdot ||_1)$ is complete.
- Q23 Show that C[a, b] with the uniform norm is complete.
- Q24 Check the details in the proof of the "Completion Theorem 2.28":
 - (a) \sim is an equivalence relation;
 - (b) the vector space structure and the norm on \widehat{X} are well-defined;
 - (c) the candidate sequence $(y_k)_{k \in \mathbb{N}}$ is Cauchy and the limit of $(\hat{x}_n)_{n \in \mathbb{N}}$.
- Q25 (a) Let X be a normed space and Z be a subspace that is closed in the norm topology. Define the quotient norm on the quotient space X/Z by:

 $||x + Z|| = \inf\{ ||y|| \mid y \in x + Z\} = \inf\{ ||x + z|| \mid z \in Z\}.$

Show that this is a well-defined norm.

- (b) Does the subspace Z need to be closed in the above?
- (c) Let X and Y be normed spaces and $T \in \mathfrak{B}(X,Y)$. Let $\overline{T} \colon X/\ker(T) \to Y$ be the linear map induced by T. Let $Z = \ker(T)$ and give X/Z the quotient norm (why is this possible?). Show that $\overline{T} \in \mathfrak{B}(X/Z,Y)$ and $||\overline{T}|| = ||T||$.
- Q26 Let V be the vector space of all scalar sequences $x = (x_k)_{k=1}^{\infty}$ with at most finitely many non-zero terms. For $1 \le p \le \infty$, let $X_p = (V, || \cdot ||_p)$, where

$$||x||_p = (\sum_{k=1}^{\infty} |x_k|^p)^{1/p} \qquad (1 \le p < \infty)$$

and

$$||x||_{\infty} = \max\{|x_k| \mid 1 \le k \le \infty\}.$$

You may assume that each space X_p is a normed space. For $1 \leq r, s \leq \infty$, let $T_{r,s}: X_r \to X_s$ be the formal identity map $T_{r,s}x = x$. Then $T_{r,s}$ is a linear operator.

- (a) Show that if $r \leq s$, then $T_{r,s}$ is bounded and $||T_{r,s}|| = 1$.
- (b) Show that if r > s, then $T_{r,s}$ is unbounded.