Problem Set 1

Ask for hints if you'd like some!

- Q1 Let $|| \cdot ||_1$ and $|| \cdot ||_2$ be two norms on a vector space V. Is $||x|| = \min\{||x||_1, ||x||_2\}$ necessarily a norm on V?
- Q2 If $X = (V, || \cdot ||)$ is a normed space, show that

$$d(x,y) := ||x-y||$$

defines a metric on V.

Q3 If V is a vector space and d is a translation-invariant metric on V, show that

$$||x|| := d(0, x)$$

defines a norm on V.

- Q4 Find a sequence in \mathbb{R} which converges to 0 but is not contained in any of the spaces l_p with $1 \le p < \infty$.
- Q5 Find a sequence which is contained in every sequence space l_p except for l_1 , i.e. a sequence x such that $x \in l_p$ if and only if 1 .
- Q6 Show that l_{∞}^n , l_{∞} and l_p are Banach spaces.
- Q7 Let $M \subset l_{\infty}$ be the subspace consisting of all sequences $x = (x_i)$ with at most finitely many non-zero terms. Find a Cauchy sequence in M which does not converge in M and hence conclude that M is not complete.
- Q8 For $1 \le p \le \infty$, let $|| \cdot ||_p$ be the l_p -norm on \mathbb{R}^n or \mathbb{C}^n . Show that if $1 \le p < q \le \infty$, then $||x||_p \ge ||x||_q$. For which points x do we have equality? Prove that for every $\varepsilon > 0$, there is an N such that if N , then

$$||x||_{\infty} \le ||x||_p \le (1+\varepsilon)||x||_{\infty}.$$

- Q9 Show that if $x_n \to x$ in the normed space $(X, || \cdot ||)$, then $||x_n|| \to ||x||$ in $(\mathbb{R}, |\cdot|)$.
- Q10 Let $\{x_n\}$ be a sequence of points in a Banach space X such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$. Prove that the series $\sum_{n=1}^{\infty} x_n$ converges in X.