Assignment 3

Your solutions should be submitted by the beginning of the lecture on Tuesday, 4 October 2011. Please attach a cover sheet!

- Q1 Let X be a normed space over Λ and Y be a closed subspace of finite co-dimension. Let $f: X \to \Lambda$ be a linear functional with the property that $f|_Y: Y \to \Lambda$ is continuous. Show that f is continuous.
- Q2 Let X be a normed space over Λ , and $f: X \to \Lambda$ be a non-zero linear functional on X. Show that the following are equivalent:
 - (a) $f \notin X^*$,
 - (b) $f(B(X)) = \Lambda$,
 - (c) ker f is dense in X.

Q3 Let K be a subset of l_p , where $1 \le p < \infty$. Show that the following are equivalent:

- (a) K is compact;
- (b) K is closed and for each $\varepsilon > 0$, there exist $y_1, \ldots, y_{n(\varepsilon)} \in K$, such that

$$K \subseteq \bigcup_{k=1}^{n(\varepsilon)} B(y_k;\varepsilon);$$

(c) K is closed, bounded and for each $\varepsilon > 0$, there exists $m = m(\varepsilon)$, such that

$$\sum_{k=m+1}^{\infty} |x_k|^p < \varepsilon$$

for all $x = (x_k)_{k=1}^{\infty} \in K$.