Assignment 2

"Duality and the Hahn-Banach Theorem"

Your solutions should be submitted by the beginning of the lecture on Tuesday, 13 September 2011. Please attach a cover sheet!

- Q1 Let X be a normed space, and let \overline{X} be the completion of X. Show that the respective dual spaces X^* and \overline{X}^* are isometric.
- Q2 Let Y be a subspace of the finite-dimensional normed space X. Show that $(Y^{\perp})^{\perp}$ is isometric to Y.
- Q3 Let X be a normed space.
 - (a) If $L \subseteq X$ is a closed subspace and $x \in X \setminus L$, show that span $\{L, x\}$ is also closed.
 - (b) Show that every finite dimensional subspace of X is closed.
 - (c) Let $\{x_1, \ldots, x_n\}$ be a linearly independent set in the normed space X. Show that there exists a linearly independent set $\{f_1, \ldots, f_n\}$ in X^* such that $f_i(x_j) = \delta_{ij}$ and for each $x \in \text{span}\{x_1, \ldots, x_n\},$

$$x = \sum_{i=1}^{n} f_i(x) x_i$$

Q4 Let Y be a subspace of the normed space X and $x \in X$. Show that $dist(x, Y) \ge 1$ if and only if there exists a bounded linear functional $f \in B(X^*)$ such that $Y \subseteq \ker f$ and f(x) = 1.