Lecture 29: Integration on surfaces

Let S denote the torus obtained by revolving the circe of radius b centered at distance a from the origin around the z axis. From assignments 3 and 4 , you know that S has a parameterisation given by

$$
\Phi(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u)
$$

You have already computed the derivatives of the parameterisation:

$$
\Phi_{u}=(-b \sin u \cos v,-b \sin u \sin v, b \cos u), \quad \text { and } \quad \Phi_{v}=(-(a+b \cos u) \sin v,(a+b \cos u) \cos v, 0)
$$ as well as the (matrix of the) first fundamental form:

$$
Q_{I}=\left(\begin{array}{cc}
\Phi_{u} \cdot \Phi_{u} & \Phi_{u} \cdot \Phi_{v} \\
\Phi_{u} \cdot \Phi_{v} & \Phi_{v} \cdot \Phi_{u}
\end{array}\right)=\left(\begin{array}{cc}
b^{2} & 0 \\
0 & (a+b \cos u)^{2}
\end{array}\right)
$$

One computes:

$$
\begin{aligned}
\Phi_{u u} & =(-b \cos u \cos v,-b \cos u \sin v,-b \sin u) \\
\Phi_{u v} & =(b \sin u \sin v,-b \sin u \cos v, 0) \\
\Phi_{v v} & =(-(a+b \cos u \cos v,-(a+b \cos u) \sin v, 0) \\
\left\|\Phi_{u} \wedge \Phi_{v}\right\| & =b(a+b \cos u) \\
N & =\frac{\Phi_{u} \wedge \Phi_{v}}{\left\|\Phi_{u} \wedge \Phi_{v}\right\|}=(\cos u \cos v, \cos u \sin v, \sin u)
\end{aligned}
$$

The (matrix of the) second fundamental form (with respect to Φ) is:

$$
Q_{I I}=\left(\begin{array}{cc}
\Phi_{u u} \cdot N & \Phi_{u v} \cdot N \\
\Phi_{u v} \cdot N & \Phi_{v v} \cdot N
\end{array}\right)=\left(\begin{array}{cc}
-b & 0 \\
0 & -\cos u(a+b \cos u)
\end{array}\right)
$$

(1) The Gaussian curvature of S is given by the formula

$$
K(u, v)=\frac{\cos u}{b(a+b \cos u)}
$$

(2) The "top" and "bottom" circles are precisely the areas with Gaussian curvature zero, and the "half facing the z-axis" has negative Gaussian curvature, and the "half facing outside" has positive Gaussian curvature.
(3) The Gaussian curvature of S is invariant under all isometries of \mathbb{R}^{3} that preserve S. Hence it is rotationally symmetric, as well as symmetric with respect to reflection in the $x y$-plane and reflection in any plane containing the z-axis.
(4) The torus can be written as an admissible union of the following four regions:

$$
\begin{aligned}
& R_{1}=\{(u, v) \mid 0 \leq u \leq \pi, 0 \leq v \leq \pi\} \\
& R_{2}=\{(u, v) \mid 0 \leq u \leq \pi, \pi \leq v \leq 2 \pi\} \\
& R_{3}=\{(u, v) \mid \pi \leq u \leq 2 \pi, 0 \leq v \leq \pi\} \\
& R_{4}=\{(u, v) \mid \pi \leq u \leq 2 \pi, \pi \leq v \leq 2 \pi\}
\end{aligned}
$$

(5) Using the above four regions and additivity of the integral, the area of S is

$$
\begin{aligned}
\int_{S} d S & =\int_{R_{1}} d S+\int_{R_{2}} d S+\int_{R_{3}} d S+\int_{R_{4}} d S \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} b(a+b \cos u) d u d v \\
& =(2 \pi a)(2 \pi b) \\
& =\text { (length of core circle) } \times \text { (length of cross section) } .
\end{aligned}
$$

(6) The integral of Gaussian curvature is:

$$
\begin{aligned}
\int_{S} K d S & =\int_{R_{1}} K d S+\int_{R_{2}} K d S+\int_{R_{3}} K d S+\int_{R_{4}} K d S \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \cos u d u d v \\
& =0 .
\end{aligned}
$$

