Product Measures

Q43 Let $E \in \Sigma_{X} \otimes \Sigma_{Y}$. Show that $E_{x} \in \Sigma_{Y}$ and $E^{y} \in \Sigma_{X}$.
Q44 Show that $\Sigma_{X} \otimes \Sigma_{Y} \otimes \Sigma_{Z}=\left(\Sigma_{X} \otimes \Sigma_{Y}\right) \otimes \Sigma_{Z}$.
Q45 Show that $\mu \times \nu \times \lambda=(\mu \times \nu) \times \lambda$ if all three measures are σ-finite.
Q46 Show that $\left(\mathbb{R}^{n}, \mathcal{L}^{n}, m^{n}\right)$ is the completion of

$$
(\mathbb{R}^{n}, \underbrace{\mathcal{L}^{1} \otimes \ldots \otimes \mathcal{L}^{1}}_{n}, \underbrace{m^{1} \times \ldots \times m^{1}}_{n})
$$

Q47 Show that $\underbrace{m^{1} \times \ldots \times m^{1}}_{n}=m^{n-k} \times m^{k}$ for all $0<k<n$.
Q48 Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x^{2} y$.
Show that f is Lebesgue measurable on $X=[0,3] \times[1,2]$ and that $\int_{X} f d m^{2}=\frac{27}{2}$.
Q49 Define $f:[0,1]^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}0, & \text { if } x=0 \text { or } y=0 \\ \frac{x-y}{(x+y)^{3}}, & \text { if } x \neq 0 \text { and } y \neq 0\end{cases}
$$

Show that f is (a) not Riemann integrable, (b) Lebesgue measurable, (c) not Lebesgue integrable.
Also show that the iterated integrals

$$
\iint f d x d y \quad \text { and } \quad \iint f d y d x
$$

exist.

