Modes of convergence

Q35 The following examples were given in the lecture:

- (1) $f_n = n^{-1}\chi_{(0,n)},$
- (2) $f_n = \chi_{(n,n+1)},$
- (3) $f_n = n\chi_{[0,1/n]},$
- (4) $f_n = \chi_{[i2^{-k},(i+1)2^{-k}]}$, where $n = 2^k + i$ and $0 \le i < 2^k$.

Verify that the convergence $f_n \to 0$ is (a) uniform but not in L^1 in (1), (b) pointwise but not uniform or L^1 in (2), (c) almost everywhere but not everywhere or L_1 in (3), and (d) in L^1 but not almost everywhere in (4).

Then show that the sequence (f_n) in (1), (3) and (4) satisfies $f_n \to 0$ in measure. Also show that the sequence (f_n) in (2) is not Cauchy in measure.

- Q36 Show that $f_n \to f$ almost uniformly implies that $f_n \to f$ almost everwhere.
- Q37 Show that $f_n \to f$ almost uniformly implies that $f_n \to f$ in measure.
- Q38 Show that $f_n \to f$ in measure implies that a subsequence of (f_n) converges to f almost uniformly.
- Q39 Suppose that $|f_n| \leq g \in L^1(\mu)$ and $f_n \to f$ in measure. Show: (a) $\int f = \lim \int f_n$, (b) $f_n \to f$ in L^1 .
- Q40 If μ is σ -finite and $f_n \to f$ almost everywhere, then there exist measurable sets $E_k \subseteq X$, such that $\mu \left(\left(\bigcup_{k=1}^{\infty} E_k \right)^c \right) = 0$ and $f_n \to f$ uniformly on each E_k .
- Q41 Let μ be counting measure on \mathbb{N} , and $f_n, f \colon \mathbb{N} \to \mathbb{C}$ be measurable functions. Then $f_n \to f$ in measure if and only if $f_n \to f$ uniformly.
- Q42 Suppose (X, Σ, μ) is a measure space with $\mu(X) < \infty$. For measurable functions $f, g: X \to \mathbb{C}$, define

$$d(f,g) = \int \frac{|f-g|}{1+|f-g|} d\mu.$$

- (a) Show that d defines a metric on the set of equivalence classes of complex-valued, measurable functions on X, where two functions are considered equivalent if they are equal almost everywhere.
- (b) Show that $[f_n] \to [f]$ with respect to this metric if and only if $f_n \to f$ in measure.