Signed measures and all that

Q27 Let (X, Σ, μ) be a measurable space and $f: X \to \mathbb{R}^*$ be a measurable function with the property that $\int f$ is defined. Show that

$$\nu(E) = \int_E f d\mu$$

defines a signed measure on (X, Σ) .

- Q28 Let μ_1 and μ_2 be measures on (X, Σ) and suppose that at least one of them is finite. Show that $\mu_1 - \mu_2$ is a signed measure on (X, Σ) .
- Q29 Let μ be a signed measure on (X, Σ) .

(a) If $(A_k) \subseteq \Sigma$ is an increasing sequence, then $\mu(\bigcup_{k \in \mathbb{N}} A_k) = \lim_{k \to \infty} \mu(A_k)$.

(b) If $(A_k) \subseteq \Sigma$ is a decreasing sequence and $\mu(A_1) < \infty$, then $\mu(\bigcap_{k \in \mathbb{N}} A_k) = \lim_{k \to \infty} \mu(A_k)$.

- Q30 Let μ and ν be signed measures on (X, Σ) .
 - (a) $A \in \Sigma$ is null for μ if and only if $|\mu|(A) = 0$.
 - (b) $\mu \perp \nu$ if and only if $|\mu| \perp \nu$ if and only if $(\mu^+ \perp \nu \text{ and } \mu^- \perp \nu)$
- Q31 Let μ be a signed measure on (X, Σ) , and $X = P \cup N$ be a Hahn decomposition for μ . Let $f = \chi_P \chi_N$. Show that for all $A \in \Sigma$,

$$\mu(A) = \int_A f d|\mu|.$$

- Q32 Let ν be a signed measure on (X, Σ) and μ be a (positive) measure.
 - (a) $\nu \ll \mu$ if and only if $|\nu| \ll \mu$ if and only if $(\nu^+ \ll \mu \text{ and } \nu^- \ll \mu)$
 - (b) $\nu \ll \mu$ and $\nu \perp \mu$ implies $\nu = 0$.
- Q33 Let (ν_k) be a sequence of (positive) measures on (X, Σ) and μ be a (positive) measure.
 - (a) If $\nu_k \perp \mu$ for all k, then $(\sum \nu_k) \perp \mu$.
 - (b) If $\nu_k \ll \mu$ for all k, then $(\sum \nu_k) \ll \mu$.
- Q34 Lemma 3.15 states: "If ν is a finite signed measure and μ a positive measure, then $\nu \ll \mu$ if and only if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies $|\nu(E)| < \varepsilon$."

It was stated that finiteness is only needed for the forward direction. Show that it fails when ν is not finite, by considering the following two examples:

- (a) $d\nu(x) = \frac{dx}{x}$ and $d\mu(x) = dx$ on (0,1) with the Borel σ -algebra;
- (b) $\nu = \text{counting measure and } \mu(A) = \sum_{n \in A} 2^{-n} \text{ on } \mathbb{N} \text{ with } \mathcal{P}(\mathbb{N}).$