Assignment 2

Your solutions should be submitted by the beginning of the lecture on Monday, 6 September 2010.

Q1 Consider $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, where *m* is Lebesgue measure, and denote $(\mathbb{R}, \mathcal{L}, m)$ the completion. Show that for each $A \in \mathcal{L}$, we have

$$m(A) = \inf\{m(U) \mid A \subseteq U \text{ and } U \text{ is open}\}$$
$$= \sup\{m(K) \mid K \subseteq A \text{ and } K \text{ is compact}\}$$

- Q2 Let $A \subset \mathbb{R}$ be a Lebesgue measurable set of positive measure. Prove the following:
 - (a) A contains a non-measurable set.
 - (b) For every r < 1, there is an open interval I such that $m(A \cap I) > rm(I)$.
 - (c) The set $\{x y \mid x, y \in A\}$ contains an interval centred at 0.
- Q3 Let (X, Σ) be a measurable space and consider \mathbb{R}^* with the Borel σ -algebra.
 - (a) Show that $f: X \to \mathbb{R}^*$ is measurable if and only if the restriction of f to $f^{-1}(\mathbb{R})$ is measurable and both $f^{-1}(\{\infty\})$ and $f^{-1}(\{-\infty\})$ are in Σ .
 - (b) Show that if $f, g: X \to \mathbb{R}^*$ are measurable, then fg is also measurable, where we use the convention $0 \cdot (\pm \infty) = 0$.
 - (c) Show that if $f, g: X \to \mathbb{R}^*$ are measurable, then the function h defined as follows is also measurable. Fix $a \in \mathbb{R}^*$ and let

$$h(x) = \begin{cases} a & \text{if } (f(x), g(x)) = \pm(\infty, -\infty) \\ f(x) + g(x) & \text{otherwise} \end{cases}$$

Q4 Use the Monotone Convergence Theorem from the lecture on Monday, 30 August, to prove the following version of Fatou's Lemma:

If $(f_n)_n$ is a sequence of measurable, non-negative functions $(X, \Sigma) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then

$$\int (\liminf f_n) \le \liminf \int f_n.$$