Assignment 1

Your solutions should be submitted by the beginning of the lecture on Thursday, 12 August 2010.

The first two questions use the following definition. The Borel σ -algebra of \mathbb{R}^n is the smallest σ -algebra of \mathbb{R}^n containing the open subsets of \mathbb{R}^n . It is denoted $\mathcal{B}(\mathbb{R}^n)$. Recall that if for some set $S, \mathcal{E} \subseteq \mathcal{F} \subseteq \mathcal{P}(S)$, then $\Sigma(\mathcal{E}) \subseteq \Sigma(\mathcal{F})$.

Q1 Show that $\mathcal{B}(\mathbb{R})$ is generated by each of the following sets:

- (a) the open intervals: $\mathcal{E}_1 = \{(a, b) \mid a < b\},\$
- (b) the closed intervals: $\mathcal{E}_2 = \{[a, b] \mid a < b\},\$
- (c) the half-open intervals: $\mathcal{E}_3 = \{(a, b) \mid a < b\}$ or $\mathcal{E}_4 = \{[a, b) \mid a < b\}$,
- (d) the open rays: $\mathcal{E}_5 = \{(a, \infty) \mid a \in \mathbb{R}\}$ or $\mathcal{E}_6 = \{(-\infty, a) \mid a \in \mathbb{R}\},\$
- (e) the closed rays: $\mathcal{E}_7 = \{[a, \infty) \mid a \in \mathbb{R}\}$ or $\mathcal{E}_8 = \{(-\infty, a] \mid a \in \mathbb{R}\}.$
- Q2 Let $p_k: \mathbb{R}^n \to \mathbb{R}$ be the k^{th} coordinate projection. Then define $\otimes_{k=1}^n \mathcal{B}(\mathbb{R})$ to be the smallest σ -algebra on \mathbb{R}^n containing the set:

$$\{p_k^{-1}(E_k) \mid E_k \in \mathcal{B}(\mathbb{R}), 1 \le k \le n\}.$$

Show that

$$\mathcal{B}(\mathbb{R}^n) = \bigotimes_{k=1}^n \mathcal{B}(\mathbb{R}).$$

Q3 Let $S = \{1, 2, 3, 4\}$, and

$$\mathcal{E} = \{\{1, 2\}, \{2, 4\}, \{1, 3\}, \{3, 4\}\}.$$

Find two distinct measures on $\Sigma(\mathcal{E})$, which agree on \mathcal{E} .

Q4 Give a complete proof of the "Completion of measure" theorem 1.15.