Problem Set 4

- Q1 Show that two equivalent norms on the same vector space induce the same topology.
- Q2 Show that if $(X, || \cdot ||_0)$ is complete and $|| \cdot ||_1$ equivalent to $|| \cdot ||_0$, then $(X, || \cdot ||_1)$ is complete.
- Q3 (a) Find two normed spaces that are algebraically isomorphic, but not topologically isomorphic.
 - (b) Find two normed spaces that are topologically isomorphic, but not isometrically isomorphic.
- Q4 How is the Banach–Mazur distance between X and Y related to the Banach–Mazur distance between X^* and Y^* ?
- Q5 Let X be a topological space.
 - (a) Show that $Y \subseteq X$ is dense if and only if for each non-empty, open subset $U \subseteq X$: $Y \cap U \neq \emptyset$.
 - (b) Show that the intersection of finitely many open and dense sets in X is open and dense in X.
- Q6 Show that Version 2 of the Baire Category Theorem implies Version 1.
- Q7 Let X be a topological space and $Y \subseteq X$. Show that the following are equivalent:
 - (a) Y is no-where dense in X.
 - (b) $X \setminus \overline{Y}$ is open and dense in X.
 - (c) $X \setminus Y$ contains an open and dense set.
 - (d) $X \setminus \overline{(X \setminus \overline{Y})} = \emptyset$
 - (e) $Y \subset \overline{(X \setminus \overline{Y})}$

Q8 Let $B = B(l_1)$. Show that B as a subset of l_2 is closed and has empty interior. Conclude that l_1 as a subset of l_2 is meagre and that

$$\{x \in l_2 \mid \sum |x_i| = \infty\}$$

is dense in l_2 .

Q9 Let X be a normed space and $S \subseteq X$. Show that if $\{f(x) \mid x \in S\}$ is bounded for each $f \in X^*$, then S is bounded.