Problem Set 2

Ask for hints if you'd like some!

Q1 Show that a linear operator between two normed spaces is continuous if and only if it is continuous at some point.

Q2 Show that $\mathfrak{B}(X, Y)$ is a subspace of $\mathfrak{L}(X, Y)$.
Q3 Verify that the operator norm is indeed a norm and check that the five (or six?) given descriptions are all equivalent.

Q4 Let $X=(C[a, b],\|\cdot\|)$, where $C[a, b]$ is the real vector space of all continuous functions defined on the interval $[a, b]$, and

$$
\|f\|=\max _{t \in[a, b]}|f(t)|
$$

is the supremum norm. Show that

$$
I(f)=\int_{a}^{b} f(t) d t
$$

is a bounded linear functional and determine $|\mid I \|$.
Q5 Given a linear operator $T: X \rightarrow Y$, recall that the adjoint $T^{*}: Y^{*} \rightarrow X^{*}$ satisfies:

$$
\left\langle x, T^{*} F\right\rangle=\langle T x, F\rangle
$$

for all $x \in X$ and all $F \in Y^{*}$.
(a) Show that T^{*} is the unique linear operator $Y^{*} \rightarrow X^{*}$ satisfying this equality.
(b) Show that $\left\|T^{*}\right\| \leq\|T\|$.
(c) Show that $\left\|T^{*}\right\|=\|T\|$.

Q6 For $T \in \mathfrak{B}(X, Y)$ define

$$
\gamma(T)=\inf \left\{\left.\frac{\|T x\|}{\|x\|} \right\rvert\, x \neq 0\right\}
$$

Show that T is invertible with $T^{-1} \in \mathfrak{B}(Y, X)$ if and only if T is surjective and $\gamma(T)>0$.

Q7 Let $p \geq 1$ and let R and L be the right and left shift operators on l_{p} :

$$
\begin{aligned}
R\left(x_{1}, x_{2}, x_{3}, \ldots\right) & =\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \\
L\left(x_{1}, x_{2}, x_{3}, \ldots\right) & =\left(x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

Show that
(a) R and L are linear and bounded and find $\|R\|$ and $\|L\|$;
(b) $L R=I$ but $R L \neq I$;
(c) $\left\|L^{n} x\right\| \rightarrow 0$ for each $x \in l_{p}$, but $\left\|L^{n}\right\|$ does not converge to zero.

Q8 Let $X=C^{1}[0,1]$ be the vector space of all continuous differentiable functions and $Y=C[0,1]$. Let $\|\cdot\|$ be the supremum norm on both X and Y, and define on X the norm

$$
\|f\|_{1}=\|f\|+\left\|f^{\prime}\right\|
$$

where $f^{\prime}(t)$ is the derivative with respect to t. Let D be the differential operator $D(f)=f^{\prime}$. Show that
(a) $D:\left(X,\|\cdot\|_{1}\right) \rightarrow(Y,\|\cdot\|)$ is a bounded linear operator with $\|D\|=1$, and (b) $D:(X,\|\cdot\|) \rightarrow(Y,\|\cdot\|)$ is an unbounded linear operator.

