Problem Set 1

Ask for hints if you'd like some!

Q1 Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on a vector space V.
Is $\|x\|=\min \left\{\|x\|_{1},\|x\|_{2}\right\}$ necessarily a norm on V ?
Q2 If $X=(V,\|\cdot\|)$ is a normed space, show that

$$
d(x, y):=\|x-y\|
$$

defines a metric on V.
Q3 If V is a vector space and d is a translation-invariant metric on V, show that

$$
\|x\|:=d(0, x)
$$

defines a norm on V.
Q4 A subset S of a vector space is convex if for all $x, y \in S$, we have

$$
\{\alpha x+(1-\alpha) y \mid 0 \leq \alpha \leq 1\} \subset S .
$$

(a) Show that $B(X)=\{x \in X \mid\|x\| \leq 1\}$ is convex, where $X=(V,\|\cdot\|)$ is a normed space.
(b) Use (a) to show that the function $\|\cdot\|: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\|(a, b)\|=(\sqrt{|a|}+\sqrt{|b|})^{2}
$$

does not define a norm on \mathbb{R}^{2}.

Q5 Show that l_{∞}^{n} and l_{∞} are Banach spaces.
Q6 Let $M \subset l_{\infty}$ be the subspace consisting of all sequences $x=\left(x_{i}\right)$ with at most finitely many non-zero terms. Find a Cauchy sequence in M which does not converge in M and hence conclude that M is not complete.

Q7 For $1 \leq p \leq \infty$, let $\|\cdot\|_{p}$ be the $l_{p}-$ norm on \mathbb{R}^{n} or \mathbb{C}^{n}. Show that if $1 \leq p<q \leq \infty$, then $\|x\|_{p} \geq\|x\|_{q}$. For which points x do we have equality?
Prove that for every $\varepsilon>0$, there is an N such that if $N<p<\infty$, then

$$
\|x\|_{\infty} \leq\|x\|_{p} \leq(1+\varepsilon)\|x\|_{\infty} .
$$

