Problem Set 1

Ask for hints if you'd like some!

- Q1 Let $||\cdot||_1$ and $||\cdot||_2$ be two norms on a vector space V. Is $||x|| = \min\{||x||_1, ||x||_2\}$ necessarily a norm on V?
- Q2 If $X = (V, || \cdot ||)$ is a normed space, show that

$$d(x,y) := ||x - y||$$

defines a metric on V.

Q3 If V is a vector space and d is a translation-invariant metric on V, show that

$$||x|| := d(0,x)$$

defines a norm on V.

Q4 A subset S of a vector space is *convex* if for all $x, y \in S$, we have

$$\{\alpha x + (1 - \alpha)y \mid 0 < \alpha < 1\} \subset S.$$

- (a) Show that $B(X) = \{x \in X \mid ||x|| \le 1\}$ is convex, where $X = (V, ||\cdot||)$ is a normed space.
- (b) Use (a) to show that the function $||\cdot||: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$||(a,b)|| = (\sqrt{|a|} + \sqrt{|b|})^2$$

does not define a norm on \mathbb{R}^2 .

- Q5 Show that l_{∞}^n and l_{∞} are Banach spaces.
- Q6 Let $M \subset l_{\infty}$ be the subspace consisting of all sequences $x = (x_i)$ with at most finitely many non-zero terms. Find a Cauchy sequence in M which does not converge in M and hence conclude that M is not complete.
- Q7 For $1 \le p \le \infty$, let $||\cdot||_p$ be the l_p -norm on \mathbb{R}^n or \mathbb{C}^n . Show that if $1 \le p < q \le \infty$, then $||x||_p \ge ||x||_q$. For which points x do we have equality?

Prove that for every $\varepsilon > 0$, there is an N such that if N , then

$$||x||_{\infty} \le ||x||_p \le (1+\varepsilon)||x||_{\infty}.$$