Assignment 3

Your solutions should be submitted by the beginning of the lecture on Wednesday, 23 September 2009.

Q1 Let X be a set and $\mathcal{F}_{b}(X)$ be the real vector space of all bounded, real-valued functions on X. For each $f \in \mathcal{F}_{b}(X)$, let

$$
\|f\|=\sup _{x \in X}|f(x)| .
$$

You may assume that $\left(\mathcal{F}_{b}(X),\|\cdot\|\right)$ is a normed space.
(a) Show that $\left(\mathcal{F}_{b}(X),\|\cdot\|\right)$ is complete.
(b) Suppose that (X, d) is a metric space and fix $a \in X$. For $x \in X$, define the function $f_{x}: X \rightarrow \mathbb{R}$ by:

$$
f_{x}(t)=d(x, t)-d(a, t)
$$

Show that $f_{x} \in \mathcal{F}_{b}(X)$, and that the map $x \rightarrow f_{x}$ is an isometry onto its image (where $\mathcal{F}_{b}(X)$ is given the metric induced by the norm). Conclude that X is homeomorphic to a subset of $\mathcal{F}_{b}(X)$, where both spaces are given the induced topologies.
(c) Discuss differences and analogies of (b) with the result that every normed space is isometric to a subspace of its double-dual.

Q2 (a) Let X be a normed space and $S \subseteq X$. Show that if $\{f(x) \mid x \in S\}$ is bounded for each $f \in X^{*}$, then S is bounded. (Yes, this is Q9 on Set 4.) Is the converse also true?
(b) Use the previous part to show that if two norms on a vector space V are not equivalent, then there is a linear functional on V which is continuous with respect to one of the norms and discontinuous with respect to the other.

Q3 Let X be a normed space over $\Lambda(\mathbb{R}$ or $\mathbb{C})$, and $f: X \rightarrow \Lambda$ be a non-zero linear functional on X. Show that the following are equivalent:
(a) $f \notin X^{*}$,
(b) $f(B(X))=\Lambda$,
(c) $\operatorname{ker} f$ is dense in X.

Q4 Let K be a subset of l_{p}, where $1 \leq p<\infty$. Show that the following are equivalent:
(a) K is compact;
(b) K is closed and for each $\varepsilon>0$, there exist $y_{1}, \ldots, y_{n(\varepsilon)} \in K$, such that

$$
K \subseteq \bigcup_{k=1}^{n(\varepsilon)} B\left(y_{k} ; \varepsilon\right) ;
$$

(c) K is closed, bounded and for each $\varepsilon>0$, there exists $m=m(\varepsilon)$, such that

$$
\sum_{k=m+1}^{\infty}\left|x_{k}\right|^{p}<\varepsilon
$$

for all $x=\left(x_{k}\right)_{k=1}^{\infty} \in K$.
Hints:
-Show " a) $\Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{a}) . "$
-Since l_{p} is complete, K is compact if and only if it is closed and every sequence in K contains a Cauchy sequence.

