
Complex Analysis (620-413):
Riemann mapping theorem and Riemann surfaces

Stephan Tillmann

These notes are compiled for an Honours course in complex analysis given by the
author at the University of Melbourne in Semester 2, 2007. Covered are the Riemann
mapping theorem as well as some basic facts about Riemann surfaces. The text is
based on the books titled “Complex Analysis” by Ahlfors [1] and Gamelin [2].

1 The Riemann mapping theorem

1.1 Biholomorphic maps

A domain is an open, path connected subset of the complex plane.

Definition 1.1 (Biholomorphic) Domains U and V are said to be biholomorphic if
there is a holomorphic, bijective function f : U → V whose inverse is also holomor-
phic. Such a function f is also said to be biholomorphic (onto its image).

Recall that a map f : U → C is conformal (or angle-preserving) at z0, if it preserves
oriented angles between curves through z0; oriented meaning that not only the size
but also the sense of any angle is preserved. Roughly speaking, infinitesimally small
figures are rotated or stretched but not reflected by a conformal mapping.

If U is an open subset of the complex plane, then a function f : U → C is conformal
if and only if it is holomorphic and its derivative is everywhere non-zero on U. If f
is antiholomorphic (that is, the conjugate of a holomorphic function), it still preserves
the size of angles, but it reverses their orientation.

Lemma 1.2 If f : U →V is a biholomorphic map, then f is conformal. The domains
U and V are accordingly also termed conformally equivalent.

Proof Since f : U → V is holomorphic with holomorphic inverse, we have that f ◦
f−1 : V → V is holomorphic. Taking the derivative of both sides of f ( f−1(z)) = z
gives f ′( f−1(z))( f−1)′(z) = 1. This implies that f ′(w) 6= 0 for all w ∈U and hence
f is conformal. �
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Lemma 1.3 Let U ⊂C be a domain and f : U →C be a holomorphic, injective map.
Then f is biholomorphic onto its image, f (U).

Proof First note that since U is open and f injective, f is not constant. Whence V =
f (U) is open. (Recall the open mapping theorem: If f is a non-constant holomorphic
map on a domain U, then the image under f of any open set in U is open.) Denote
the inverse of f by g. It remains to show that g is holomorphic.

First assume that f ′(z0) = 0 for some z0 ∈U, and let w0 = f (z0). Then f (z)−w0 has
a zero of order m ≥ 2 at z0. So f (z) = w0 +(z− z0)mh(z), where h is holomorphic at
z0 with h(z0) 6= 0. But this implies that f is not injective in a small neighbourhood of
z0 : To see this, choose a holomorphic branch of h(z)1/m and let g(z) = (z−z0)h(z)1/m.
The latter has a simple zero at z0, so g′(z0) 6= 0 and by the inverse function theorem g
is injective near z0. Whence f (z) near z0 is the composition of g followed by z → zm

followed by z → z+w0. It follows that f ′(z0) 6= 0 for all z0 ∈U.

Now one can use the definition of the derivative together with the fact that f is injective
to show that g is differentiable. Moreover, if f (z) = w, then g′(w) = ( f ′(z))−1. �

It is shown in the above proof that f injective near z0 implies that f ′(z0) 6= 0. The
converse is also true:

Let f be holomorphic at z0 and satisfy f ′(z0) 6= 0. Then

detJ f (z) = det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
= | f ′(z)|2 6= 0,

where the second equality follows from the Cauchy–Riemann equations. The inverse
function theorem from multi-variable calculus now implies that there is a small disc
D(z0;r) such that the restriction of f to this disc is injective.

1.2 The Riemann mapping theorem

Denote the (open) unit disc, the unit circle and the closed unit disc respectively by

D2 = {z ∈ C| ||z||< 1}, S1 = ∂D2, and D2 = D2∪S1.

Exercise 1 Define a continuous, bijective map f : D2 → C which has a continuous
inverse. Is this map holomorphic? Is this map conformal?

Theorem 1.4 (Riemann mapping theorem) Let U ⊂C be a simply connected, proper,
open subset. Then U is biholomorphic to the interior of the unit disc. Moreover, if one
fixes z0 ∈U and ϕ ∈ [0,2π), then there is a unique such map f with f (z0) = 0 and
the argument of the derivative of f at z0, arg f ′(z0), is equal to ϕ.
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The statement is not true in higher dimensions. For example, the open unit ball D2n =
{z∈Cn| ||z||< 1} and the product of n–factors D2× ...×D2 are not biholomorphically
equivalent for n > 1.

Simply connected open sets in the plane can be highly complicated, for instance the
boundary can be a nowhere differentiable fractal curve of infinite length, even if the
set itself is bounded. The fact that such a set can be mapped in an angle-preserving
manner to the nice and regular unit disc seems counter-intuitive.

Since the automorphisms of D2 are the hyperbolic rigid motions, it follows that there
exists a three-parameter family of injective, conformal mappings between any simply
connected domain and D2.

Corollary 1.5 Two simply connected domains in the plane are homeomorphic.

The Riemann mapping theorem can be generalized to the context of Riemann surfaces:
If U is a simply-connected open subset of a Riemann surface, then U is biholomorphic
to one of the following: the Riemann sphere, the complex plane or the open unit disk.
This is known as the Uniformization Theorem, and will hopefully be addressed towards
the end of these notes.

Exercise 2 If z0 is real and U is symmetric with respect to the real axis, prove by
uniqueness that the function f in the statement of the Riemann Mapping Theorem
satisfies

f (z̄) = f̄ (z)

if arg f ′(z0) = 0. Find a formula relating f (z̄) and f̄ (z) in the general case.

1.3 Some examples

Round neighbourhood to unit disc: A conformal map from D(z0;r) onto D2 as a
composition of translation and dilation: First apply the translation z → z− z0. This
is a biholomorphic map taking D(z0;r) → D(0,r). Next apply the dilation z → z

r .
This is again a biholomorphic map taking D(0,r) → D(0,1) = D2. The composition
z → 1

r (z− z0) is the desired map.

Upper halfspace to unit disc: The upper half space is:

IH = {z ∈ C| ℑ(z) > 0}
= {z ∈ C| 0 < argz < π}.
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Figure 1: Conformal mapping of a hemisphere

The map

ϕ(z) =
z− i
z+ i

takes the upper half space onto D2. Note that ϕ(0) = −1, ϕ(−1) = i, ϕ(∞) = 1,
ϕ(1) =−i. Also ϕ(i) = 0. Point out the inverse images of the coordinate axes.

An extension to the boundary can be obtained when the boundary is piecewise analytic
(more later). Often it is easier to map a region first to the upper halfspace and then to
use the above map.

Sector to upper half space: Any sector can first be mapped by a translation and
rotation to a standard sector Sα = {z ∈ C| 0 < argz < α}, where 0 < α < 2π. Let
β = π/α, then z→ zβ maps Sα to the upper half space. Note that this map cannot be
conformal at the corner of the sector!

1.4 Applications to cartography

The interior of a square can be mapped conformally onto D2. In particular, there is
a conformal map from a hemisphere to the unit square; first discovered by Charles
Sanders Peirce in 1879. The pictures in Figure 1 are due to Furuti [3]. Shown in the
figure is also a conformal map from the lower hemisphere, divided into four triangles.
The whole map (centre square plus four triangles) is conformal everywhere except for
the midpoints of the boundary edges; here the equator and four meridians make a right
angle instead of a straight one. The whole map can be used to tesselate the plane.
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1.5 The hypotheses are necessary

Connected: Any two points z,w∈D2 can be connected by a path γ. Since f : U →D2

is bijective, for any u,v ∈U, take z = f (u),w = f (v). Then f−1 ◦ γ : I →U is a path
with endpoints u,v.

Simply connected: Let γ : S1 →U be a closed curve. Then f ◦ γ : S1 → D2 is con-
tractible; denote a homotopy by H : [0,1]×S1 →D2. Then f−1 ◦H gives a homotopy
contracting γ.

Proper subset: Liouville’s theorem (Every bounded entire function is constant. That
is, every holomorphic function f for which there exists a positive number M such that
| f (z)| ≤M for all z ∈ C is constant.)

Open: Take the unit square {z ∈ C|0 ≤ ℜ(z) ≤ 1,0 ≤ ℑ(z) ≤ 1} and the closed unit
disc; at corners have problem with angles! This, in particular, implies that derivative
at corners goes to zero.

2 Proof of the Riemann mapping theorem

2.1 Proof of the uniqueness part

If f1 and f2 are two such maps, then the composition

g = f1 ◦ f−1
2 : D2 → D2

is a map with g(0) = 0 and argument of g′(0) is zero. By the Schwarz Lemma, an
automorphism of the unit disc fixing the origin is of the form z→ az for some a ∈ S1.
It follows that a = 1, so g(z) = z and hence f1 = f2.

2.2 Outline of the remaining proof

It follows from the proof of the uniqueness part, that if a biholomorphic map f exists,
then (up to a rotation) one may assume that the argument of f ′(z0) is zero. Whence
f ′(z0) is a positive real number, written f ′(z0) > 0.

It remains to prove the existence of a map. The main idea is to consider the family

F = { f : U → D2| f is holomorphic, injective, f (z0) = 0, f ′(z0) > 0}.

Each element f of the family is biholomorphic onto its image f (U)⊆D2 – the image
of the desired map is D2. It will be shown that the desired map is the unique element
in F whose derivative at z0 is maximal. The proof has three parts:
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(1) Show that F is non-empty.

(2) Show that there is a unique element whose derivative is maximal.

(3) Show that this element has the required properties.

2.3 F is non-empty

This part introduces some nice techniques that are useful in other contexts, and are
essentially applications of Cauchy’s theorem, which is stated below in a fairly general
form.

Definition (Homotopy) Let X be a topological space and let γi : [0,1]→ X be two
paths in X , i ∈ {0,1}, with common endpoints, γi(0) = x and γi(1) = y. A homotopy
from γ0 to γ1 is a continuous map

H : [0,1]× [0,1]→ X ,

such that γi(t) = H(i, t), H(s,0) = x and H(s,1) = y for all s, t ∈ [0,2].

So two paths are homotopic if one can be deformed into the other continuously.

Definition (Simply connected) A topological space X is simply connected if any
closed path in X is homotopic to a constant path.

A chain is a formal sum of paths γ = ∑niγi. A cycle is a chain such that ∂γ = 0, where
the boundary operator is the operator assigning to a chain the formal sum of endpoints,
i.e. the sum of ∂γi = [γi(0)]− [γi(1)], where the square brackets indicate that the usual
arithmetic between points is not allowed; [1]+ [2] 6= [3]. Define∫

γ

f (z)dz = ∑ni

∫
γi

f (z)dz.

Then the cycle γ is homologous to zero in U if the winding number n(γ;a) = 0 for all
a /∈U. Also recall that the winding number is the integer

n(γ;a) =
1

2πi

∫
γ

1
z−a

dz.

If γ is a closed path homotopic to zero, then it is homologous to zero.

Theorem 2.1 (Cauchy’s theorem) Let f : U → C be a holomorphic function on a
domain U and let γ be a cycle homologous to zero. Then∫

γ

f (z)dz = 0.
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To paraphrase Cauchy’s theorem: if the integral
∫

γ
f (z)dz vanishes for every function

of the form 1
z−a , where a /∈U, then it vanishes for every holomorphic function on U.

Corollary 2.2 Let U be a simply connected domain. Then∫
γ

f (z)dz = 0,

for every holomorphic function f on U and every cycle γ.

Proof Every cycle is a linear combination of closed paths. Any closed path in a
simply connected domain is homotopic to zero, hence homologous to zero (winding
number argument). Thus, Cauchy’s theorem applies. �

Recall some basic theory of integration and differentiation. Assume that f is a holo-
morphic function on a domain U such that the integral∫

γ

f (z)dz

only depends on the endpoints of γ. Let z0 ∈U. Then we may define a function

F(z) =
∫ z

z0

f (z)dz,

where we pick any path between z0 and z. The function F(z) is holomorphic, F(z0) =
0 and F ′(z) = f (z). The verification of this is bookwork.

Corollary 2.3 Let U be a simply connected domain and let f (z) be a holomorphic
function on U which is no-where zero on U. Then we may define holomorphic func-
tions log f (z) and n

√
f (z) on U.

Proof The function
f ′(z)
f (z)

is holomorphic on U since f (z) is nowhere zero. Pick z0 ∈ U. By the preceding
discussion and Corollary 2.2 we may find a holomorphic function F(z) on U such
that

F ′(z) =
f ′(z)
f (z)

and F(z0) = 0.

Consider the function
h(z) = e−F(z)−log f (z0) f (z).

7



The derivative is

h′(z) = e−F(z)−log f (z0)
(
− f ′(z)

f (z)

)
f (z)+ e−F(z)−log f (z0) f ′(z) = 0.

Whence h is constant. Since h(z0) = 1, it follows that

f (z) = eF(z)+log f (z0). (1)

Thus,
log f (z) = F(z)+ log f (z0). (2)

This shows that the logarithm exists. The n–th roots are then defined by letting:

g(z) = e1/n log f (z). (3)

This completes the proof of the corollary. �

Exercise 3 Let
f (z) =

z− i
z+ i

.

For the functions log f and
√

f give an explicit definition of a single-valued branch
in a suitable region using the method in the proof of Corollary 2.3. Use the equation
f (z) = eF(z)+log f (z0) to deduce a known identity (and hence to verify your answer).

Lemma 2.4 The set F is non-empty.

Proof Pick a /∈U. By Corollary 2.3 we may pick a holomorphic function h(z) such
that

(h(z))2 = z−a.

This function is injective on U : h(z2) = h(z1) implies (h(z2))2 = (h(z1))2 implies
z2−a = z1−a implies z2 = z1.

By the same chain of events, h(z2) = −h(z1) also implies z2 = z1 whence h(z2) =
h(z1), so h(z2) = 0 and a = z2 ∈U, contradicting the choice of a. Thus, at most one
of ±b is in the image of h for any b ∈ C.

Recall that z0 denotes a specified point in U. By the open mapping theorem, there
is a positive constant δ such that h surjects onto the disc of radius δ about h(z0).
Therefore the image does not meet the disc of radius δ about −h(z0). Equivalently,

| h(z)+h(z0) | ≥ δ

for all z ∈U. In particular
2| h(z0) | ≥ δ .
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Consider the function

g(z) =
δ

4
· |h

′(z0)|
|h(z0)|2

· h(z0)
h′(z0)

· h(z)−h(z0)
h(z)+h(z0)

.

Then g is the composition of h with a Möbius transformation. In particular, g is in-
jective. Clearly g(z0) = 0, and using the quotient rule ( f

g )′ = f ′g− f g′

g2 and substituting,
we have

g′(z0) =
δ

4
· |h

′(z0)|
|h(z0)|2

· h(z0)
h′(z0)

· h′(z0)
2h(z0)

=
δ

8
· |h

′(z0)|
|h(z0)|2

> 0.

Finally we need to show that g maps into the unit ball.∣∣∣h(z)−h(z0)
h(z)+h(z0)

∣∣∣
=
∣∣∣h(z)+h(z0)−2h(z0)

h(z)+h(z0)

∣∣∣
=|h(z0)| ·

∣∣ 1
h(z0)

− 2
h(z)+h(z0)

∣∣∣≤ |h(z0)|
4
δ

,

using the triangle inequality and the above inequalities. Thus, |g(z)| ≤ 1. Since g is
holomorphic, the open mapping theorem implies that g(U)⊆ D2 and so g ∈F . �

2.4 Some classical results

Definition 2.5 A sequence of functions ( fn) is said to converge uniformly on X to a
function f if for each ε > 0 there is an index n0 such that for all n > n0 and all x ∈ X
we have:

| fn(x)− f (x) |< ε.

It is not difficult to check that the Cauchy criterion applies:

Cauchy criterion The sequence ( fn) converges uniformly on X if and only if for
each ε > 0 there is an index n0 such that for all n,m > n0 and all x ∈ X we have:

| fm(x)− fn(x) |< ε.

Lemma 2.6 If fn → f uniformly on X , then

lim
n→∞

lim
x→ξ

fn(x) = lim
x→ξ

lim
n→∞

fn(x).
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Proof Let ε > 0.

First consider the left hand side. Let αn = limx→ξ fn(x) for each n. By Cauchy’s
criterion there is n0 such that | fm(x)− fn(x) | < ε for all n,m > n0 and all x ∈ X .
Letting x → ξ , we get | αm−αn | ≤ ε. Whence (αn) is a Cauchy sequence. So the
limit limαn exists, denote it by α.

We now need to show that limx→ξ f (x) exists and equals α. Using the triangle in-
equaliity gives

| f (x)−α | ≤ | f (x)− fm(x) |+ | fm(x)−αm |+ | αm−α |.

Now fix m such that | f (x)− fm(x) | < ε

3 for all x ∈ X , and | αm −α | < ε

3 . From
continuity of fm, we can get δ > 0 such that

| fm(x)−αm |<
ε

3
∀x ∈ X s.t. 0 < | x−ξ |< δ .

For these x, we have | f (x)−α |< ε, and the lemma follows. �

Lemma 2.7 If fn → f uniformly on X and each fn is continuous, then f is continu-
ous.

Proof Let ξ ∈ X . Applying the previous lemma gives:

lim
x→ξ

f (x) = lim
x→ξ

lim
n→∞

fn(x) = lim
n→∞

lim
x→ξ

fn(x) = lim
n→∞

fn(ξ ) = f (ξ ).

Whence f is continuous at ξ . �

Theorem 2.8 (Weierstrass) Let

U1 ⊂U2 ⊂U3 ⊂ . . .

be an infinite sequence of domains whose union is U. Suppose that fn : Un →C is a se-
quence of holomorphic functions which tends to a limit function f : U →C, uniformly
on compact subsets. Then f is holomorphic. Moreover, ( f ′n) converges uniformly on
compact subsets to f ′.

Proof Let z ∈U and D be a closed disc with centre z contained in U. Recall that the
Heine–Borel theorem states that any open cover of a compact subset has a finite sub-
cover. It follows that D ⊂Uk for some k. Let γ = ∂D. The Cauchy integral formula
implies that for each n ≥ k, we have

fn(z) =
1

2πi

∫
γ

fn(w)
w− z

dw.
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Lemma 2.6 implies that letting n → ∞ yields:

f (z) =
1

2πi

∫
γ

f (w)
w− z

dw,

whence f is analytic in D and in particular at z.

For the second part, note that

f ′n(z) =
1

2πi

∫
γ

fn(w)
(w− z)2 dw,

which gives

lim
n→∞

f ′n(z) =
1

2πi

∫
γ

f (w)
(w− z)2 dw = f ′(z).

So f ′n → f ′ pointwise. We need to show that the convergence is uniform on any com-
pact subset.

Let C ⊂U be compact. For each point z ∈ C there is a radius rz > 0 such that the
closed disc D(z;rz) is contained in U. Now consider all the discs D(z; rz

2 ). This is an
open cover of C and hence has a finite sub-cover. Now let r denote the minimum
radius of a disc in this sub-cover. Then for every point z in C the disc D(z;r) is
contained in C.

Let ε > 0. Since fn → f uniformly on compact subsets, there is n0 such that for all
n > n0 and all z ∈C we have:

| fn(z)− f (z) |< εr.

This implies that whenever n > n0 and z ∈C :

| f ′n(z)− f ′(z) |=
∣∣∣ 1
2πi

∫
γ

fn(w)− f (w)
(w− z)2 dw

∣∣∣
≤ 1

2π

εr
r2 L(γ)

= ε,

where γ = ∂D(z;r) and hence L(γ) = 2πr — using |
∫

γ
g | ≤maxγ{|g|} ·L(γ). �

Remark 2.9 Repeated application of the above shows that, under the hypothesis,
f (k)
n → f (k) uniformly on compact subsets.

The following is an application of Taylor’s formula:
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Proposition 2.10 Let f : U → C be a holomorphic function which is not identically
zero. Enumerate the zeros of f by z j, where each zero is counted with multiplicity.
Let D be a disc contained in U and γ a closed curve in D.

If γ does not pass through a zero of f , then

∑
j

n(γ;z j) =
1

2πi

∫
γ

f ′(z)
f (z)

dz.

Proof If z j /∈D, then clearly n(γ;z j) = 0. Moreover, D contains at most finitely many
zeros of f since otherwise the set of zeros has an accumulation point in the closed disc
due to the Bolzano–Weierstrass theorem; this violates the fact that zeros are isolated. It
follows that the sum has at most a finite number of non-zero terms. To prove equality
recall that Taylor’s theorem implies that:

f (z) = f (a)+
f ′(a)
1!

(z−a)+ . . .+
f (k−1)(a)
(k−1)!

(z−a)k−1 +gk(z)(z−a)k,

where gk is analytic in U. Successively applying this at all the zeros gives

f (z) = (z− z1) · · ·(z− zn)g(z),

where z1, . . . ,zn are the zeros of f in D and g is a no-where zero, holomorphic func-
tion on D. Forming the logarithmic derivative gives:

f ′(z)
f (z)

=
1

z− z1
+ . . .+

1
z− zn

+
g′(z)
g(z)

whenever z 6= z j and, in particular, on γ. Since g(z) 6= 0 on D, Cauchy’s theorem
yields ∫

γ

g′(z)
g(z)

dz = 0.

Recalling the definition of n(γ;z j) one obtains the desired conclusion. �

For a given function f which is holomorphic in the neighbourhood of disc D and not
zero on ∂D. the above propositions enables us to count the number of zeros of f (with
multiplicity) contained in D by taking γ to be the boundary circle of D. Then each
number n(γ;z j) is either zero (when z j /∈ D) or one (when z j ∈ D).

Theorem 2.11 (Hurwitz) Suppose that the sequence of holomorphic functions fn

converges uniformly to a function f on U. If the functions fn are nowhere zero, then
either f is identically zero or nowhere zero.
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Proof Suppose that f is not identically zero. The zeros of f are then isolated. Given
z0 ∈U, there is r > 0 such that f is nowhere zero on the punctured disc 0 < | z−z0 | ≤
r. Let m be the minimum of | f (z)| on the circle γ defined by | z− z0 |= r.

We first claim that 1
fn
→ 1

f uniformly on γ :

Note that minγ{| fn(z)|} →m as n→∞. There is n1 such that minγ | fn(z)|> m
2 for all

n > n1. In particular, these fn don’t vanish on γ. Given ε > 0, since fn → f uniformly,
there is n0 such that

| 1
fn(z)

− 1
f (x)

|= | f (z)− fn(z)
f (z) fn(z)

| ≤ 2ε

m2 ,

for all n > max{n0,n1}. This proves the claim.

Using this and the Weierstrass theorem, one has:

lim
n→∞

1
2πi

∫
γ

f ′n(z)
fn(z)

dz =
1

2πi

∫
γ

f ′(z)
f (z)

dz.

The integrals count the number of zeros of fn and f respectively in the disc bounded
by γ. Since the functions fn are nowhere zero, it follows that f is nowhere zero. �

Definition 2.12 (Normal family) A family F is said to be normal in U if every
sequence of functions ( fn) ⊂ F contains a subsequence which converges uniformly
on every compact subset of U.

Note that the definition does not require the limiting function to be contained in F .

Exercise 4 Show that the family of functions fn(z) = zn , where n is a positive integer,
is a normal family in D2 = {z∈C : |z|< 1}, but not in any domain that contains a point
in its complement. What can be said about the family ( f ′n)?

Exercise 5 Let F be a family of holomorphic functions which is not normal in U.
Show that there is a point z0 ∈U such that F is not normal in any neighbourhood of
z0 . Hint: A compactness argument.

2.5 Necessary and sufficient conditions for normal families

Definition 2.13 (Equicontinuous) Let U be a domain and F be a family of contin-
uous functions f : U → C. The functions in F are said to be equicontinuous on a set
E ⊂U if for every ε > 0 there exists δ > 0 such that | f (z)− f (w) | < ε whenever
| z−w |< δ , z,w ∈ E and f ∈F .
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Note that each element in an equicontinuous family is uniformly continuous on E. The
following result was proved in Metric Spaces, and will be assumed without proof:

Theorem 2.14 (Arzela–Ascoli) A family F of continuous functions with values in
a metric space X is normal in the region U of the complex plane if and only if

(1) F is equicontinuous on every compact subset C ⊂U ;

(2) for any z ∈U, the values f (z), f ∈F , lie in a compact subset of X .

Assuming this theorem, the main technical result needed to prove the Riemann map-
ping theorem is the following:

Proposition 2.15 A family of holomorphic functions F is normal if and only if the
functions are uniformly bounded on compact subsets.

Proof First assume that F is normal. Let C ⊂U be a compact subset. The Arzela–
Ascoli Theorem, Part 1, implies that given ε > 0 there is δ > 0 such that | f (z)−
f (w) |< ε whenever | z−w |< δ , z,w ∈C and f ∈F .

Now C is compact, and hence can be covered by a finite number of δ –balls. Part 2
of the theorem implies that for each centre z there is a compact subset Cz contain-
ing f (z) for each f ∈ F . Take the union of all these sets Cz and take the closed
ε –neighbourhood of that. This is a compact set and we have f (C) is contained in
that. Since any compact subset is contained in some ball, the functions are uniformly
bounded.

Conversely, assume that the functions are uniformly bounded. Clearly Part 2 of the
Arzela–Ascoli Theorem is satisfied. It remains to show that F is equicontinuous on
compact subsets.

Let γ be the boundary of a closed ball of radius r contained in U. Pick z and w in the
interior of this ball. Then Cauchy’s formula implies that

f (z)− f (w) =
1

2πi

∫
γ

( 1
ξ − z

− 1
ξ −w

)
f (ξ )dξ

=
z−w
2πi

∫
γ

f (ξ )
(ξ − z)(ξ −w)

dξ .

The functions are uniformly bounded, say by K, so in particular | f | ≤K on γ. Assume
that z and w belong to the ball of radius r

2 with the same centre, then the distance
|ξ − z|> r

2 for ξ ∈ γ and so:

| f (z)− f (w) |< 4K|z−w|
r

.
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Now let C be a compact subset of U. For each point z∈C there is a radius rz > 0 such
that the closed disc D(z,rz) is contained in U. Now consider all the discs D(z, rz

4 ). This
is an open cover of C and hence has a finite sub-cover. Denote the respective centres
of discs by zi. Let r be the minimum over all radii rzi , and write rzi = ri.

Given ε > 0 let
δ = min{ r

4
,

εr
4K

}.

Suppose that | z−w |< δ . Then there is zk such that | w− zk |< rk
4 . Then

| z− zk | ≤ | z−w |+ | w− zk |< δ +
rk

4
≤ rk

2
.

But then we can use the above estimate and get:

| f (z)− f (w) |< 4K|z−w|
rk

<
4Kδ

r
≤ ε.

Thus, F is equicontinuous on C. �

Proof of the Riemann mapping theorem Let B be a least upper bound for the deriva-
tives f ′(z0) as f ranges over F . Then B > 0, but it may be the case that B = ∞. Pick
a sequence (gi)n ⊂F such that g′i(z0) approaches B. It follows from Proposition 2.15
that F is a normal family. Whence (gi)n contains a subsequence (also denoted by
(gi)n ) which converges to a function f , uniformly on every compact subset. The func-
tion f is holomorphic due to Weierstrass’ theorem, and (g′i)n converges to f ′, again
uniformly on compact subsets. Whence f ′(z0) = B and B is a positive real number,
not infinity.

We now show that f ∈F . We have f (z0) = 0 since gi(z0) = 0 for each i. Similarly,
| f (z)| ≤ 1 for all z∈U. The function f is not constant since f ′(z0) = B > 0. Since f is
holomorphic, the open mapping theorem implies | f (z)|< 1 for all z∈U. It remains to
show that f is injective. Let w∈U. Consider the functions gw(z) = g(z)−g(w), where
g ∈ F . They are nowhere zero on U \ {w} as each g is injective. Then f (z)− f (w)
is a limit of such functions; it is nowhere zero due to Hurwitz’s theorem. Since w was
chosen arbitrarily, it follows that f is injective. Thus, f ∈F , and f is an element of
F with maximal derivative at z0.

Suppose f is not surjective. We will now use the fact that any branch of the square–
root function defined on a region in the interior of the unit disc is expanding. Since f
is not surjective, we may choose w ∈ D2 \ f (U). As U is simply connected, we may
find a holomorphic branch of

F(z) =

√
f (z)−w

1−w f (z)
.

15



Note that F is injective and |F(z)|< 1. Let

G(z) =
|F(z0)|
F ′(z0)

· F(z)−F(z0)
1−F(z0)F(z)

.

Then G(z0) = 0, G is injective and G′(z0) > 0. So G ∈F . In fact

G′(z0) =
|F(z0|

1−|F(z0)|2
=

1+ |w|
2
√
|w|

B > B,

which contradicts the choice of B. Hence f is surjective, and this completes the proof
of the Riemann mapping theorem.

The fact that f is the unique map with maximal derivative at z0 now follows (as in the
proof of the uniqueness part) from the Schwarz lemma. For the proof, however, this
fact is irrelevant. �

3 The Schwarz–Christoffel formula

The Riemann mapping theorem only asserts existence, but does not give any hints on
how to find a map. We’ll now look at a method which applies to certain domains with
boundary consisting of straight line segments.

3.1 Boundary behaviour and the reflection principle

The following (non-trivial) observation will just be stated; a more general treatment
can be found in [1], Sections 6.1.2 – 2.1.4.

Let P be a simply connected region which is bounded by a finite-sided polygon, and
f : P→D2 be a biholomorphic map. Then f extends holomorphically to the boundary
of P minus the vertices, it extends continuously to all of ∂P, and the extension maps
∂P bijectively onto S1. Composition with the map ϕ−1 thus gives a map P → IH,
where one may assume that all vertices are mapped to real numbers. We will now try
to understand the inverse of such a map explicitly.

3.2 The Schwarz–Christoffel formula

Recall the description of a map from IH to a sector. The map f (z) = (z− a)α maps
the upper half-plane to a sector with angle πα at 0. It extends analytically to ∂ IH = IR
where it is one-to-one.
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Choose points a1 < · · · < an on the real line and choose a polygon with vertices
w1, ...,wn (in anti-clockwise order) in the plane. Denote the interior angle at wi by
παi. Note that 0 < αi < 2 and

∑παi = (n−2)π =⇒ ∑αi = n−2.

A biholomorphic map taking IH to the region bounded by the polygon looks locally
near ak like:

f (z) = wk + eiϑ (z−ak)αk hk(z),

where hk(z) is analytic and non-zero in a small neighbourhood of ak. Thus,

f ′(z) = eiϑ
αk(z−ak)αk−1hk(z)+ eiϑ (z−ak)αk h′k(z)

= (z−ak)αk−1eiϑ (αkhk(z)+(z−ak)h′k(z))

= (z−ak)αk−1Hk(z),

where Hk(z) is analytic and non-zero in a small neighbourhood of ak. It follows in-
ductively, that the derivative of f has the expression

f ′(z) = h(z)
n

∏
k=1

(z−ak)αk−1,

where h(z) is a holomorphic map defined on IH, and h(z) 6= 0 for all z ∈ IH since f is
conformal. It will now be shown that h(z) is in fact constant. We have:

h(z) = f ′(z)
n

∏
k=1

(z−ak)1−αk .

The right hand side extends continuously to IR since the exponents are contained in
(−1,1), hence h extends continuously to IR. Let a ∈ (ai,ai+1). We have

argh(a) = arg f ′(a)+
n

∑
k=1

(1−αk)arg(a−ak)

= arg f ′(a)+
i

∑
k=1

(1−αk)arg(a−ak)+
n

∑
k=i+1

(1−αk)arg(a−ak)

= arg f ′(a)+0+
n

∑
k=i+1

(1−αk)π.

Note that arg f ′(a) is the slope of the side [wi,wi+1] of the polygon, and hence constant
in (ai,ai+1). So argh(a) is constant as a ranges over (ai,ai+1). Since h is continuous,
it follows that argh(z) is constant on all of IR. It now follows from the Maximum
principle that h is constant:

Consider the function h◦ϕ−1 : D2 →C. The map ϕ−1 is non-constant and extends to a
continuous map which takes the unit circle to the real line. The function log(h(ϕ(z))),
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z ∈ IH, is well–defined (since h is no-where zero) and has constant imaginary part
when restricted to S1. Since the imaginary part of log(h(ϕ(z))) is a harmonic function,
it must be constant on the whole disc (since the maximum and minimum of a non-
constant harmonic function are attained on the boundary). But a holomorphic function
with constant imaginary part is constant (this follows, for instance, from the Cauchy–
Riemann equations and the Mean Value Theorem). Hence h(z) is constant, and we
have proved the following:

Proposition 3.1 (Schwarz–Christoffel formula) The functions f which map IH onto
regions bounded by polygons with angles αkπ,0 < αk < 2, k = 1, . . . ,n, have deriva-
tive

f ′(z) = A
n

∏
k=1

(z−ak)αk−1,

and hence are of the form

f (z) = A
∫ z

z0

n

∏
k=1

(w−ak)αk−1dw+B,

where ak ∈ IR, and A,B are complex constants.

3.3 Examples and generalisations

Consider the triangle ∆(0,1, p), where ℑ(p) > 0. Denote the angles at 0,1, p by
απ,βπ,γπ respectively. Then a map f : IH → ∆(0,1,w) with f (0) = 0, f (1) = 1
and f (a) = p, where a > 1, is determined as follows:

The formula gives

f (z) = A
∫ z

z0

(w−0)α−1(w−1)β−1(w−a)γ−1dw+B.

We may choose z0 = 0, and the condition f (0) = 0 implies B = 0. The constant A is
determined by f (1) = 1, and we can also use the relation α + β + γ = 1 to simplify
the integral.

The situation becomes more tractable when we include ∞ as a point on ∂ IH mapping
to a vertex of the polygon. In this case, the term corresponding to an = ∞ is left out
in the above formula, as can be verified using a limiting argument in which an → ∞.
For instance, a biholomorphic map f : IH → ∆(0,1, p) with f (0) = 0, f (1) = 1 and
f (∞) = p is determined by

f (z) = A
∫ z

z0

(w−0)α−1(w−1)β−1dw+B.

Another possibility is to include ∞ as a vertex of the polygon, P. There are various
cases:
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(1) As a vertex of P with negative angle.

• Example 1: A sector can be viewed as a bigon with angles πα at 0 and
−πα at ∞.

• Example 2: A second example.

(2) As a vertex of P with angle 0 if it is the end of an infinite strip.

• Example 3: Mapping the upper half plane to an infinite strip.

Exercise 6 Determine a biholomorphic mapping from the upper half plane to the
region {z ∈ C| ℑ(z) > 0,ℜ(z) > 0,min(ℑ(z),ℜ(z)) < 1}.

4 Riemann surfaces

A function f : IR → IR can be understood geometrically through its graph

G( f ) = {(x, f (x)) : x ∈ IR} ⊆ IR2.

By analogy, the graph of a complex valued function is a subset of IR4, which is difficult
to visualise. If a holomorphic function f : U → f (U)⊆C is injective, its geometry can
be understood quite well by determining the images of lines or circles. The geometry
of a function that its not injective, or of a multi-valued function, is best understood
using a construction that on the one hand captures the whole function but on the other
hand makes it injective. This leads to the concept of a Riemann surface.

4.1 Riemann surfaces from multi-valued functions

To construct the Riemann surface S f associated with a multi-valued function f , begin
with one sheet Si for each branch fi of the function, make branch cuts so that the
branches are defined continuously on each sheet, and identify each edge of a cut on
one sheet to an appropriate edge on another sheet so that the limiting function values
match up continuously.

Then S f = ∪Si with identifications along the branch cuts, but with the branch points
removed. (Note that Ahlfors includes these points, but Gamelin doesn’t.) The surface
S f is independent of the chosen branch cuts, i.e. choosing different cuts will result in
the same surface.

There is a function f̂ : S f → C which is one-to-one onto its image; it is defined by
f̂ (z) = fi(z) if z ∈ Si. If z is contained on a branch cut along which the sheets Si and
S j have been joined, then

f̂ (z) = lim
w→z

fi(z) = lim
w→z

f j(z),
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where w ranges over a small neighbourhood of z on S f . This is well–defined due to
the gluing rule. We will see later, that there is a suitable notion which allows us to say
that f̂ is holomorphic.

Let S′f be the surface obtained from S f by adding the branch points. The branch points
can be characterised as follows: Let z0 ∈ C be a point such that f does not have an
analytic extension over the punctured disc D(z0) \ {z0} but has an analytic extension
along any path in D(z0) \ {z0}. Then the pre-images of z0 in S′f are termed branch
points of f . If such a branch point is contained in exactly n sheets, then it is termed an
algebraic branch point of order n−1. For example, z0 = 0 gives rise to such a branch
point for f (z) = n

√
z. If it is contained in infinitely many sheets, then it is termed a

logarithmic branch point. For instance z0 = 0 for f (z) = log(z).

In class, I described the Riemann surfaces associated to the square root function and
the function arcsin . Similar worked examples can be found in Gamelin, I.4 and I.5,
and Ahlfors, III.4.3.

Exercise 7 Let f (z) =
√

z−1 3
√

z− i.

(1) What are the branch points and what are their orders?

(2) Why is it not possible to define branches of f using a single branch cut connect-
ing the branch points?

(3) How many values does f (z) have at a generic point z ∈ C?

Exercise 8 (Gamelin I.7.7) Describe the Riemann surface associated with the func-
tion

f (z) =
√

(z− x1) · · ·(z− xn),

where xi ∈ IR, x1 < .. . < xn and n ≥ 1. (Hint: Consider n even or odd separately.)

4.2 Riemann surfaces: The formal approach

Definition 4.1 An n–manifold is a second countable Hausdorff space which is locally
homeomorphic to IRn. A 1–manifold is called a curve and a 2–manifold is called a
surface.

A Hausdorff space is a separable topological space. Second countable means that there
is a countable base for the topology. For a Hausdorff space, being second countable is
equivalent to being metrizable.
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Definition 4.2 A Riemann surface is a connected surface S together with a holomor-
phic atlas. That is, an open cover {Uα} by charts hα : Uα → Vα ⊂ C, where hα is a
homeomorphism and Vα a domain. Moreover, the transition functions

hβ ◦h−1
α : hα(Uα ∩Uβ )→ hβ (Uα ∩Uβ )

are holomorphic.

Example 1 (Sphere) The Riemann sphere Ĉ = C∪{∞}. The charts are U1 = C with
h1 : U1 → C defined by h1(z) = z. And U2 = Ĉ \ {0} with h2 : U2 → C defined by
h2(z) = 1

z for z 6= ∞ and h2(∞) = 0. Then U1∩U2 = C\{0} and the change of coor-
dinates

(h2 ◦h−1
1 )(z) =

1
z

is holomorphic in this intersection.

Example 2 (Torus) Let Λ ⊂ C be a lattice. That is Λ ∼= ZZ2 as groups and the span of
Λ as a vector space over IR is all of C. Then the quotient

E =
C
Λ

is a Riemann surface, which is known as an elliptic curve. In fact, the quotient is
homeomorphic to S1 × S1, so that E is compact. A holomorphic atlas is described
explicitly as follows. Denote generators of Λ by ω1 and ω2, so

Λ = {nω1 +mω2 : n,m ∈ ZZ}.

Points of E are then congruence classes z + Λ, where z ∈ C. Choose ε > 0 so small
that all non-zero lattice points satisfy |nω1 +mω2|> ε. For each e ∈ C, let

Ue = {w+Λ : w ∈ C, |w− e|< ε} ⊂ E.

The coordinate map he : Ue → C is defined by he(w + Λ) = w′, where w′ ∈ w + Λ

is the unique element satisfying |w′− e| < ε. This maps Ue injectively onto the disc
{z ∈ C : |z− e|< ε}. Any change of coordinates is the identity.

Remark 4.3 A Riemann surface is oriented. This comes from the fact that C has a
natural orientation (multiplication by i) and holomorphic maps preserve this orienta-
tion. Hence orienting all coordinate patches gives a consistent orientation. Thus, a
Riemann surface is a conformal structure on an oriented surface.

It turns out that there is a unique conformal structure on the sphere, whilst on the torus
there are infinitely many pairwise inequivalent conformal structures, and they can be
parametrised (the parameter space is called a moduli space). The following result is
stated without proof:

21



Theorem 4.4 (Classification of orientable surfaces) Any orientable, compact surface
is a sphere with g handles, where g is a non-negative integer. The number g is termed
the genus of the surface. Any other orientable surface is obtained from a closed surface
by deleting a finite number of points.

The following examples provides a good starting point to understanding the construc-
tion of a holomorphic atlas.

Example 3: Polyhedral surfaces To show that there are in fact infinitely many com-
pact, pairwise topologically distinct Riemann surfaces, we will associate to a polyhe-
dral surface a Riemann surface S. A polyhedral surface P is a surface in IR3 which
is the union of finitely many faces. Each face is a closed subset of a plane in IR3,
with boundary finitely many line segments. Two line segments are either disjoint or
meet in a vertex. Every line segment is contained in exactly two faces. After possibly
subdividing, we may assume that each face is simply connected.

Assume that for every plane we have chosen a normal direction ~N so that the face is
oriented using the right hand rule. To every line segment in a face, let ~n be the vector
orthogonal to the line segment pointing into the face. Then orient the line segment
by ~n×~N. Assume that for each line segment, the orientations coming from the two
adjacent faces are opposite.

We now construct a holomorphic atlas. Identify C with the xy–plane with orientation
induced from the normal vector (0,0,1). For every face, take its interior and consider
any orientation preserving isometry to the complex plane. To every interior point x on
a line segment, choose two half circles of the same radius, centred at x and contained
in the adjacent faces. Identify this with a circle of the same radius in the plane, again
such that the orientation is preserved. Note that the transition functions are of the form
z → az+b, which are holomorphic.

Now choose r such that the length of each line segment in P is greater than 2r. Given
a vertex v, let α be the sum of the internal angles at v. Consider the set of all points at
distance r from v. We may identify this set with a circle of radius r in the plane centred
at the origin and the chart for v by the open disc bounded by this circle. Then any
transition function is of the form z→ z2π/α , composed with a rotation and a translation.
Since each vertex is contained in exactly one coordinate chart, we don’t need to check
anything near them. On the other hand, the map z→ z2π/α is holomorphic away from
zero. This shows that every orientable polyhedral surface has a holomorphic atlas (and
hence can be given a conformal structure). Clearly, for each positive integer g, there
is a polyhedral surfaces of genus g.
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5 Maps between Riemann surfaces

Having defined Riemann surfaces using coordinate charts, it is natural to define holo-
morphic maps between Riemann surfaces:

Definition 5.1 Let f : S → R be a continuous map of Riemann surfaces. We say that
f is holomorphic if the induced maps on charts are holomorphic. That is, given any
chart (Uα ,hα) of S containing s, and any chart (Wα ,gα) of R containing f (s), we
have that

gα ◦ f ◦h−1
α

is holomorphic in a small neighbourhood of hα(s) ∈ C.

5.1 Conformal equivalence

Definition 5.2 Riemann surfaces S and R are conformally equivalent if there is a
holomorphic map f : S → R which is one-to-one and onto. In this case, the inverse is
also holomorphic.

Exercise 9 Show that no two of the Riemann sphere Ĉ, the complex plane C and the
open unit disc D2 are conformally equivalent.

Exercise 10 Let ω ∈ C \ {0}, and let ZZω be the set of all integral multiples of ω.
Let S be the set of all congruence classes z + ZZω, z ∈ C. Show that S is a Riemann
surface which is conformally equivalent to the punctured plane C\{0}.

Definition 5.3 A Riemann surface is termed an elliptic curve if as a topological sur-
face it is connected, compact and of genus one.

Examples of elliptic curves have been given earlier using lattices in C. It turns out that
all elliptic curves arise in this way:

Theorem 5.4 (Classification of elliptic curves) Let E be an elliptic curve. Then E is
conformally equivalent to C/Λ, where Λ is the lattice generated by 1 and a complex
number ω whose imaginary part is positive. Moreover, two elliptic curves Yi corre-
sponding to lattices Λi generated by 1 and ωi are conformally equivalent if and only
if

ω2 =
aω1 +b
cω1 +d

, where
(

a b
c d

)
∈ SL2(ZZ),

i.e. a,b,c,d ∈ ZZ and ad−bc = 1.
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The above theorem implies that a conformal structure on the torus can be described by
a single complex number with positive imaginary part, uniquely up to the action of the
modular group SL2(ZZ) on IH. A fundamental domain for this action is given by:

{z ∈ IH : |ℜ(z)| ≤ 1
2
, |z| ≥ 1}.

This is a hyperbolic triangle with one ideal vertex and two vertices with angle π

3 .
Since T (z) = z + 1 and S(z) = −1

z are in the modular group, we see that the set of
conformal structures can be identified with a sphere with three distinguished points
(corresponding to ∞, i and the third root of unity with positive imaginary part) at
which the angles are 0, π, and 2π

3 ) respectively. Note that this parameter space itself
is a Riemann surface (and conformally equivalent to the Riemann sphere after adding
the point ∞).

The conformal structures at the points corresponding to the parameters i (giving a
square as a fundamental domain for the torus) and the third root of unity (giving the
union of two regular triangles as a fundamental domain for the torus) are distinguished
from all others due to their symmetries. As the point ∞ is approached, the conformal
structures on the torus become longer and longer in one direction and the limiting
surface is the interior of an annulus (equivalently a sphere with two points removed).
So this point is distinguished since it corresponds to a change of the topological type
(which is why it is not part of the parameter space but rather of its compactification).

5.2 Covering maps

Definition 5.5 (Covering map) Let S and R be Riemann surfaces. A holomorphic
map p : S → R is termed a covering map if each p ∈ R belongs to an open subset
V ⊂ R whose inverse image p−1(V ) is a union of pairwise disjoint open subsets of S,
each of which is mapped injectively by p to V. One says that V is evenly covered.

Note that if (U,h) is a coordinate patch on R, then each connected component of
p−1(U) is a coordinate patch on S with coordinate map h◦ p.

Example: The Riemann surface of
√

z comes with a natural two-to-one covering map
onto C\{0}. An elliptic curve E = C/Λ has a natural covering p : C→ E defined by
p(z) = z+Λ; this map is infinite-to-one.

Lemma 5.6 Let p : S → R be a covering map. Then the cardinality of the fibres
p−1(q) is the same for all fibres.
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Proof If V ⊂ R is an evenly covered, connected open set, then for any v0,v1 ∈ V,
there are bijective correspndences

p−1(v0)↔{components of p−1(V )}↔ p−1(v1).

This shows that the cardinality of fibres is constant on V. Since R is connected, given
any two points q0,q1 ∈ R, there is a path joining them. For each point on the path,
there is a neighbourhood which is evenly covered. These neighbourhoods restrict to
an open cover of the (compact) path, and we may choose a finite subcover. It then
follows that p−1(q0) and p−1(q1) have the same cardinality. �

Definition 5.7 (Covering transformation) Let p : S → R be a covering map. A cov-
ering transformation is an bijective, holomorphic map ψ : S→ S such that p(ψ(s)) =
p(s) for all s ∈ S.

The set of all covering transformations forms a group since the composition of two
covering transformation is a covering transformation, and the inverse of a covering
transformation is a covering transformation. A covering transformation acts as a per-
mutation on p−1(q) for each q ∈ R. For a Riemann surface S, we call the set of all
bijective, holomorphic maps S → S the automorphism group of S, Aut(S). Given any
covering map S → R, the group of covering transformations is a subgroup of Aut(S).

For some Riemann surfaces, there is a complete classification of the automorphism
group in each case:

(1) Aut(Ĉ) = PGL(2), the group of Möbius transformations

z → az+b
cz+d

,

where ad−bc 6= 0, a,b,c,d ∈ C.

(2) Aut(C) is the subgroup of the Möbius transformations which fix infinity:

z → az+b,

where a 6= 0. These are also called affine transformations.

(3) Aut(D2) is the following subgroup of the Möbius transformations. Every auto-
morphism has the form

z → eiϑ z−a
1− za

,

where a ∈ D2 and ϑ ∈ [0,2π).
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Sketch of proof The group Aut(D2) has already been described in the first part of
the course. Let f ∈ Aut(C). Then f has a simple zero at some w ∈ C and a simple
pole at ∞. It follows that f (z) = az+b for some a,b ∈C with a 6= 0. Similarly, every
f ∈ Aut(Ĉ) has a simple zero and a simple pole, and it follows that it must be a Möbius
transformation. �

Let p : S → R be a covering map. Let r ∈ R and V be an evenly covered neigh-
bourhood of r. Denote the elements of p−1(r) by si, and p−1(V ) accordingly by
Ui. Let ψ : S → S be a covering transformation. If ψ(si) = s j, then the restriction
ψ|Ui : Ui →U j is an injective, holomorphic map. Moreover, denoting the restriction
p|Ui : Ui → V by pi, it follows that pi is bijective. We then have ψ|Ui = p−1

j ◦ pi. In
particular, if i = j, then ψ|Ui is the identity map.

Exercise 11 Let S be a Riemann surface and f ,g : S → S be two holomorphic func-
tions such that f (s) = g(s) for all s ∈U, where U is a non-empty, open subset of S.
Show that f (s) = g(s) for all s ∈ S.

The above discussion together with the exercise imply the:

Proposition 5.8 Let p : S→ R be a covering map and ψ : S→ S be a covering trans-
formation. Then either ψ is the identity transformation or it has no fixed points.

It follows that not every automorphism can be a covering transformation.

Example: The proposition allows us to determine all covering transformations of the
cover p : C→ E, where E is an elliptic curve. We may assume that E is defined by a
lattice generated by ω1 and ω2. Then any translation Tm,n : C → C of the form

Tm,n(z) = z+mω1 +nω2,

where n and m are fixed integers, is a covering transformation. Now let ψ : C→C be
an arbitrary covering translation. Since ψ(0) ∈ p−1(0+Λ) = Λ, there are integers m
and n such that ψ(0) = mω1 +nω2. Then the covering transformation T−m,−n◦ψ fixes
0 which implies that it is the identity. This shows that all covering transformations are
of the form Tm,n. Note that this discussion did not use the fact that we know Aut(C).

Example: The map f : C → C \ {0} defined by f (z) = ez is a covering map (in fact,
the universal covering introduced in the next section). Let us determine the covering
transformations using the description of Aut(C). Any automorphism of C without
fixed points is of the form ψ(z) = z + b. We then consider ez = eψ(z) = ez+b. This
forces b = 2kπi for k ∈ ZZ. Hence any covering transformation is of the form z →
z+2kπi for some k ∈ ZZ. So the group G of covering transformations is generated by
the translation z → z + 2πi. Note that C/G is an infinite cylinder, and this is in fact
conformally equivalent to C\{0} via the function f (z) = ez.
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5.3 Uniformisation of Riemann surfaces

Recall that a topological space is simply connected if each closed path in X is homo-
topic to a constant path.

Theorem 5.9 (Universal covering exists) For each Riemann surface R there is a
simply connected Riemann surface S and a covering map p : S → R. In this case,
p : S → R is called a universal covering of R. Moreover, given q ∈ R and s0,s1 ∈
p−1(q), there is a unique covering transformation ψ of S such that ψ(s0) = s1.

Sketch of proof (Gamelin, Exercise XVI.7.10) Fix a point x0 ∈ R. Let S be the set
of pairs (x, [γ]), where x ∈ R, γ is a path from x0 to x, and [γ] denotes its homotopy
class. We need to define a suitable topology on S as well as the charts which turn it
into a Riemann surface. This can be done at once:

Let x ∈ R and γ be a path from x0 to x. There is a coordinate chart Uα containing x.
Then define Vα,[γ] to be the set of pairs (y, [δ ]) ∈ S, where y ∈Uα and δ is the path
obtained from concatenating γ with any path in Uα from x to y. Then define p : S→R
to be the map p(x, [δ ]) = x.

It needs to be checked that (1) S can be turned into a Riemann surface such that each
Vα,[γ] is a coordinate chart and p is holomorphic, (2) p : S → R is a covering map, (3)
S is simply connected. �

Theorem 5.10 (Universal covering is unique) Any two universal coverings of a Rie-
mann surface are conformally equivalent. Moreover, if f : S→R is the universal cover
of a Riemann surface S, and G is the associated group of covering transformations for
f , then R is conformally equivalent to S/G.

The proof makes use of path lifting properties which we don’t have time to discuss.

Theorem 5.11 (Uniformization theorem for Riemann surfaces) A simply connected
Riemann surface is conformally equivalent to one of

(1) the Riemann sphere Ĉ,

(2) the complex plane C,

(3) the open unit disc D2.

A proof can be given which is analogous to the proof of the Riemann mapping theorem.
No two of these three Riemann surfaces are isomorphic, and we have described the
automorphism groups earlier.
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Corollary 5.12 (Geometrisation of Riemann surfaces)

(1) The only Riemann surface having the Riemann sphere Ĉ as a universal covering
surface is the sphere itself. This has a spherical metric (i.e. a metric of constant
curvature +1).

(2) The only Riemann surfaces having the complex plane C as universal covering
surface are the complex plane, the punctured complex plane C \ {0}, and tori.
All of these surfaces admit a complete Euclidean metric (i.e. a metric of constant
curvature 0).

(3) All other Riemann surfaces have the open unit disc as universal covering, and
admit a complete hyperbolic metric (i.e. a metric of constant curvature −1).

Proof Let ψ : Ĉ → Ĉ be a covering transformation for some covering. Then ψ is a
fractional linear transformation and has a fixed point. Hence it must be the identity.
The second part follows from the fact that the only covering transformations acting
on the plane must be of the form z → z + b, since they have no fixed points. They
therefore are translations and hence isometries of the standard Euclidean metric on the
plane. The third part follows from the fact that every element of Aut(D2) is an isometry
with respect to the hyperbolic metric on D2. Recall that the element of hyperbolic arc-
length is defined by 2|dz|

1−|z|2 , and that this fact follows from Pick’s lemma. �

5.4 Ramified covering maps

We now turn to the general study of holomorphic maps between Riemann surfaces.
Covering maps are especially nice maps; the next best thing is the following:

Definition 5.13 (Ramified covering maps) Let f : S → R be a holomorphic map of
Riemann surfaces. We say that f is a ramified covering map if there is a (possibly
empty) discrete set of points on S, whose images in R also form a discrete set, such
that removing these points and their images makes f a covering map. The set of
points on S where f is not locally a covering map is the set of ramification points and
its image in R is the set of branch points.

Example: Let S = C = R, and f : S → R be the map f (z) = z2. Then f is a ramified
covering map. The set of branch points is {0} ⊂ R and the set of ramification points
is {0} ⊂ S. The same holds for any of the maps z → zn, where n ≥ 2.

Every covering map is a ramified covering map; for emphasis, a covering map is also
called an unramified covering map.
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Proposition 5.14 Let f : S → R be a ramified covering map between Riemann sur-
faces. Then locally about a ramification point s ∈ S, the map is equivalent to the map
D2 →D2 given by z→ zn for a unique positive integer n. The number n is termed the
ramification index of f at s.

Sketch of proof Locally near a ramification point one has a topological map between
unit discs which is a covering between the punctured discs. The set of such maps
is classified by winding numbers, and (up to equivalence) the map z → zn pops out
uniquely. �

Proposition 5.15 Let f : S → R be a ramified covering map map between compact
Riemann surfaces. Then there is a positive integer d such that for every x ∈ R which
is not a branch point, the set f−1(x) contains d elements. The number d is called the
degree of f .

Moreover, if x ∈ R is a branch point, and s1, . . .sk are the ramification points lying
over x with ramification indices n1, . . . ,nk, then we have

d =
k

∑
i=1

ni.

Proof Since the restriction of f to the complement of the set of ramification points
is a covering map onto its image, the cardinality of f−1(q) for every q ∈ R which is
not a branch point is independent of q. It is finite since S is compact; denote it by d.
The second statement follows from a counting argument taking into account the local
model z → zni of f near si. �

Let g be the genus of a compact surface S. The quantity 2− 2g is called the Euler
characteristic of S and denoted by χ(S). If S is given a triangulation with v vertices,
e edges and t triangles, then

2−2g = χ(S) = v− e+ t.

Theorem 5.16 (Riemann–Hurwitz) Let f : S → R be a ramified covering map be-
tween compact Riemann surfaces, and let g and h be the genera of S and R respec-
tively. Then

χ(S) = dχ(R)−∑
s∈S

(ns−1), (4)

where d is the degree of f and ns is the ramification index of f at s. (If s is not a
ramification point, then define ns = 1.)
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Proof We may triangulate R and, after possibly subdividing the triangulation, we
may assume that every branch point of f is a vertex of the triangulation. Denote the
number of vertices, edges and triangles by v, e and t respectively. Lift the triangulation
of R to a triangulation of S. Since every point other than a branch point has d pre-
images, there are de edges and dt triangles in this triangulation of S.

However, there may be fewer than dv vertices, since each branch point has fewer than
d pre-images. We can count exactly how many pre-images there are. If s ∈ S is a
ramification point with ramification index ns, then there is one vertex at s and not ns

many vertices. Hence there are

dv−∑
s∈S

(ns−1),

vertices in the triangulation of S. It follows that

χ(S) = d(v− e+ t)−∑
s∈S

(ns−1)

= dχ(R)−∑
s∈S

(ns−1).

This gives the desired equation. �

5.5 Holomorphic maps between Riemann surfaces

We now turn to the study of holomorphic maps between Riemann surfaces in general.
Let f : S → R be a holomorphic map between Riemann surfaces. Is there a well-
defined derivative of f ? Recall the definition of being holomorphic at s ∈ S :

Given any chart (Uα ,hα) in S containing s, and any chart (Wα ,gα) containing f (s),
we have that

gα ◦ f ◦h−1
α

is holomorphic in a small neighbourhood of hα(s) ∈ C.

If we choose different charts containing s and f (s) respectively, say (Uβ ,hβ ) and
(Wβ ,gβ ), then

gβ ◦ f ◦h−1
β

is holomorphic in a small neighbourhood of hβ (s) ∈C. These maps are related by the
holomorphic changes of coordinates hβ ◦h−1

α and gα ◦g−1
β

:

gα ◦ f ◦h−1
α = (gα ◦g−1

β
)◦ (gβ ◦ f ◦h−1

β
)◦ (hβ ◦h−1

α ).

Since a change of coordinates is biholomorphic, it follows that even though the value
f ′(s) is not well-defined in general, it does make sense to talk about it being zero or not.
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Moreover, if f ′(s) = 0 for all s in an open set U ⊂ S, then f is locally constant (and
hence constant by Exercise 11), and if f ′(s) 6= 0, then f is a local homeomorphism at
s due to the open mapping theorem.

Remark 5.17 In some texts, a Riemann surface, S, is not assumed to be connected.
In this case locally constant implies constant on each connected component of S.

Definition 5.18 Let f : S → R be a holomorphic map between Riemann surfaces. If
the image of every closed subset of S is a closed (respectively open) subset of R, then
f is termed a closed (respectively open) map.

Proposition 5.19 Let f : S → R be a non-constant, holomorphic map between Rie-
mann surfaces which is closed. Then f is a ramified covering map.

Sketch of proof First note that the set of points where the derivative of f is zero is
discrete. Indeed, this follows from the fact that this is true for any non-zero holomor-
phic map from C to C. Since f is closed, the image of a discrete set is a discrete set.
Hence delete this set of points and the set of its images, and denote the resulting map
by f ∗ : S∗→ R∗. We need to show that this is a covering map.

Let q∈R and choose a simply connected neighbourhood V of q. Let U be a connected
component of f−1(V ). Then f |U : U → V is a local homeomorphism at each point
s ∈ U since f ′(s) 6= 0. The proposition follows if f |U is in fact a homeomorphism
onto its image. This can be shown using the so-called homotopy lifting lemma. The
basic idea is as follows. If f (s) = q and f (s0) = f (s1) = y ∈ V, pick paths in U
connecting si to s. Map them down to V. Then in V we have two paths with identical
end-points; they hence form a closed path. Since V is simply connected, there is a
homotopy in V which takes one path to the other and fixes y. This homotopy can be
lifted to a homotopy between the paths in U, which implies s0 = s1. Thus, f |U is
injective (and hence bijective). �

The following is a situation where a holomorphic map is automatically closed:

Proposition 5.20 Let f : S → R be a non-constant, holomorphic map between Rie-
mann surfaces, and assume that S is compact. Then f is a ramified covering map.

Proof Since S is compact, a subset of S is closed if and only if it is compact, and
the image of a compact set in S is a compact set in R, and hence closed. Thus, the
previous proposition applies. �
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Corollary 5.21 Let f : S → R be a holomorphic map between compact Riemann
surfaces which is not constant, and let g and h be the genera of S and R respectively.

If g = 0 then h = 0 and if g = 1 then h ≤ 1.

Proof We know that f is a ramified covering map. The result now follows directly
from the Riemann–Hurwitz Theorem since the sum on the right hand side of equation
(4) is non-negative. �

6 The classification of elliptic curves

It is now interesting to classify all Riemann surfaces of a given topological type up
to conformal equivalence. We have seen such a result earlier, Theorem 5.4, and are
now in a position to outline its proof using the uniformisation theorem for Riemann
surfaces. Details are omitted at this stage.

Lemma 6.1 Let G ⊂ C be a discrete group. Then G is one of

(1) {0}
(2) ZZ ∼= 〈ω〉
(3) ZZ2 ∼= 〈ω1,ω2〉, where ω1

ω2
is not real.

Lemma 6.2 Let ϕ be an automorphism of the upper half plane IH. Then

ϕ(z) =
az+b
cz+d

, where A =
(

a b
c d

)
∈ PSL2(IR).

Moreover, up to conjugacy, ϕ(z) = z or ϕ(z) = 2z or ϕ(z) = z+1 or ϕ(z) =− 1
z+1 .

Lemma 6.3 Let G ⊂ Aut(D2) be a subgroup. Suppose that

(1) G is free abelian, and

(2) G acts freely, and

(3) G acts properly discontinuously.

Then the rank of G is at most one.

Lemma 6.4 Every elliptic curve is isomorphic to C/Λ, where Λ is a lattice generated
by 1 and a complex number ω ∈ IH.
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Lemma 6.5 Let Λi be lattices in C with bases {vi,wi}, i ∈ {1,2}. Then Λ1 = Λ2 if
and only if there is an element (

a b
c d

)
∈ SL2(ZZ)

such that (
v1
w1

)
=
(

a b
c d

)(
v2
w2

)
.

Definition 6.6 A map ϕ of the form z→ az, where a∈C\{0}, is called a homothety.
Two lattices Λ1 are termed homothetic if Λ2 = ϕ(Λ1).

Lemma 6.7 Two lattices Λi generated by {1,ωi} are homothetic if and only if

ω2 =
aω1 +b
cω1 +d

, where
(

a b
c d

)
∈ SL2(ZZ).

Lemma 6.8 Two elliptic curves are conformally equivalent if and only if they have
homothetic lattices.

The last lemma concludes the proof of Theorem 5.4.
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