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Abstract. In this article, we show that if A is a maximal monotone
operator on a Hilbert space H with 0 in the range Rg(A) of A, then for
every 0 < s < 1, the Dirichlet problem associated with the Bessel-type
equation

A1−2su := −1− 2s

t
ut − utt +Au 3 0

is well-posed for boundary values ϕ ∈ D(A)
H

. This allows us to define the
Dirichlet-to-Neumann (DtN) operator Λs associated with A1−2s as

ϕ 7→ Λsϕ := − lim
t→0+

t1−2sut(t) in H.

The existence of the DtN operator Λs associated with A1−2s is the first
step to define fractional powers Aα of monotone (possibly, nonlinear and
multivalued) operators A on H. We prove that Λs is monotone on H and

if Λs is the closure of Λs in H ×Hw then we provide sufficient conditions

implying that −Λs generates a strongly continuous semigroup on D(A)
H

.
In addition, we show that if A is completely accretive on L2(Σ, µ) for a
σ-finite measure space (Σ, µ), then Λs inherits this property from A.

1. Introduction and main results

In the pioneering work [CS07], Caffarelli and Silvestre constructed three
analytical proofs to show that the fractional Laplacian (−∆)s, (0 < s < 1), on
Rd, (d ≥ 1), coincides up to a multiple constant with the Dirichlet-to-Neumann
(DtN) operator

ϕ 7→ Λsϕ := lim
t→0+

−t1−2su′(·, t) on Rd
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associated with the Bessel type equation

(1.1) A1−2su := −1− 2s

t
ut − utt +Au 3 0

on the half-space Rd+1
+ := Rd × (0,+∞) with A = −∆. One crucial Ansatz

in [CS07] to obtain this identification is to employ the change of variable

(1.2) z =

(
t

2s

)2s

,

which transforms (1.1) into the equation

(1.3) Ã1−2sv := −z−
1−2s
s v′′ +Av 3 0.

The identification of the fractional Laplacian (−∆)s with the DtN operator
Λs has far reaching applications; for example, in the study of nonlocal partial
differential equations, it provides new boundary regularity results including
boundary Harnack inequalities, a monotonicity formula, and several others
(for example, cf [GMS13] or [ATEW18] and the references theirin). The ideas
in [CS07] were followed up quickly by many authors and extended to several
more abstract linear settings. For instance, if for α ≥ 0, Iα denotes the family
of linear operators A on a Banach space X generating a tempered α-times
integrated semigroup {T (t)}t≥0 in L(X) (for details cf [GMS13]), then it was
shown by Galé, Miana and Stinga [GMS13] that for A ∈ Iα and 0 < s < 1,
the Dirichlet problem associated with the Bessel-type operator A1−2s,

(1.4)

{
A1−2su(t) 3 0 for almost every t > 0,

u(0) = ϕ

admits a unique solution u and the fractional power operator As (in the Bal-
akrishnan sense [Bal60]) coincides with the DtN operator Λs associated with
the Bessel-type operator A1−2s given by (1.1).

An important subclass of Iα is given by the family of m-sectorial operators
A defined on a Hilbert space H which are the restriction on H of a continuous,
coercive, sesquilinear form a : V × V → C. Here, V is another Hilbert space
such that V is embedded into H by a linear bounded injection j : V ↪→ H
with a dense image j(V ) in H. For this subclass of operators A on H, the
identification of the fractional power As with the DtN operator Λs was recently
revisited by Arendt, Ter Elst and Warma [ATEW18]. By using techniques
from linear interpolation theory, they could characterise the domain D(Λs)
of Λs and establish an imporant integration by parts rule for solutions to the
Dirichlet problem associated with A1−2s.

Note, it is for the class of m-sectorial operators A associated with a real
symmetric form a : V × V → R that the linear semigroup theory coincides
with the nonlinear semigroup theory (cf [Bre73] or [CHK16]). We briefly recall
from [Bre73] (see also [Bar10]), a (possibly multivalued) operator A : D(A)→
2H is called maximal monotone in H, if A satisfies the monotonicity property :
(v̂− v, û−u)H ≥ 0 for all (u, v), (û, v̂) ∈ A, and the so-called range condition:
Rg(I + A) = H. Here, we follow the standard notation and usually identify
an operator A with its graph

A =
{

(u, v) ∈ H ×H
∣∣∣ v ∈ Au} in H ×H.
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The set D(A) := {u ∈ H |Au 6= ∅} is called the domain of A and Rg(A) :=⋃
u∈D(A)Au ⊆ H the range of A.

In the framework of maximal monotone operators A in Hilbert spaces H,
first results toward the fractional power A1/2 were obtained by Barbu [Bar72].
More precisely, if 0 ∈ Rg(A), then Barbu proved that the Dirichlet prob-
lem (1.4) associated with the Bessel-type operator A0 is well-posedness, and
then introduced the semigroup {T1/2(t)}t≥0 as the contractive extension on

the closure D(A)
H

of T1/2(t)ϕ := u(t), (t ≥ 0), for the unique solution u of the
Dirichlet problem (1.4) with boundary value ϕ ∈ D(A). The paper [Bar72]
was quickly followed up by several authors. For example, Brezis [Bre72] pro-
vided a different proof of the well-posedness of Dirichlet problem (1.4), and
Véron [V7́6] established well-posedness of the following more general (but non-
singular) Dirichlet problem

−p(t)utt − q(t)ut +Au 3 0, u(0) = ϕ

for ϕ ∈ D(A) under the hypothesis that p ∈W 2,∞(0,+∞), q ∈W 1,∞(0,+∞),
and there is an α > 0 satisfying p(t) ≥ α > 0 for all t ≥ 0. We emphasises that
neither Barbu nor Brezis identified the (negative) infinitessimal generator of
the semigroup {T1/2(t)}t≥0 by the DtN operator Λ1/2 associated with A0, but

in stead denoted Λ1/2 by A1/2 in analogy to the fractional power A1/2 of A as
it is known from the linear theory (cf [Bal60] or [MCSA01, Chapter 6.3]).

More than twenty years later, Alraabiou & Bénilan [AB96] introduce the
definition of the square power

A2 := lim inf
λ→0+

A−Aλ
λ

,

via the Yosida approximation Aλ := (I − (I + λA)−1)/λ and showed that if
A = ∂HE the subdifferential operator in H of a convex, proper, lower semi-
continuous functional E : H → [0,+∞] with 0 ∈ ∂HE(0), then A ⊆ (A1/2)2.
This justifies (at least in the case s = 1/2) that the DtN operator Λs is a
reasonable candidate for defining fractional powers As of maximal monotone
operators A on Hilbert spaces.

The first aim of this paper is to extend the results obtained by Barbu [Bar72]
and Brezis [Bre72] (in the case s = 1/2) to the complete range 0 < s < 1, the
well-posedness of Dirchlet problem (1.4) associated with Bessel-type operator
A1−2s for (possibly nonlinear) maximal monotone operators A on a Hilbert
space H. Before stating our first main result, let us introduce the following
notion of solutions of Dirchlet problem (1.4).

Definition 1.1. We call a function u : [0,+∞) → H a strong solution of

Bessel-type equation (1.1) if u ∈W 2,2
loc ((0,+∞);H) and for almost every t > 0,

u(t) ∈ D(A) and {t1−2su′(t)}′ ∈ t1−2sA(u(t)). Moreover, for given boundary
value ϕ ∈ H, a function u : [0,+∞) → H is called a solution of Dirichlet
problem (1.4) if u ∈ C([0,+∞);H), u(0) = ϕ, and u is a strong solution
of (1.1).

In the next theorem, we write L∞(H) to denote L∞(0,+∞;H), L2
?(H) for

the L2-space of all measurable functions u : R+ → H where R+ := (0,+∞)

is equipped with the Haar-measure dt
t , and W 1,2

s (H) to denote the set of all



4 DANIEL HAUER, YUHAN HE, AND DEHUI LIU

u ∈W 1,1
loc (H) such that tsu and tsu′ ∈ L2

?(H) (for more details, see Section 2).
With these preliminaries, our first main result reads as follows.

Theorem 1.2. Let A be a maximal monotone operator on H with 0 ∈ Rg(A).

Then, for every 0 < s < 1, ϕ ∈ D(A)
H

and y ∈ A−1({0}), there is a unique
solution u ∈ L∞(H) of Dirichlet problem (1.4) satisfying

‖u(t)− y‖H ≤ ‖u(t̂)− y‖H for all t ≥ t̂ ≥ 0,(1.5)

‖tu′‖L2
?(H) ≤

√
s ‖ϕ− y‖H(1.6)

‖u′(t)‖H ≤ 2s
‖ϕ− y‖H

t
for every t > 0,(1.7)

∥∥t1+2s{t1−2su′}′
∥∥
L2
?(H)

≤


√
s ‖ϕ− y‖H if s ≥ 1

2 ,

√
s( s

1−2s
1
2

+3)
1
2

√
2

‖ϕ− y‖H if 0 < s < 1
2 .

(1.8)

Moreover, if ϕ ∈ D(A), then t1−2su′ ∈W 1,2
s (H) and∥∥∥∥ lim

t→0+
t1−2su′(t)

∥∥∥∥
H

≤ (2s)1−2s

(
‖A0ϕ‖

1
2
H + ‖ϕ− y‖

1
2
H

)2

,(1.9)

‖ts{t1−2su′}‖L2
?(H) ≤ (2s)1−s

(
‖A0ϕ‖

1
2
H + ‖ϕ− y‖H

)
,(1.10)

‖ts{t1−2su′}′‖L2
?(H) ≤ (2s)1−s

(
‖A0ϕ‖H + ‖ϕ− y‖

1
2
H ‖A

0ϕ‖
1
2
H

)
.(1.11)

In particular, for every two solutions u and û of (1.4) with boundary value ϕ

and ϕ̂ ∈ D(A), one has that

(1.12) ‖u(t)− û(t)‖H ≤ ‖u(t̂)− û(t̂)‖H for all t ≥ t̂ ≥ 0.

According to Theorem 1.2, for every ϕ ∈ D(A), the outer unit normal
derivative

(1.13) Λsϕ := − lim
t→0+

t1−2su′(t) exists in H.

Thus, thanks to this well-posedness result, the DtN operator Λs assigning each
Dirichlet boundary condition ϕ ∈ D(A) to the Neumann derivative (1.13) of
the unique solution u of (1.1) is a well-defined mapping Λs : D(A)→ H. More
precisely, we can state the following theorem. Here, Hw denotes the space H
equipped with the weak toplogy σ(H,H ′).

Theorem 1.3. Let A be a maximal monotone operator on H with 0 ∈ Rg(A).
Then, for every 0 < s < 1, the Dirichlet-to-Neumann operator

Λs :=

{
(ϕ,w) ∈ H ×H

∣∣∣∣∣ ∃ a strong solution u of (1.1) satisfying (1.5),
u(0) = ϕ in H, & w = − lim

t→0+
t1−2su′(t) in H

}
is a monotone, well-defined mapping Λs : D(Λs)→ H satisfying

D(A) ⊆ D(Λs) ⊆ D(A)
H

and D(A) ⊆ Rg(IH + λΛs) for all λ > 0.

If D(A) is dense in H, then closure Λs of Λs in H×Hw is maximal monotone
and −Λs generates a strongly continuous semigroup {Ts(t)}t≥0 of contractions
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Ts(t) : H → H. Moreover, for every ϕ ∈ H, there is a function U(r, t)
satisfying
−1−2s

r Ur(r, t)− Urr(r, t) +AU(r, t) 3 0 for a.e. r > 0, all t > 0,

U(0, t) = Ts(t)ϕ for all t ≥ 0,

lim
r→0+

r1−2sUr(r, t) ∈
d

dt
Ts(t)ϕ for all t > 0.

Due to Theorem 1.3 and the results [Bar72, Bre72, AB96] (for s = 1/2), it
makes sense to define the fractional power As of A for 0 < s < 1 via the DtN
operator Λs.

Definition 1.4. For a maximal monotone operator A on H with 0 ∈ Rg(A),
the fractional power As of A for 0 < s < 1, is defined by

As = Λs,

where Λs denotes the closure in H × Hw of the DtN operator Λs associated
with the Bessel-type operator A1−2s defined in Theorem 1.3.

It is the task of our forthcoming work in this direction to extend the defini-
tion of A2 provided by Alraabiou & Bénilan [AB96] to the case Ak for every

integer k ≥ 2 and to show that A ⊆ (A
1
k )k.

In the case the Hilbert space H = L2(Σ, µ) of a σ-finite measure space
(Σ, µ), and the operator A is completely accretive on L2(Σ, µ) then this prop-
erty also holds for the DtN operator Λs for 0 < s < 1. For the notion of com-
pletely accretive operators, order preservability, and Orlicz spaces Lψ(Σ, µ),
we refer to Definitions 2.3 and 2.4 in the subsequent section.

Theorem 1.5. Let A be an m-completely accretive operator on the Hilbert
space H = L2(Σ, µ) of a σ-finite measure space (Σ, µ), and 0 ∈ Rg(A).
Then for every 0 < s < 1, the DtN operator Λs is also completely accre-
tive on L2(Σ, µ). In particular, if {Ts(t)}t≥0 is the semigroup generated by
−Λs on L2(Σ, µ), then {Ts(t)}t≥0 is order-preserving and every map Ts(t) is
LΨ-contractive on L2(Σ, µ) for every right-continuous N -function ψ.

As a byproduct of the theory developed in this paper, we obtain existence
and uniqueness of the following abstract Robin problem associated with the
Bessel-type operator A1−2s,

(1.14)

{
A1−2su(t) 3 0 in H for almost every t > 0,

− lim
t→0+

t1−2su′(t) + λu(0) = ϕ on H,

for any λ > 0 and ϕ ∈ D(A). Here, we use the following notion of solutions of
problem (1.14).

Definition 1.6. For given ϕ ∈ H, a function u : [0,+∞) → H is called a
solution of Robin problem (1.14) if u ∈ C([0,+∞);H) is a strong solution
of (1.1) and

− lim
t→0+

t1−2su′(t) + λu(0) = ϕ exists in H.

Now, our well-posedness result to the abstract Robin problem (1.14) reads
as follows.
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Theorem 1.7. Let A be a maximal monotone operator on H with 0 ∈ Rg(A).
Then, for every 0 < s < 1, λ > 0, and ϕ ∈ D(A), there is a unique solution u ∈
L∞(H) of Robin problem (1.14) satisfying (1.5), (1.9)-(1.11) and (1.6)-(1.8).

In particular, t1−2su′ ∈W 1,2
s (H), the function t 7→ ‖u(t)‖2H is convex, bounded

and decreasing on [0,+∞), and for every two solutions u and û of (1.14)
respectively with boundary value ϕ and ϕ̂ ∈ D(A), one has that (1.12) holds.

Remark 1.8. At the moment, we neither know how to obtain existence and
uniqueness of solutions to the abstract Robin problem (1.14) for boundary

data ϕ ∈ D(A)
H

nor the continuous dependence of the solutions u of (1.14)
on the boundary data ϕ. This result would not only complete the theory on
studying the Robin problem, but also imply that the DtN map Λs restricted
on the closure D(A)

H
is a well-defined mapping.

This paper is organized as follows. In the subsequent section, we introduce
the framework and notations used throughout this paper and state some pre-
liminary results which will be useful for establishing existence and uniqueness
of Dirichlet problem (1.4) and Robin problem (1.14). In Section 3, we then
prove the existence and uniqueness of equation (1.1) equipped with a more
abstract boundary-value problem for boundary data ϕ ∈ D(A), which in-
cludes (1.4) and (1.14) as special cases (cf problem (3.1)). The well-posedness

of Dirichlet problem (1.4) for boundary data ϕ ∈ D(A)
H

follows from the in-
qualities (1.5)-(1.8) and (1.12). We provide a short proof of Theorem 1.2 and
Theorem 1.7 at the beginning of Section 3. Our proof of Theorem 3.2 is based
on the change of variable (1.2) which transforms equation (1.1) into (1.3).
We emphasize that our proof demonstrates very well that the generalization
of [Bre72] (case s = 1/2) to the full range 0 < s < 1 is not trivial and uses
techniques and spaces from interpolation theory. The statements of Theo-
rem 1.3 follow from Corollary 3.7. In Section 4, we show that if for a given
convex, proper, lower semicontinuous functional φ : H → R ∪ {+∞}, the
operator A is ∂Hφ-monotone on H (for a definition see below in the next
section), then the DtN operator Λs has also this property (see Theorem 4.1).
This results has several applications; one can deduce invariance principles
(cf [Bre73]), comparison principles and Lψ-contractivity properties of the semi-
group {Ts(t)}t≥0 generated by −Λs on L2(Σ, µ), for a σ-finite measure space
(Σ, µ) (see Corollary 4.2). Here, Lψ abbreviates the Orlicz space Lψ(Σ, µ)
for a given N -function ψ. Thus, the statement of Theorem 1.5 follows from
Corollary 4.2. We conclude this paper with an application on the Leray-Lions
operator A = −div(a(x,∇u)) (see Section 5).

2. Preliminaries

Throughout this article, (H, (·, ·)H) denotes a real Hilbert space with inner
product (·, ·)H , and we use to write R+ to denote (0,+∞) and R+ := [0,+∞].

For an operator A on H, the minimal selection A0 of A is given by

A0 :=
{

(u, v) ∈ A
∣∣∣ ‖v‖H = min

w∈Au
‖w‖H

}
and for a convex functional E : H → R ∪ {+∞}, the subdifferential operator

∂HE :=
{

(u, h) ∈ H ×H
∣∣∣ E(u+ v)− E(u) ≥ (h, v)H for all v ∈ H

}
.
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The property that A being monotone is equivalent to that for every λ > 0,
the resolvent operator JAλ := (I + λA)−1 of A is contractive in H:

‖JAλ u− JAλ û‖H ≤ ‖u− û‖H for every u, û ∈ Rg(I + λA).

Further, we call a functional j : H → R+ strongly coercive if

(2.1) lim
|v|→+∞

j(v)

|v|
= +∞.

If j : H → R∪{+∞} is convex, proper, and lower semicontinuous on H, then
an operator A on H is called ∂Hj-monotone, if for every λ > 0, the resolvent
JAλ of A satisfies

j(JAλ u− JAλ û) ≤ j(u− û) for every u, û ∈ Rg(I + λA).

In addition, if the subdifferential operator ∂Hj of j is a mapping ∂Hj :
D(∂Hj) → H, then we call ∂Hj weakly continuous if ∂Hj maps weakly con-
vergent sequences to weakly convergent sequences.

The notion of completely accretive operators was introduced in [BC91] by
Crandall and Bénilan and further developed in [CH17]. Following the same
notation as in these two references, J0 denotes the set of all convex, lower
semicontinuous functions j : R → R+ satisfying j(0) = 0. Let (Σ, µ) be a
σ-finite measure space and M(Σ, µ) the space (of all classes) of measurable
real-valued functions on Σ.

Definition 2.1. A mapping S : D(S) → M(Σ, µ) with domain D(S) ⊆
M(Σ, µ) is called a complete contraction if∫

Σ
j(Su− Sû) dµ ≤

∫
Σ
j(u− û) dµ

for all j ∈ J0 and every u, û ∈ D(S).

Choosing j(·) = |[·]+|q ∈ J0 if 1 ≤ q < ∞ and j(·) = [[·]+ − k]+ ∈ J0 for
k ≥ 0 large enough if q = ∞ shows that each complete contraction S is T -
contractive in Lq(Σ, µ) for every 1 ≤ q ≤ ∞. And by choosing j(·) = |[·]+|q ∈
J0 for any 1 ≤ q < ∞, a complete contraction S is order preserving, that is,
for every u, û ∈ D(S) satisfying u ≤ û a.e. on Σ, one has that Su ≤ Sû. In
fact, the following characterization holds.

Proposition 2.2 ([BC91]). Suppose that the mapping S : D(S) → M(Σ, µ)
with domain D(S) ⊆ M(Σ, µ) satisfies the following: for every u, û ∈ D(S),
k ≥ 0, one has either

min{u, (û+ k)} ∈ D(S) or max{(u− k), û} ∈ D(S).

Then, S is a complete contraction if and only if S is order preserving, and a
L1- and L∞-contraction.

Definition 2.3. An operator A on M(Σ, µ) is called completely accretive if
for every λ > 0, the resolvent operator Jλ of A is a complete contraction. An
operator A on M(Σ, µ) is said to be m-completely accretive if A completely
accretive and the range condition Rg(I + A) = L2(Σ, µ) holds. A semigroup
{Tt}t≥0 on a subset a closed subset C of M(Σ, µ) is called order preserving if
each map Tt is order preserving.
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Next, we first briefly recall the notion of Orlicz spaces. Following [RR91,
Chapter 3], a continuous function ψ : [0,+∞) → [0,+∞) is an N -function
if it is convex, ψ(s) = 0 if and only if s = 0, lims→0+ ψ(s)/s = 0, and
lims→∞ ψ(s)/s =∞.

Definition 2.4. Given an N -function ψ, the Orlicz space

Lψ(Σ, µ) :=

{
u : Σ→ R

∣∣∣∣∣ u measurable &

∫
Σ
ψ(
|u|
α

) dµ <∞ for some α > 0

}
and equipped with the Orlicz-Minkowski norm

‖u‖Lψ := inf

{
α > 0

∣∣∣∣∣
∫

Σ
ψ(
|u|
α

) dµ ≤ 1

}
.

For 1 ≤ q ≤ ∞, we write Lqloc(H) and Lq(H) to denote the vector-valued
Lebesgue spaces Lqloc(R+;H), Lq(R+;H). The derivative u′ of a function u ∈
L1
loc(H) is usually understood in the distributional sense. More precisely, a

function w ∈ L1
loc(H) is called the weak derivative of u ∈ L1

loc(H) if∫ +∞

0
u(t) ξ′(t) dt = −

∫ +∞

0
w(t) ξ(t) dt

for all test functions ξ ∈ C∞c (R+). A function w ∈ L1
loc(H) satisfying the latter

equation for all ξ ∈ C∞c (R+), is unique and so, one writes u′ = w. We denote

by W 1,1
loc (H) the space of all u ∈ L1

loc(H) with a weak derivative u′ ∈ L1
loc(H).

Next, let 0 < s < 1. Then L2
s(H) denotes the space of all u ∈ L1

loc(H)
satisfying tsu ∈ L2

?(H). We equip the first order weighted Sobolev space

W 1,2
s (H) =

{
u ∈W 1,1

loc (H)
∣∣∣u, u′ ∈ L2

s(H)
}
.

with the inner product

(u, û)
W 1,2
s (H)

:=

∫ +∞

0

(
u(t) û(t) + u′(t) û′(t)

)
t2s

dt

t
.

Then, W 1,2
s (H) is a Hilbert space and we denote by ‖·‖

W 1,2
s (H)

the induced

norm of W 1,2
s (H). Further, throughout this paper

s :=
1− s

2s
and s :=

3s− 1

2s
for every 0 < s < 1.

Then, L2
s(H) denotes the space of all v ∈ L1

loc(H) satisfying z
1−s
2s v ∈ L2

?(H)
equipped with the inner product

(2.2) (v, w)L2
s(H) :=

∫ ∞
0

(z
1−s
2s v(z), z

1−s
2s w(z))

dz

z
=

∫ ∞
0

(v(z), w(z))z
1−2s
s dz

for every v, w ∈ L2
s(H). Similarly, we write L2

s(H) to denote the space of all

v ∈ L1
loc(0,+∞;H) satisfying z

3s−1
2s v ∈ L2

?(H).

The spaces W 1,2
1−s
2s

, 1
2

(H) and W 1,2
1
2
, 3s−1

2s

(H) are first order Sobolev spaces with

mixed weights defined by

W 1,2
1−s
2s

, 1
2

(H) =
{
v ∈ L1

loc(H)
∣∣∣ z 1−s

2s v ∈ L2
?(H), z

1
2 v′ ∈ L2

?(H)
}
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and

W 1,2
1
2
, 3s−1

2s

(H) =
{
v ∈ L1

loc(H)
∣∣∣ z 1

2 v ∈ L2
?(H), z

3s−1
2s v′ ∈ L2

?(H)
}
.

In addition, we will employ the second order Sobolev space with mixed weights

W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H) :=
{
v ∈W 1,2

1−s
2s

, 1
2

(H)
∣∣∣ z 3s−1

2s v′′ ∈ L2
?(H)

}
.

Each of these spaces equipped with its natural inner product and the induced
norms

‖v‖
W 1,2

1−s
2s , 12

(H)
:=
(
‖z

1−s
2s v‖2L2

?(H) + ‖z
1
2 v′‖2L2

?(H)

)1/2

‖v‖
W 1,2

1
2 ,

3s−1
2s

(H)
:=
(
‖z

1
2 v‖2L2

?(H) + ‖z
3s−1
2s v′‖2L2

?(H)

)1/2

‖v‖
W 2,2

1−s
2s , 12 ,

3s−1
2s

(H)
:=

(
‖v‖2

W 1,2
1−s
2s , 12

(H)
+ ‖z

3s−1
2s v′′‖2L2

?(H)

)1/2

is a Hilbert space.

The next proposition shows that for functions u ∈ W 1,2
s (H), the initial

value u(0) ∈ H. Note, this proposition is a special case of [ATEW18, Propo-
sition 3.2.1] since for X = Y = H, the interpolation space [X,Y ]θ = H for
every θ ∈ (0, 1).

Proposition 2.5 ([Lun95, Proposition 1.2.10]). Let 0 < s < 1. Then for

every u ∈W 1,2
s (H), the limit u(0) := limt→0+ u(t) exists in H. Moreover, the

trace map

Tr : W 1,2
s (H)→ H, u 7→ u(0) is continuous, surjective

and there are c1, c2 > 0 such that

c1 ‖x‖H ≤ inf
u∈W 1,2

s (H):u(0)=x
‖u‖

W 1,2
s (H)

≤ c2‖x‖H

for every x ∈ H.

To conclude this preliminary section, we state the following integration by
parts rule from [ATEW18, Proposition 3.9].

Proposition 2.6. Let 0 < s < 1. For u ∈ W 1,2
s (H) and ξ ∈ W 1,2

1−s(H),

the functions t 7→ (u′(t), ξ(t))H and t 7→ (u(t), ξ′(t))H belong to L1(0,+∞).
Moreover, the following integration by parts rule holds:

−
∫ +∞

0
(u′(t), ξ(t))H dt =

∫ +∞

0
(u(t), ξ′(t))H dt+ (u(0), ξ(0))H .

3. Well-posedness of second order boundary value problems

In this section, we are concerned with establishing the well-posedness of the
following more general abstract boundary-value problem

(3.1)


u′′(t) + 1−2s

t u′(t) ∈ Au(t) for almost every t > 0,

lim
t→0+

t1−2su′(t) ∈ ∂j(u(0)− ϕ),
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where j : H → R+ be a convex, strongly coercive, lower semicontinuous

functional satisfying j(0) = 0, ϕ ∈ D(A)
H

, and 1 < s < 1.

Definition 3.1. For ϕ ∈ H, a function u : [0,+∞) → H is called a solu-
tions of problem (3.1) if u ∈ C([0,+∞);H), u is a strong solution of (1.1),
limt→0+ t

1−2su′(t) exists in H and

lim
t→0+

t1−2su′(t) ∈ ∂j(u(0)− ϕ).

For our next theorem, we recall (cf [Bre73] or [Bar10]) that the indicator
function j : H → R+ is defined by j(v) := 0 if v = 0 and j(v) := +∞ if
otherwise. The following theorem is the first main result of this section.

Theorem 3.2. Let A be a maximal monotone operator on H with 0 ∈ Rg(A),
and j : H → R+ be a convex, strongly coercive, lower semicontinuous func-
tional satisfying j(0) = 0 and either ∂Hj : D(∂Hj) → H is a weakly con-
tinuous mapping or j is the “indicator function”. Assume further that A is
∂j-monotone. Then, for every 0 < s < 1, ϕ ∈ D(A) and y ∈ A−1({0}), there
is a unique solution u ∈ L∞(H) of problem (3.1) satisfying (1.5), (1.9)-(1.11)

and (1.6)-(1.8). In particular, t1−2su′ ∈W 1,2
s (H), the function t 7→ ‖u(t)‖2H is

convex, bounded and decreasing on [0,+∞), and for every two strong solutions
u and û ∈ L∞(H) of equation (1.1), one has that (1.12) holds.

Remark 3.3 (The case A = ∂Hφ). Suppose A = ∂Hφ the subdifferential oper-
ator of a proper, convex, lower semicontinuous functional φ : H → R ∪ {+∞}
attaining a global minimum minv∈H φ(v) = φ(v0) at some v0 ∈ H. After pos-

sibly replacing φ by φ̃(v − v0)− φ(v0), (v ∈ H), we may assume without loss
of generality that φ attains it minimum at 0 ∈ H and φ : H → R+. Hence,
for ϕ ∈ D(A), the second-order boundary problem (3.1) can be rewritten as

(3.2) 0 ∈ ∂L2
1−s(H)E(u),

or equivalently, as the minimization problem

min
u∈L2

1−s(H)
E(u)

for the functional E : L2
1−s(H)→ R ∪ {+∞} defined by

E(u) :=


∫ +∞

0
t2(1−s)

{
1
2‖u

′(t)‖2H + φ(u(t))
} dt

t
+ j(u(0)− ϕ) if u ∈ D(E),

+∞ if otherwise,

where D(E) := {u ∈ W 1,2
1−s(H) | φ(u) ∈ L1

1−s(H), u(0) − ϕ ∈ D(j)}. It is not
difficult to see that E is convex and by Proposition 2.5, E is proper and lower
semicontinuous on L2

1−s(H) (cf [Bre73, Exemple 2.8.3]). But to see that E is
coercive, stronger assumptions on φ are needed; for example, suppose there is
an η > 0 such that

φ(u) ≥ η ‖u‖2H , for all u ∈ D(φ).

This is consistent with the linear theory of sectorial operators (cf [ATEW18,
p 10 formula (4.4)]) and the case s = 1/2 in the nonlinear theory (cf [Bar76,
Chapter V.2]).
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Under the assumption that the statement of Theorem 3.2 holds, we outline
how to deduce the statements of Theorem 1.2 and Theorem 1.7.

Proof of Theorem 1.2 and Theorem 1.7. By choosing j to be the indicator
function, one sees that problem (3.1) reduces to Dirichlet problem (1.4).
Therefore for ϕ ∈ D(A), the statements of Theorem 1.2 follows from Theo-

rem 3.2. Now, let ϕ ∈ D(A)
H

. Then there are sequences (ϕn)n≥1 of ϕn ∈ D(A)
and (vn)n≥1 of corresponding solutions un of (1.4). By (1.12),

sup
t≥0
‖un(t)− um(t)‖H ≤ ‖ϕn − ϕm‖H

for every n, m ≥ 0. Moreover, by (1.5), every un ∈ L∞(H). Therefore,
(un)n≥1 is a Cauchy sequence in Cb([0,+∞);H) and so, there is a function
u ∈ Cb([0,+∞);H) such that

lim
n→+∞

un = u in Cb([0,+∞);H).

From this limit, we can conclude that u satisfies (1.5) and (1.12). In particular,
since un(0) = ϕn → ϕ in H, one has that u(0) = ϕ in H. Further, by (1.6)

and (1.8) applied to un, we can conclude that u ∈W 2,2
loc ((0,+∞);H) and after

possibly passing to a subsequence of (un)n≥1 and taking lim infn→+∞ in those
inequalities, we obtain that u satisfies (1.6) and (1.8). To see that u is a strong
solution of (1.1), one proceeds similarly to step 5 in the proof of Theorem 3.6
(below). This proves the statement of Theorem 1.2.

Next, to see that also Theorem 1.7 holds, for given λ > 0 and ϕ ∈ D(A),
one chooses

j(·) =
λ

2

∥∥∥∥· − ( 1

λ
− 1

)
ϕ

∥∥∥∥2

H

and applies Theorem 3.2. �

The key to prove Theorem 3.2 (respectively, Theorem 1.2) is via the change
of variable (1.2), which transforms the abstract boundary-value problem (3.1)
associated with the Bessel-type operator A1−2s to the following abstract boun-
dary-value problem

(3.3)

{
z−

1−2s
s v′′(z) ∈ Av(z) for almost every z > 0,

v′(0) ∈ ∂j̃(v(0)− ϕ),

for given ϕ ∈ D(A)
H

and where j̃ = (2s)−(1−2s)j.

Definition 3.4. We call a function v : [0,+∞) → H a strong solution of

equation (1.3) if v ∈ W 2,2
loc ((0,+∞);H) and for almost every z > 0, v(z) ∈

D(A) and z−
1−2s
s v′′(z) ∈ A(v(z)). For given ϕ ∈ H and j̃ = (2s)−(1−2s)j,

a function v is called a solution of problem (3.3) if v ∈ C1([0,+∞);H) is a
strong solution of (1.3) satisfying v′(0) ∈ ∂j̃(v(0)− ϕ).

Further, for given ϕ ∈ H, a function v ∈ C([0,+∞);H) is called a solution
of Dirichlet problem

(3.4)

{
z−

1−2s
s v′′(z) ∈ Av(z) for almost every z > 0,

v(0) = ϕ,

if v ∈ C([0,+∞);H), v is a strong solution of (1.3), and v(0) = ϕ.
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Our first lemma outlines the equivalence between Definition (3.1) and Def-
inition (3.4).

Lemma 3.5. Let A be an operator on H, j : H 7→ R ∪ {+∞} a proper

functional, ϕ ∈ H, and 0 < s < 1. For u ∈ W 2,2
loc ((0,+∞);H), let u(t) = v(z)

for z given by the change of variable (1.2). Then, the following statements
hold.

(1) u is a solution of (3.1) if and only if v is a solution of (3.3).

(2) A function u ∈W 1,2
s (H) if and only if v ∈W 1,2

1
2
, 3s−1

2s

(H), and a function

u ∈W 1,2
1−s(H) if and only if v ∈W 1,2

1−s
2s

, 1
2

(H) with

(3.5) u′(t) = v′(z)z−
1−2s
2s .

Proof. If z = z(t) = ( t
2s)

2s, then t = t(z) = 2sz
1
2s and so, v(z) = u(t) =

u(2sz
1
2s ). Then, for z and t > 0,

v′(z) =
d

dz
v(z) =

du

dt
· dt

dz
= u′(t)z

1−2s
2s ,

proving (3.5). By using (3.5), one easily verifies that u ∈W 1,2
1−s(H) if and only

if v ∈ W 1,2
1−s
2s

, 1
2

(H), and u ∈ W 1,2
s (H) if and only if v ∈ W 1,2

1
2
, 3s−1

2s

(H). Thus

claim (2) holds. Further,

v′′(z) =
d

dz
v′(z) = u′′(t)z

1−2s
s + u′(t)

1− 2s

2s
z

1−2s
2s
−1

for z, t > 0. Multiplying this equation by z−
1−2s
s , one sees that

z−
1−2s
s v′′(z) = u′′(t) +

1− 2s

2s
z−

1
2su′(t) = u′′(t) +

1− 2s

t
u′(t)

for almost every z, t > 0. Therefore, z−
1−2s
s v′′(z) ∈ Av(z) for a.e. z > 0

if and only if u′′(t) + 1−2s
t u′(t) ∈ Au(t) for a.e. t > 0, showing that u is a

strong solution of (1.1) if and only if v is a strong solution of (1.3). Moreover,

t1−2su′ ∈ W 1,2
s (H) if and only if z

1
2 v′ and z−

1−3s
2s v′′ ∈ L2

?(H). Multiplying
v′(z) by (2s)1−2s shows that

(2s)1−2sv′(z) = (2s)1−2su′(t)z
1−2s
2s = t1−2su′(t).

Note that limz→0+ t(z) = 0 and limt→0+ z(t) = 0. Thus

lim
t→0+

t1−2su′(t) exists in H if and only if lim
z→0+

v′(z) exists in H.

By Proposition 2.5, t1−2su′ ∈W 1,2
s (H) implies that limt→0+ t

1−2su′(t) exists in
H. Similarly, one has that u(0) := limt→0+ u(t) exists inH if and only if v(0) =
limz→0+ v(z) exists in H, and by Proposition 2.5, u(0) := limt→0+ u(t) = ϕ
exists in H. Therefore and by the definition of the subdifferential ∂Hj, one
has that limt→0+ t

1−2su′(t) ∈ ∂Hj(u(0) − ϕ) if and only if (1 − α)αv′(0) ∈
∂Hj(v(0) − ϕ), which completes the proof of showing that u is a solution
of (3.1) if and only if v is a solution of (3.3). �

Our next theorem provides the existence and uniqueness of problem (3.3).
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Theorem 3.6. Under the hypothesis of Theorem 3.2, let j̃ := (2s)−(1−2s)j.
Then, for every ϕ ∈ D(A) and y ∈ A−1{0}, there is a unique solution

v ∈ L∞(H) ∩ C1([0,+∞);H) with v′ ∈W 1,2
1
2
, 3s−1

2s

(H)

of problem (3.3) satisfying

‖v(z)− y‖H ≤ ‖v(ẑ)− y‖H for all z ≥ ẑ ≥ 0,(3.6)

‖v′(z)‖H ≤ ‖v′(ẑ)‖H for all z ≥ ẑ ≥ 0,(3.7)

‖z v′(z)‖L2
?(H) ≤

‖ϕ− y‖H√
2

(3.8)

‖v′(z)‖H ≤
‖ϕ− y‖H

z
for every z > 0,(3.9)

‖z2v′′‖L2
?(H) ≤


‖ϕ− y‖H√

2
if s ≥ 1

2 ,

1

2

(
s

1− 2s

1

2
+ 3

) 1
2

‖ϕ− y‖H , if 0 < s < 1
2 .

(3.10)

‖v′(0)‖
1
2
H ≤ ‖A

0ϕ‖
1
2
H + ‖ϕ− y‖

1
2
H ,(3.11)

‖z
1
2 v′‖L2

?(H) ≤ ‖A0ϕ‖
1
2
H + ‖ϕ− y‖H ,(3.12)

‖v′′‖L2
s
≤ ‖A0ϕ‖H + ‖ϕ− y‖

1
2
H ‖A

0ϕ‖
1
2
H .(3.13)

For every two strong solutions v and v̂ ∈ L∞(H) of (1.3), one has that

(3.14) ‖v(z)− v̂(z)‖H ≤ ‖v(ẑ)− v̂(ẑ)‖H for every z ≥ ẑ ≥ 0.

Further, for every ϕ ∈ D(A)
H

and y ∈ A−1{0}, there is a unique solution
v ∈ L∞(H) of Dirichlet problem (3.4) satisfying (3.6)-(3.10), and (3.14).

Thanks to Lemma 3.5, Theorem 3.6 implies that the statement of Theo-
rem 3.2 holds. In particular, by Theorem 3.6, if the boundary value ϕ ∈ D(A),

then the unique solution v of Dirichlet problem (3.4) satisfies v ∈W 1,2
1
2
, 3s−1

2s

(H),

implying that the Neumann derivative

−(2s)1−2sv′(0) =: Θsϕ exists in H.

This allows us to define the DtN operator Θs associated with Ã1−2s as given
in the following Corollary.

Corollary 3.7. Let A be a maximal monotone operator on H with 0 ∈ Rg(A).
Then, for every 0 < s < 1, the Dirichlet-to-Neumann operator Θs associated
with Ã1−2s defined by

Θs =

{
(ϕ,w) ∈ H ×H

∣∣∣∣∣ ∃ a solution v of Dirichlet problem (1.3),
with v(0) = ϕ and w = −(2s)1−2sv′(0) in H.

}
is a monotone, well-defined mapping Θs : D(Θs)→ H satisfying

D(A) ⊆ D(Θs) ⊆ D(A)
H
, and D(A) ⊆ Rg(IH+λΘs) for all λ > 0.
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The closure Θs of Θs in H ×H is characterized by

Θs :=

{
(ϕ,w) ∈ H ×H

∣∣∣∣∣
∃ (ϕn, wn) ∈ Θs s.t. lim

n→+∞
(ϕn, wn) = (ϕ,w)

in H ×H & a strong solution v of (1.3)
satisfying v(0) = ϕ in H.

}

with domain D(Θs) = D(A)
H

and

D(A)
H ⊆ Rg(IH + λΘs) for all λ > 0.

If D(A) is dense in H, then Θs is maximal monotone.

By Lemma 3.5, Corollary 3.7 implies that Theorem 1.3 holds. The rest of
this section is dedicated to the proof of Theorem 3.6

By using the change of variable (1.2), Proposition 2.5 can be rewritten for

functions v ∈W 1,2
1−s
2s

, 1
2

(H). Moreover, by [ATEW18], we have that the following

integration by parts holds.

Lemma 3.8. Let 0 < s < 1. Then, the following statements hold.

(1) (Trace theorem on W 1,2
1−s
2s

, 1
2

(H)) For v ∈W 1,2
1−s
2s

, 1
2

(H), the limit v(0) :=

limz 7→0+ v(z) exists in H. In particular, the trace operator

Tr : W 1,2
1−s
2s

, 1
2

(H)→ H, v 7→ v(0)

is continuous and surjective.
(2) (Trace theorem on W 1,2

1
2
, 3s−1

2s

(H)) For v ∈ W 1,2
1
2
, 3s−1

2s

(H), the limit

v(0) := limz 7→0+ v(z) exists in H. In particular, the trace operator

Tr : W 1,2
1
2
, 3s−1

2s

(H)→ H, v 7→ v(0)

is continuous and surjective, and there are c1, c2 > 0 such that

(3.15) c1 ‖x‖H ≤ inf
ξ∈W 1,2

1
2 ,

3s−1
2s

(H):ξ(0)=x
‖ξ‖

W 1,2
1
2 ,

3s−1
2s

(H)
≤ c2‖x‖H

for every x ∈ H.
(3) For w ∈W 1,2

1
2
, 3s−1

2s

(H) and ξ ∈W 1,2
1−s
2s

, 1
2

(H), the functions

z 7→ (w′(z), ξ(z))H and z 7→ (w(z), ξ′(z))H

belong to L1(0,+∞) and the following integration by parts rule holds:

(3.16)

∫ +∞

0
(w′(z), ξ(z))H dz = −(w(0), ξ(0))H −

∫ +∞

0
(w(z), ξ′(z))H dz.

Proof. As mentioned in the proof of Lemma 3.5, u ∈W 1,2
1−s(H) if and only if v ∈

W 1,2
1−s
2s

, 1
2

(H), and since limz→0+ t(z) = 0 and limt→0+ z(t) = 0, one has that the

fact that u(0) := limt→0+ u(t) exists in H is equivalent to v(0) := limz→0+ v(z)

exists in H. Therefore by Proposition 2.5, for every v ∈W 1,2
1−s
2s

, 1
2

(H), the limit

v(0) := limz 7→0+ v(z) exists in H and the trace operator Tr : W 1,2
1−s
2s

, 1
2

(H)→ H

is surjective. To see that the operator Tr is continuous, it suffices to note that

‖u‖
W 1,2

1−s(H)
= (2s)

1−2s
2 ‖v‖

W 1,2
1−s
2s , 12

(H)
.
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Thus, claim (1) of this proposition holds and since by Lemma 3.5, u ∈W 1,2
s (H)

if and only if v ∈W 1,2
1
2
, 3s−1

2s

(H), one shows similarly that claim (2) as well holds

true. Next, let w ∈ W 1,2
1
2
, 3s−1

2s

(H) and ξ ∈ W 1,2
1−s
2s

, 1
2

(H). Since z = z
3s−1
2s z

1−s
2s ,

Hölder’s inequality yields that∫ ∞
0
|(w′(z), ξ(z))H | dz =

∫ ∞
0
|(z

3s−1
2s w′(z), z

1−s
2s ξ(z))H |

dz

z

≤ ‖z
3s−1
2s w′‖L2

∗(H) ‖z
1−s
2s ξ‖L2

∗(H)

and ∫ ∞
0
|(w(z), ξ′(z))H |dz =

∫ ∞
0
|(z

1
2w(z), z

1
2 ξ′(z))H |

dz

z

≤ ‖z
1
2w‖L2

∗(H) ‖z
1
2 ξ′‖L2

∗(H),

proving that (w′, ξ)H and (w, ξ′)H ∈ L1(0,+∞). Finally, to see that in-
tegration by parts (3.16) holds, one applies [ATEW18, Proposition 3.9] to
w(z) = u(t) and ξ(z) = v(t) with the change of variable (1.2). �

With these preliminaries, we can now prove the uniqueness of solutions to
problem (3.3). Here, our proof adapts an idea by Brezis [Bre72] to the more
general case 0 < s < 1.

Proof of Theorem 3.6 (uniqueness and proof of inquality (3.14)). Suppose v1

and v2 ∈ L∞(H) are two strong solutions of (1.3) and set w = v1 − v2.
Then, by the monotonicity of A and by (1.3),

z−
1−2s
s (w′′(z), w(z))H = (z−

1−2s
s v′′1(z)− z−

1−2s
s v′2(z), v1(z)− v2(z))H ≥ 0

for almost every z > 0.Thus, (w′′(z), w(z))H ≥ 0 for almost every z > 0 and
so,

1

2

d2

dz2
‖w(z)‖2H =

d

dz
(w′(z), w(z))H

= (w′′(z), w(z))H + ‖w′(z)‖2H ≥ ‖w′(z)‖2H ≥ 0

(3.17)

for a.e. z > 0. Therefore, the function z → ‖w(z)‖2H is convex and since by
hypothesis, w is bounded on R+ with values in H, the function z → ‖w(z)‖2H
is necessarily monotonically decreasing on R+. In particular, this argument
shows that for every two strong solutions v1, v2 ∈ L∞(H) of (1.3), one as
that (3.14) holds. Further, from this, we can deduce that

(w′(z), w(z))H =
d

dz

1

2
‖w(z)‖2H ≤ 0

for every z ∈ R+. Now, note that for 0 < s < 1, α = 1 − 2s > 0. Thus,
for j̃ := (2s)−(1−2s) j, ∂H j̃ is monotone. Hence, if v1 and v2 are solutions of
problem (3.3) for the same ϕ ∈ H, then by the condition v′i(0) ∈ ∂H j̃(v(0)−ϕ)
for i = 1, 2, one has that

0 ≥ (w′(0), w(0))H = (v′1(0)− v′2(0), (v1(0)− ϕ)− (v2(0)− ϕ))H ≥ 0.

Combining this with (3.17), one finds

0 ≥ (w′(z), w(z))H =

∫ z

0

d

dr
(w′(r), w(r))Hds ≥

∫ z

0
‖w′(r)‖2Hdr,
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implying that w′(z) = 0 in H for all z ≥ 0. Thus, v′1(0) = v′2(0) and since

j̃(v1(0)− ϕ)− j̃(v2(0)− ϕ) ≥ (v′2(0), v1(0)− v2(0))

and

j̃(v2(0)− ϕ)− j̃(v1(0)− ϕ) ≥ (v′1(0), v2(0)− v1(0)),

it follows that

(3.18) j̃(v2(0)− ϕ)− j̃(v1(0)− ϕ) = (v′1(0), v2(0)− v1(0)).

Now, if v1(0) 6= v2(0), then by the strict convexity of j̃ and (3.18),

1

2
j̃(v1(0)− ϕ) +

1

2
j̃(v2(0)− ϕ) > j̃

(v1(0) + v2(0)

2
− ϕ

)
≥ j̃(v1(0)− ϕ) +

(
v′1(0),

v2(0)− v1(0)

2

)
=

1

2
j̃(v1(0)− ϕ) +

1

2
j̃(v2(0)− ϕ),

which is a contradiction. Therefore, v1(0) = v2(0), implying that v1 = v2.
This completes the proof of uniqueness. �

For proving existence of strong solutions of problem (3.3), we need the
following proposition.

Proposition 3.9. Suppose j : H → R+ is a convex, strongly coercive, lower
semicontinuous functional satisfying j(0) = 0, let ϕ ∈ H and for 0 < s < 1,

j̃ := (2s)−(1−2s) j. Further, let E1 and E2 : L2
s(H)→ R ∪ {+∞} be given by

E1(v) :=

1
2

∫ +∞

0
‖v′(z)‖2H dz if v ∈ W1,2

1−s
2s

, 1
2

(H),

+∞ if otherwise.

and

E2(v) :=

{
j̃(v(0)− ϕ) if v ∈ W1,2

1−s
2s

, 1
2

(H),

+∞ if otherwise.

Then, the functional E : L2
s(H)→ R∪{+∞} defined by E = E1 +E2 is proper,

convex and lower semicontinuous on L2
s(H). In particular, the subdifferential

∂L2
s
E of E is a mapping ∂L2

s
E : D(∂E)→ L2

s(H) given by

∂L2
s
E =

{
(v,−z−

1−2s
s v′′) ∈ L2

s(H)× L2
s(H)

∣∣∣ v′(0) ∈ ∂H j̃(v(0)− ϕ)
}
.

In particular, for every v ∈ D(∂L2
s
E), one has that

v ∈W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H) ∩ C1([0,+∞);H).

Proof of Proposition 3.9. It is clear that E is convex, and E is proper since by
Lemma 3.8, for every ϕ ∈ H, there is a v ∈ W 1,2

1−s
2s

, 1
2

(H) satisfying v(0) = ϕ

and E(v) = E1(v) is finite. To see that E is lower semicontinuous on L2
s(H), let

c ∈ R and (vn)n≥1 be a sequence in L2
s(H) such that vn → v in L2

s(H) for some

v ∈ L2
s(H) and satisfying E(vn) ≤ c for all n ≥ 1. Since j̃ ≥ 0, this implies

that (vn)n≥1 is bounded in W 1,2
1−s
2s

, 1
2

(H). Since W 1,2
1−s
2s

, 1
2

(H) is reflexive, one can
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conclude that v ∈ W 1,2
1−s
2s

, 1
2

(H) and there is a subsequence of (vn)n≥1, which

we denote, for simplicity, again by (vn)n≥1 such that v′n converges weakly to

v′ in L2(H). By Lemma 3.8, the trace map Tr : W 1,2
1−s
2s

, 1
2

(H) → H is linearly

bounded and so, vn(0) converges weakly to v(0) in H. Therefore, and since
E is convex, we can conclude that v ∈ D(E) and E(v) ≤ c. It remains to
characterize the subdifferential

∂L2
s
E :=

{
(v, w) ∈ L2

s(H)× L2
s(H)

∣∣∣∣∣ E(v̂)− E(v) ≥ (w, v̂ − v)L2
s(H)

for all v̂ ∈ D(E)

}
.

For every v ∈ D(E), the weak derivative v′ ∈ L2(H). Hence v ∈ C([0,+∞);H).
Now, let (v, w) ∈ ∂L2

s
E and take v̂ = v + εξ for ε ∈ R and ξ ∈ D(E). Then,

E(v + εξ)− E(v) ≥ ε (w, ξ)L2
s(H).

Suppose first that ε > 0. Then, dividing the above inequality by ε gives∫ +∞

0

1
2‖v
′(z) + εξ′(z)‖2H −

1
2‖v
′(z)‖2H

ε
dz

+
j̃(v(0) + εξ(0)− ϕ)− j̃(v(0)− ϕ)

ε
≥
∫ +∞

0
(w(z), ξ(z))Hz

1−2s
s dz.

(3.19)

Since

lim
ε→0+

∫ +∞

0

1
2‖v
′(z) + εξ′(z)‖2H −

1
2‖v
′(z)‖2H

ε
dz =

∫ +∞

0
(v′, ξ′)H dz,

and j̃ is convex, we can conclude by sending ε→ 0+ in (3.19) that∫ +∞

0
(v′, ξ′)H dz + inf

ε>0

j̃(v(0) + εξ(0)− ϕ)− j̃(v(0)− ϕ)

ε

≥
∫ +∞

0
(w(z), ξ(z))Hz

1−2s
s dz.

In particular, we have that∫ +∞

0
(v′, ξ′)H dz + j̃(v(0) + ξ(0)− ϕ)− j̃(v(0)− ϕ)

≥
∫ +∞

0
(w(z), ξ(z))Hz

1−2s
s dz.

(3.20)

Note, for any ξ ∈ C1
c ((0,+∞);H), the sum v + εξ belongs to D(E) and

j̃(v(0) + εξ(0)− ϕ)− j̃(v(0)− ϕ)

ε
= 0.

Thus, proceeding as before with ξ ∈ C1
c ((0,+∞);H) and ε < 0, one obtains∫ +∞

0
(v′, ξ′)H dz =

∫ +∞

0
(w(z), ξ(z))Hz

1−2s
s dz

= −
∫ +∞

0
(−z

1−2s
s w(z), ξ(z))Hdz.
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Since this equality holds for all ξ ∈ C1
c ((0,+∞);H), we have thereby shown

that −z
1−2s
s w = v′′ and v ∈ W 2,2

1−s
2s

, 1
2
, 3s−1

2s

(H). Moreover, W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H) is a

linear subspace of W 2,2
loc ((0,+∞);H). Thus, one also has that

v ∈ C1((0,+∞);H) ∩W 2,2
loc ((0,+∞);H).

In addition, since v′ ∈W 1,2
1
2
, 3s−1

2s

(H), Lemma 3.8 says that v′(0) := limz→0+ v
′(z)

exists in H. Thus, v ∈ C1([0,+∞);H).

Further, by Lemma 3.8, for given ξ0 ∈ H, there is a ξ ∈ W 1,2
1−s
2s

, 1
2

(H) satis-

fying ξ(0) = ξ0 in H. Suppose v(0) + ξ0 ∈ D(E2) (otherwise, inequality (3.21)

below always holds). Then, inserting w = −z−
1−2s
s v′′ into (3.20) and integrat-

ing by parts (Lemma 3.8) on the right hand side of the same inequality yields
that ∫ +∞

0
(v′(z), ξ′(z))H dz + j̃(v(0) + ξ0 − ϕ)− j̃(v(0)− ϕ)

≥ −
∫ +∞

0
(v′′(z), ξ(z))H dz

= −(v′(0), ξ(0))H +

∫ +∞

0
(v′(z), ξ′(z))H dz

= (v′(0), ξ0)H +

∫ +∞

0
(v′(z), ξ′(z))H dz,

from where we obtain that

(3.21) j̃(v(0) + ξ0 − ϕ)− j̃(v(0)− ϕ) ≥ (v′(0), ξ0)H .

Since inequality (3.21) holds for arbitrary ξ0 ∈ H, we have thereby shown that
v′(0) ∈ ∂H j̃(v(0)− a). This completes the proof of this proposition. �

With these preliminaries in mind, we focus now on proving existence of
solutions of problem (3.3) (2nd part of Theorem 3.6). First, we give a briefly
sketch of the existence proof.

Let ϕ ∈ D(A). Then the strategy of proving existence of solutions to (3.3)
is lifting equation (1.3) in H to the following abstract equation

(3.22) Alocv − z−
1−2s
s v′′ 3 0 in L2

loc(H),

where

Aloc :=
{

(v, w) ∈ L2
loc(H)× L2

loc(H)
∣∣∣ w(z) ∈ A(v(z)) for a.e. z ≥ 0

}
.

Existence of a solutions v of (3.22) satisfying

(3.23) v′(0) ∈ ∂H j̃(v(0)− ϕ)

is shown in two steps: first, let

(3.24) A :=
{

(v, w) ∈ L2
s(H)× L2

s(H)
∣∣∣ w(z) ∈ A(v(z)) for a.e. z ≥ 0

}
.

Then, one shows that for every λ, δ > 0, the following regularized equation

(3.25) Aλvλ + δvλ + ∂L2
s(H)E(vλ) = 0 in L2

s(H)
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admits a (unique) solution vλ. Here, Aλ := 1
λ(IL2

s(H)−JAλ ) denotes the Yosida

approximation ofA in L2
s(H). After establishing a priori estimates on (vλ)λ>0,

one can conclude that for every δ > 0, there is a subsequence of (vλ)λ>0

converging to a (unique) solution vδ of

(3.26) Avδ + δvδ + ∂L2
s(H)E(vδ) 3 0 in L2

s(H).

After establishing a priori estimates on (vδ)δ∈(0,1], one shows that there is a
subsequence of (vδ)δ∈(0,1] converging to a solution v of (3.22) satisfying (3.23).
This method generalizes an idea by Brezis [Bre72] to the general fractional
power case 0 < s < 1.

Proof of Theorem 3.6 (existence). We begin by taking ϕ ∈ D(A). By hypoth-
esis, A is a maximal monotone operator on H satisfying 0H ∈ Rg(A). For
simplicity, we may assume without loss of generality that 0 ∈ A0, otherwise
we replace A by Ã := A(·+ y) for some y ∈ A−1({0}). Then, the correspond-
ing operator A on L2

s(H) given by (3.24) is maximal monotone (cf [Bre73]).
Moreover, the Yosida approximation Aλ of A is a maximal monotone and Lip-
schitz continuous mapping on L2

s(H). Since ∂L2
s
E is also maximal monotone

operators on L2
s(H), [Bre73, Lemme 2.4] implies that for every λ and δ > 0,

problem (3.25) has a strong solution vλ ∈ L2
s(H). By Proposition 3.9,

vλ ∈W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H) ∩ C1([0,+∞);H).

In addition, since the Yosida approximation Aλ of A is Lipschitz continuous
on H, we can conclude from (3.25) that vλ ∈ C2((0,+∞);H).

1. A priori estimates on (vλ)λ>0. The following estimates hold uniformly
for all λ > 0 and 0 < δ ≤ 1:

‖vλ(z)‖H ≤ ‖vλ(ẑ)‖H for all z ≥ ẑ ≥ 0,(3.27)

1√
2
‖vλ(0)‖H ≤ C,(3.28)

‖v′λ(0)‖
1
2
H ≤

(
‖A0ϕ‖H + δ ‖ϕ‖H

) 1
2

+ ‖ϕ‖
1
2
H ,(3.29)

‖z
1
2 v′λ‖L2

?(H) ≤
((
‖A0ϕ‖H + δ ‖ϕ‖H

) 1
2

+ ‖ϕ‖2H
)
‖ϕ‖

1
2
H ,(3.30)

‖v′′λ‖L2
s(H) ≤

(
‖A0ϕ‖H + δ ‖ϕ‖H

)
+ ‖ϕ‖

1
2
H

(
‖A0ϕ‖H + δ ‖ϕ‖H

) 1
2
,(3.31)

‖Aλvλ‖L2
s(H) ≤

(
‖A0ϕ‖H + δ ‖ϕ‖H

)
+ ‖ϕ‖

1
2
H

(
‖A0ϕ‖H + δ ‖ϕ‖H

) 1
2
,(3.32)

‖v′λ(z)‖H ≤ ‖v′λ(ẑ)‖H for all z ≥ ẑ ≥ 0,(3.33)

where C is a constant independent of λ. To show that these inequalities hold,
we first multiply (3.25) by vλ with respect to the L2

s(H)-inner product (2.2).
Then,

(Aλvλ, vλ)L2
s(H) + δ ‖vλ‖2L2

s(H) + (∂L2
s(H)E(vλ), vλ)L2

s(H) = 0.
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Since ∂L2
s
E(vλ) = −z−

1−2s
s v′′λ, the last equation is equivalent to

(3.34) 0 = (Aλvλ, vλ)L2
s(H) + δ ‖vλ‖2L2

s(H) − (z−
1−2s
s v′′λ, vλ)L2

s(H)

By Cauchy-Schwarz’s inequality,

|(z−
1−2s
s v′′λ, vλ)L2

s(H)| ≤ ‖z−
1−2s
s v′′λ‖L2

s(H) ‖vλ‖L2
s(H) = ‖v′′λ‖L2

s
‖vλ‖L2

s(H),

and since

(z−
1−2s
s v′′λ, vλ)L2

s(H) =

∫ ∞
0

(v′′λ(z), vλ(z))H dz = (v′′λ, vλ)L2(H),

one has that

(3.35) (v′′λ, vλ)H ∈ L1(R+).

On the other hand, (3.25) is equivalent to

(3.36) v′′λ(z) = z
1−2s
s Aλvλ(z) + z

1−2s
s δ vλ(z) for every z > 0.

Multiplying (3.36) by vλ with respect to the H-inner product applying the
monotonicity of Aλ and that 0 ∈ Aλ0, one sees that

(v′′λ(z), vλ(z))H = z
1−2s
s (Aλvλ(z), vλ(z))H + z

1−2s
s δ ‖vλ(z)‖2H

≥ z
1−2s
s δ ‖vλ(z)‖2H

(3.37)

for every z > 0. Thus,

(3.38)

∫ ∞
z

(v′′λ(r), vλ(r))H dr ≥ δ
∫ ∞
z
‖vλ(r)‖2H r

1−2s
s dr ≥ 0

for every z ≥ 0. Further, since

d

dz
(v′λ(z), vλ(z))H = (v′′λ(z), vλ(z))H + ‖v′λ(z)‖2H

for every z > 0 and since vλ ∈ D(E) requires that ‖v′λ‖2H ∈ L1(R+), it follows
from (3.35) that the function z 7→ (v′λ(z), vλ(z))H is continuous on [0,+∞)
and by (3.38) that

(3.39) − (v′λ(z), vλ(z))H =

∫ +∞

z
(v′′λ(r), vλ(r))H dr +

∫ +∞

z
‖v′λ(r)‖2H dr ≥ 0

for every z ≥ 0. Therefore,

(3.40) (v′λ(z), vλ(z))H ≤ 0 for every z ≥ 0

and since
d

dz

1

2
‖vλ(z)‖2H = (v′λ(z), vλ(z))H ,

the function z 7→ 1
2‖vλ(z)‖2H is decreasing on [0,+∞), implying that (3.27)

holds. Next, by (3.37), one has that

d2

dz2

1

2
‖vλ(z)‖2H = (v′′λ(z), vλ(z))H + ‖v′λ(z)‖2H ≥ ‖v′λ(z)‖2H ≥ 0

for all z > 0. Hence, the function z 7→ ‖vλ(z)‖2H is convex on [0,+∞). Taking
z = 0 in (3.39) and applying (3.38), one finds

(v′λ(0), vλ(0))H +

∫ +∞

0
‖v′λ(z)‖2H dz = −(v′′λ, vλ)L2(H) ≤ 0.
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Therefore, and since v′λ(0) ∈ ∂H j̃(vλ(0) − ϕ) and ∂H j̃ is monotone with 0 ∈
∂H j̃(0), we get that

‖z
1
2 v′λ‖2L2

?(H) =

∫ +∞

0
‖v′λ(z)‖2H dz

≤ −(v′λ(0), vλ(0))H

= −(v′λ(0)− 0, (vλ(0)− ϕ)− 0)H − (v′λ(0), ϕ)H

≤ 0− (v′λ(0), ϕ)H

and so, by Cauchy-Schwarz’s inequality, one obtains

(3.41) ‖z
1
2 v′λ‖L2

?(H) ≤ ‖v′λ(0)‖
1
2
H ‖ϕ‖

1
2
H .

By the Lipschitz continuity of Aλ : H → H, the function

wλ(z) := Aλvλ(z) + δvλ(z)

is differentiable at almost everywhere z ∈ R+ with weak derivative

w′λ(z) =
d

dz
Aλ(vλ(z)) + δ v′λ(z) for almost every z ∈ R+,

where d
dzAλ(vλ) is the weak derivative of z 7→ Aλ(vλ(z)). On the other hand,

by (3.36),

wλ(z) = z−
1−2s
s v′′λ(z).

Hence,

(3.42)
d

dz
(wλ(z), v′λ(z))H = (w′λ(z), v′λ(z))H + ‖z−

3s−1
2s v′′λ(z)‖2H

1

z

for almost every z ∈ R+. Since the Yosida approximation Aλ is Lipschitz
continuous with constant 1/λ (cf [Bre73, Proposition 2.6]), one has that∥∥∥∥ d

dz
Aλ(vλ(z))

∥∥∥∥
H

≤ 1

λ
‖v′λ(z)‖H for a.e. z ∈ R+.

Therefore and since vλ ∈ W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H), (3.42) means that the function

z 7→ (wλ(z), v′λ(z))H is absolutely continuous on [0,+∞) and

(3.43) − (wλ(z), v′λ(z))H =

∫ +∞

z

d

dr
(wλ(r), v′λ(r))H dr

for every z ≥ 0. Moreover, by the monotonicity of Aλ(
d

dz
Aλ(vλ(z)), v′λ(z)

)
H

= lim
h→0

(
Aλ(vλ(z + h))−Aλ(vλ(z))

h
,
vλ(z + h)− vλ(z + h)

h

)
H

≥ 0

for almost every z ∈ R+. Therefore, one has that

(3.44) (w′λ(z), v′λ(z))H =

(
d

dz
Aλ(vλ(z)), v′λ(z)

)
H

+ δ ‖v′λ(z)‖2H ≥ 0

for almost every z ∈ R+. Applying this inequality to (3.42) and subsequently,
inserting (3.42) into (3.43) yields

(wλ(z), v′λ(z))H ≤ 0 for every z ≥ 0.
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From this, it follows that

d

dz

1

2
‖v′λ(z)‖2H = (v′′λ(z), v′λ(z))H = z

1−2s
s (wλ(z), v′λ(z))H ≤ 0,

implying that z 7→ ‖v′λ(z)‖2H is non-increasing on [0,+∞) and, in particular,
(3.33) holds. Moreover, applying (3.44) to (3.42), gives

d

dz
(wλ(z), v′λ(z))H ≥ ‖v′′λ(z)‖2Hz−

1−2s
s for a.e. z ∈ R+

and by integrating this inequality over R+, one finds that

‖v′′λ‖2L2
s?(H)

≤ −(wλ(0), v′λ(0))H .

Since wλ = Aλvλ+δvλ and by applying [Bre73, Proposition 4.7(iii)]) to u′λ(0) ∈
∂j̃(uλ(0)− ϕ), one sees that

‖v′′λ‖2L2
s?(H)

≤ −(wλ(0), v′λ(0))H

= −(Aλvλ(0) + δvλ(0), v′λ(0))H

≤ −(Aλϕ+ δϕ, v′λ(0))H ,

and if A0 is the minimal selection of A, then

(3.45) ‖v′′λ‖L2
s
≤ ‖v′λ(0)‖1/2H

(
‖A0ϕ‖H + δ ‖ϕ‖H

)1/2
.

Next, given x ∈ H satisfying ‖x‖H ≤ 1. By Lemma 3.8, there is a ξ ∈
W 1,2

1−s
2s

, 1
2

(H) such that ξ(0) = x in H. Then, by v′ ∈ W 1,2
1
2
, 3s−1

2s

(H), Cauchy-

Schwarz’s inequality gives

(v′λ(0), x)H = −
∫ ∞

0

d

ds
(v′λ(r), ξ(r))Hdr

= −
∫ ∞

0
(v′′λ(r), ξ(r))Hdr −

∫ ∞
0

(v′λ(r), ξ′(r))Hdr

≤ ‖v′′λ‖L2
s
‖ξ‖L2

s(H) + ‖z
1
2 v′‖L2

?(H) ‖z
1
2 ξ′‖L2

?(H)

≤
(
‖v′′λ‖L2

s
+ ‖z

1
2 v′‖L2

?(H)

)
‖ξ‖

W 1,2
1
2 ,

3s−1
2s

(H)
.

Moreover, in the latter inequality, taking the infimum over all ξ ∈W 1,2
1−s
2s

, 1
2

(H)

satisfying ξ(0) = x and subsequently applying (3.15), it follows that

(v′λ(0), x)H ≤
(
‖v′′λ‖L2

s
+ ‖z

1
2 v′‖L2

?(H)

)
C ‖x‖H .

Now, taking the supremum over all x ∈ H satisfying ‖x‖H ≤ 1, yields

‖v′λ(0)‖H ≤ C
(
‖v′′λ‖L2

s
+ ‖z

1
2 v′‖L2

?(H)

)
.

Applying (3.45) and (3.41) to this inequality, one obtains

‖v′λ(0)‖H ≤
(
‖v′λ(0)‖1/2H

(
‖A0ϕ‖H + δ ‖ϕ‖H

)1/2
+ ‖v′λ(0)‖1/2H ‖ϕ‖

1/2
H

)
,

from where we can conclude that (3.29) holds. Now, inserting (3.29) into (3.45),
one obtains (3.31), and inserting (3.29) into (3.41), one sees that (3.30) holds.
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Next, by hypothesis, j̃ satisfies (2.1), which is equivalent to (∂H j̃)
−1 maps

bounded sets into bounded sets (cf [Bre73, Proposition 2.14]). Since each
vλ(0) ∈ (∂H j̃)

−1(v′λ(0))+ϕ and by (3.29), the sequence (v′λ(0))λ>0 is bounded,
we have that there is a constant C > 0 such that (3.28) holds.

To see that a priori estimate (3.32) holds, we multiply (3.25) by Aλvλ with
respect to the L2

s?(H)-inner product. Then, by the monotonicity of Aλ and

since ∂L2
s
E(vλ) = −z−

1−2s
s v′′λ, one sees that

‖Aλvλ‖2L2
s(H) ≤ ‖Aλvλ‖

2
L2
s(H) + δ (vλ,Aλvλ)L2

s(H)

= (z−
1−2s
s v′′λ,Aλvλ)L2

s(H)

≤ ‖v′′λ‖L2
s(H) ‖Aλvλ‖L2

s(H).

Therefore,

‖Aλvλ‖ ≤ ‖v′′λ‖L2
s(H)

for all λ > 0 and so, by (3.31), one gets (3.32).

2. For every δ > 0, there is a unique solution vδ of (3.26) and vλ → vδ. To

establish the existence of a solution vδ of (3.26), we begin with the follow-
ing convergence result.

Lemma 3.10. For every δ > 0, the sequence (vλ)λ>0 of solutions vλ of (3.25),
is a Cauchy sequence in L2

s(H). In particular, there is a vδ ∈ L2
s(H) such that

(3.46) lim
λ→0+

vλ = vδ in L2
s(H).

Proof of Lemma 3.10. For λ, λ̂ > 0, let vλ and vλ̂ be two solutions of (3.25).
Then, multiplying

δ(vλ − vλ̂) = −(Aλvλ −Aλ̂vλ̂)− (∂L2
s
E(vλ)− ∂L2

s
E(vλ̂))

by vλ − vλ̂ with respect to the L2
s(H)-inner product and using that ∂L2

s
E is

monotone, shows that

δ ‖vλ − vλ̂‖
2
L2
s(H) ≤ −(Aλvλ −Aλ̂vλ̂, vλ − vλ̂)L2

s(H).

We recall from [Bre73, p 28] that for the resolvent operator JAλ of A, one has

that Aλu ∈ AJAλ u. Thus, by the monotonicity of A, one has that

δ ‖vλ − vλ̂‖
2
L2
s(H) ≤ −(Aλvλ −Aλ̂vλ̂, vλ − vλ̂)L2

s(H)

= −(Aλvλ −Aλ̂vλ̂, (vλ − J
A
λ vλ)− (vλ̂ − J

A
λ̂
vλ̂))L2

s(H)

− (Aλvλ −Aλ̂vλ̂, J
A
λ vλ − JAλ̂ vλ̂)L2

s(H)

≤ −(Aλvλ −Aλ̂vλ̂, λAλvλ − λ̂Aλ̂vλ̂)L2
s(H)

= −λ ‖Aλvλ‖2L2
s(H) + (λ+ λ̂) (Aλuλ,Aλ̂vλ̂)L2

s(H)

− λ̂ ‖Aλ̂vλ̂‖
2
L2
s(H).
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By Cauchy-Schwarz’s and Young’s inequality,

(λ+ λ̂) (Aλvλ,Aλ̂vλ̂)L2
s(H)

≤ (λ+ λ̂) ‖Aλvλ‖L2
s(H) ‖Aλ̂vλ̂‖L2

s(H)

≤ λ ‖Aλvλ‖2L2
s(H) +

λ

4
‖Aλ̂vλ̂‖

2
L2
s(H) + λ̂ ‖Aλ̂vλ̂‖

2
L2
s(H) +

λ̂

4
‖Aλvλ‖2L2

s(H).

Hence,

δ ‖vλ − vλ̂‖
2
L2
s(H) ≤

λ

4
‖Aλ̂vλ̂‖

2
L2
s(H) +

λ̂

4
‖Aλvλ‖2L2

s(H),

which by (3.32) shows that

δ ‖vλ−vλ̂‖
2
L2
s(H) ≤

λ+ λ̂

4

[(
‖A0ϕ‖H+δ ‖ϕ‖H

)
+‖ϕ‖

1
2
H

(
‖A0ϕ‖H+δ ‖ϕ‖H

) 1
2

]2

.

Therefore, for every δ > 0, (vλ)λ>0 is a Cauchy sequence in L2
s(H). This

proves the claim of this lemma. �

Continuation of the proof of Theorem 3.2. By Lemma 3.10, there is a vδ ∈
L2
s(H) such that (3.46) holds. Now, the a priori estimates (3.30) and (3.31)

imply that vδ ∈ W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H) and after possibly passing to a subsequence

of (vλ)λ>0, which we denote again by (vλ)λ>0, one has that

lim
λ→0+

v′λ = v′δ weakly in L2(H),(3.47)

lim
λ→0+

v′′λ = v′′δ weakly in L2
s(H).(3.48)

Moreover, since ∂L2
s
E(vλ) = −z−

1−2s
s v′′λ and by [Bre73, Proposition 2.5], the

limits (3.46) and (3.48) imply that vδ ∈ D(∂L2
s
E) and −z−

1−2s
s v′′δ = ∂L2

s
E(vδ).

Next, by (3.32), there is a χ ∈ L2
s(H) and a subsequence of (vλ)λ>0, which we

denote again by (vλ)λ>0 such that

(3.49) lim
λ→0+

Aλvλ = χ weakly in L2
s(H).

Moreover,

lim
λ→0

(Aλvλ, vλ)L2
s(H) = lim

λ→0
(Aλvλ, vλ − vδ)L2

s(H) + lim
λ→0

(Aλvλ, vδ)L2
s(H)

= (χ, vδ)L2
s(H)

Note, JAλ vδ → vδ in L2
s(H) as λ→ 0+. Thus, and since

‖JAλ vλ − vδ‖L2
s(H) ≤ ‖JAλ vλ − JAλ vδ‖L2

s(H) + ‖JAλ vδ − vδ‖L2
s(H)

≤ ‖vλ − vδ‖L2
s(H) + ‖JAλ vδ − vδ‖L2

s(H),

one has that

lim
λ→0+

JAλ vλ = vδ in L2
s(H).

Therefore and since Aλvλ ∈ AJAλ vλ, [Bre73, Proposition 2.5] implies that
vδ ∈ D(A) and χ ∈ Avδ. Now, by (3.46), (3.48), and (3.49), taking the L2

s(H)-

weak limit in (3.25) yields that for every δ > 0, vδ is a solution of (3.26), which
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by Proposition 3.9 has the regularity

vδ ∈W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H) ∩ C1([0,+∞);H) ∩W 2,2
loc ((0,+∞);H)

Now, let x ∈ H and for ρ ∈ C∞([0,+∞)) satisfying 0 ≤ ρ ≤ 1 on [0,+∞),
ρ ≡ 1 on [0, 1] and ρ ≡ 0 on [2,+∞), set ξ(z) = ρ(z)x for every z ≥ 0.
By (3.46), (3.27) and (3.28), one has that

(3.50) lim
λ→0+

vλ = vδ in L2(0, T ;H), for every T > 0.

Thus, by (3.47) and since vδ and v belong to C1([0,+∞);H), one has that

(vλ(0), x)H = −
∫ +∞

0

d

dz
(vδ(z), ξ(z))H dz

= −
∫ +∞

0
(v′δ(z), ξ(z))H dz −

∫ +∞

0
(vδ(z), ξ

′(z))H dz

→ −
∫ +∞

0
(v′(z), ξ(z))H dz −

∫ +∞

0
(v(z), ξ′(z))H dz = (v(0), x)H

as λ→ 0+. Since x ∈ H was arbitrary, this means that vλ(0) ⇀ vδ(0) weakly
in H as λ→ 0+ and hence,

vλ(z) = vλ(0) +

∫ z

0
v′λ(r) dr ⇀ vδ(0) +

∫ z

0
v′δ(r) dr = vδ(z)

weakly in H as λ→ 0+ for every z > 0. In addition, by (3.50) and (3.47), one
has that

1

2
‖vλ(0)‖2H = −

∫ 2

0

d

dz

1

2
‖vλ(z)ρ(z)‖2H dz

= −
∫ 2

0
(v′λ(z), vλ(z))H ρ

2(z) dz −
∫ 2

0
‖vλ(z)‖2H ρ′(z)ρ(z) dz

→ −
∫ 2

0
(v′δ(z), vδ(z))H ρ

2(z) dz −
∫ 2

0
‖vδ(z)‖2H ρ′(z)ρ(z) dz

=
1

2
‖vδ(0)‖2H

as λ → 0+. Therefore, by the weak limit vλ(0) ⇀ vδ(0) in and since H is a
Hilbert space, we have that

lim
λ→0+

vλ(0) = vδ(0) in H.

By this, (3.50), and (3.47), one has that

1

2
‖vλ(z)‖2H =

1

2
‖vλ(0)‖2H +

∫ z

0

d

dr

1

2
‖vλ(r)‖2H dr

=
1

2
‖vλ(0)‖2H +

∫ z

0
(v′λ(r), vλ(r))H dr

→ 1

2
‖vλ(0)‖2H +

∫ z

0
(v′λ(r), vλ(r))H dr =

1

2
‖vδ(z)‖2H .

Therefore, and since H is a Hilbert space, we have that

(3.51) lim
λ→0+

vλ(z) = vδ(z) in H for every z ≥ 0.
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3. A priori -estimates on (vδ)δ>0. One has that the following inequalities
hold for all 0 < δ ≤ 1:

‖z v′δ‖L2
?(H) ≤

‖vδ(0)‖2H
2

(3.52)

‖vδ(z)‖H ≤ ‖vδ(ẑ)‖H ≤ ‖vδ(0)‖H ≤ C (for all z ≥ ẑ ≥ 0,)(3.53)

‖v′δ(0)‖
1
2
H ≤

(
‖A0ϕ‖H + ‖ϕ‖H

) 1
2

+ ‖ϕ‖
1
2
H ,(3.54)

‖z
1
2 v′δ‖L2

?(H) ≤
((
‖A0ϕ‖H + δ ‖ϕ‖H

) 1
2

+ ‖ϕ‖
1
2
H

)
‖ϕ‖

1
2
H ,(3.55)

‖v′′δ ‖L2
s
≤
(
‖A0ϕ‖H + δ ‖ϕ‖H

)
+ ‖ϕ‖

1
2
H

(
‖A0ϕ‖H + δ ‖ϕ‖H

) 1
2
,(3.56)

‖v′δ(z)‖H ≤ ‖v′δ(ẑ)‖H for all z ≥ ẑ > 0,(3.57)

(v′δ(z), vδ(z))H ≤ 0 for all z ≥ 0.(3.58)

where the constant C is independent of δ.
Due to the limits (3.48), and (3.49), sending λ → 0+ in (3.30) and (3.31)

shows that (3.55) and (3.56) hold. Next, inequality (3.57) follows from (3.33)
and by the limit

(3.59) lim
λ→0+

v′λ(z) = v′δ(z) strongly in H for every z > 0.

The convergence (3.59) follows by the same reasoning as shown to prove (3.65)
in Lemma 3.11 below. To avoid repetitive arguments, we outline this method
only once. By the two limits (3.59) and (3.51), sending λ → 0+ in (3.40)
yields (3.58) for all z > 0 and by continuity of vδ and v′δ, one has that (3.58)
also holds for z = 0. To see that (3.52) holds, we note that by (3.26) and since
A is monotone, ∫ T

0
z (v′′δ (z), vδ(z))H dz ≥ 0

for every T > 0. By this estimate, one sees that

T (v′δ(T ), vδ(T ))H =

∫ T

0

d

dz

(
z (v′δ(z), vδ(z))H

)
dz

=

∫ T

0
(v′δ(z), vδ(z))H dz +

∫ T

0
z (v′′δ (z), vδ(z))H dz

+

∫ T

0
z ‖v′δ(z)‖2H dz

≥
∫ T

0

d

dz

1

2
‖vδ(z)‖2H dz +

∫ T

0
z ‖v′δ(z)‖2H dz

=
1

2
‖vδ(T )‖2H −

1

2
‖vδ(0)‖2H +

∫ T

0
z‖v′δ(z)‖2H dz

≥ −1

2
‖vδ(0)‖2H +

∫ T

0
z‖v′δ(z)‖2H dz

Rearranging this inequality and applying by (3.58), one gets∫ T

0
z‖v′δ(z)‖2H dz ≤ T (v′δ(T ), vδ(T ))H +

1

2
‖vδ(0)‖2H ≤

1

2
‖vδ(0)‖2H .
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Sending T → +∞ in this estimate shows that (3.52) holds.
By (3.29), we can extract another subsequence of (vλ)λ>0 such that v′λ(0) ⇀

v′δ(0) in H and so, sending λ → 0+ in (3.29), one finds that (3.54) holds.

By (3.54) and since vδ(0) ∈ (∂H j̃)
−1(v′δ(0)) + ϕ, we can conclude that the se-

quence (vδ(0))δ>0 is bounded in H, showing that the right hand side inequality

in (3.53) holds. Since −z−
1−2s
s v′′δ = ∂L2

s
E(vδ) and A is monotone with 0 ∈ A0,

multiplying (3.26) by vδ(z) gives

z−
1−2s
s (v′′δ (z), vδ(z))H = δ ‖vδ(z)‖2H + (wδ(z), vδ(z))H ≥ 0

for almost every z > 0, where wδ(z) ∈ Avδ(z) satisfies wδ(z) + δvδ(z) =

z−
1−2s
s v′′δ (z). Therefore,

(3.60) (v′′δ (z), vδ(z))H ≥ 0 for almost every z > 0.

Since vδ ∈W 2,2
1−s
2s

, 1
2
, 3s−1

2s

(H), the integration by parts rule in Lemma 3.8 yields

that

d

dz

1

2
‖vδ(z)‖2H = (v′δ(z), vδ(z))H

= −
∫ +∞

z

d

dr
(v′δ(r), vδ(r))H dr

= −
∫ +∞

z
(v′′δ (r), vδ(r))H ds−

∫ +∞

z
‖v′δ(r)‖2H dr

for every z ≥ 0. Thus and by (3.60), z 7→ ‖vδ(z)‖2H is decreasing on [0,+∞)
and, in particular, the first two inequalities in (3.53) hold.

4. There is a function v ∈ C1([0,+∞);H) such that v′δ → v′ as δ → 0+. We

need the following convergence results.

Lemma 3.11. There is a function v ∈ C1([0,+∞);H) ∩ L∞(H) with v′ ∈
W 1,2

1
2
, 3s−1

2s

(H) such that after passing to a subsequence, one has that

lim
δ→0+

vδ(z) = v(z) weakly H for every z ≥ 0,(3.61)

lim
δ→0+

vδ = v weakly in L2
loc(H),(3.62)

lim
δ→0+

v′δ = v′ strongly in L2(H),(3.63)

lim
δ→0+

v′δ(0) = v′(0) weakly in H,(3.64)

lim
δ→0+

v′δ(z) = v′(z) strongly in H for every z > 0, and(3.65)

lim
δ→0+

v′′δ = v′′ weakly in L2
s?(H).(3.66)

Before proceeding with step 4, we give the proof of this lemma.

Proof of Lemma 3.11. For δ, δ̂ ∈ (0, 1], let vδ and vδ̂ be two strong solutions
of (3.26) and set w = vδ − vδ̂. Then, by (3.26),

z−
1−2s
s w′′(z) ∈ Avδ(z)−Avδ̂ + δvδ(z)− δ̂vδ̂(z) for almost every z > 0
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and hence, the monotonicity of A implies that

z−
1−2s
s (w′′(z), w(z))H

≥ (δvδ(z)− δ̂vδ̂(z), vδ(z)− vδ̂(z))H
= δ‖vδ(z)‖2H − δ (vδ, vδ̂(z))H − δ̂ (vδ(z), vδ̂(z))H + δ̂ ‖vδ‖2H .

By Young’s inequality,

δ (vδ, vδ̂)H ≤ δ‖vδ‖
2
H +

δ

4
‖vδ̂‖

2
H and δ̂ (vδ, vδ̂)H ≤ δ̂ ‖vδ̂‖

2
H +

δ̂

4
‖vδ‖2H .

Therefore and by (3.53),

z−
1−2s
s (w′′(z), w(z))H ≥ −

δ

4
‖vδ̂(z)‖

2
H −

δ̂

4
‖vδ(z)‖2H ≥ −

δ + δ̂

4
C2.

Integrating this inequality over [0, T ], for T > 0, gives

(w′(T ), w(T ))H − (w′(0), w(0))H −
∫ T

0
‖w′(z)‖2H dz

=

∫ T

0

d

dz
(w′(z), w(z))H dz −

∫ T

0
‖w′(z)‖2H dz

=

∫ T

0

(
(w′′(z), w(z))H + ‖w′(z)‖2H

)
dz −

∫ T

0
‖w′(z)‖2H dz

≥ −(γ + δ)

4
C2

∫ T

0
z

1−2s
s dz.

Since v′δ(0) ∈ ∂H j̃(vδ(0)− ϕ) and v′
δ̂
(0) ∈ ∂H j̃(vδ̂(0)− ϕ), the monotonicity of

∂H j̃ implies that (w′(0), w(0))H ≥ 0 and so, we can conclude from the previous
inequality that∫ T

0
‖w′(z)‖2H dz ≤ (w′(T ), w(T ))H +

(γ + δ)

4
C2

∫ T

0
z

1−2s
s dz.

Applying Cauchy-Schwarz’s inequality and (3.53) to the right hand side of this
inequality, gives∫ T

0
‖w′(z)‖2H dz ≤ C‖w′(T )‖H +

(γ + δ)

4
C2

∫ T

0
z

1−2s
s dz.(3.67)

On the other hand, for every δ ∈ (0, 1] and T > 0,

T

∫ +∞

T
‖v′δ(z)‖2H dz ≤

∫ +∞

T
‖z v′δ(z)‖2H

dz

z

and by (3.57), the function z 7→ ‖v′δ(z)‖2H is decreasing on (0,+∞). Thus,∫ T

0
‖zv′δ(z)‖2H

dz

z
≥ T 2

2
‖v′δ(T )‖2H

and by (3.52) and (3.53),

T 2

2
‖v′δ(T )‖2H + T

∫ +∞

T
‖v′δ(z)‖2H dz

≤
∫ T

0
‖zv′δ(z)‖2H dz +

∫ +∞

T
‖z v′δ(z)‖2H

dz

z
= ‖z v′δ(z)‖L2

?(H) ≤
C2

2
.
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Hence, ∫ +∞

T
‖v′δ(z)‖2H dz ≤ C2

2T
for every δ ∈ (0, 1],

and

‖v′δ(T )‖H ≤
C

T
for every δ ∈ (0, 1].

Now, applying these estimates to (3.67). Then, we obtain∫ T

0
‖w′(z)‖2H dz ≤ C‖w′(T )‖H +

(γ + δ)

4
C2

∫ T

0
z

1−2s
s dz

≤ 2
C2

T
+

(δ + δ̂)

4
C2 s

1− s
T

1−s
s

and so,∫ +∞

0
‖w′(z)‖2H dz ≤

∫ T

0
‖w′(z)‖2H dz + 2

∫ T

0
‖v′δ(z)‖2H dz + 2

∫ T

0
‖v′
δ̂
(z)‖2H dz

≤ 2
C2

T
+

(δ + δ̂)

4
C2 s

1− s
T

1−s
s + 4

C2

2T
.

Choosing T := 1/(δ + δ̂)s and inserting w = vδ − vδ̂, then we get∫ +∞

0
‖v′δ(z)− v′δ̂(z)‖

2
H dz ≤

(
2C2 +

C2

4

s

1− s
+ 4

C2

2

)
(δ + δ̂)s.

Therefore, (v′δ)δ>0 is a Cauchy sequence in L2(H), implying that there is a
v̂ ∈ L2(H) such that

lim
δ→0+

v′δ = v̂ in L2(H).

In addition, by (3.53), (vδ)δ>0 is bounded in L2(0, T ;H) for every T > 0.
Therefore, there is a function v ∈ L2

loc(H) with weak derivative v′ = v̂ in L2(H)
and after possibly passing to a subsequence of (vδ)δ>0, one has that (3.62)
and (3.63) hold. Moreover, by (3.56), the sequence (v′′δ )δ∈(0,1] is bounded in

L2
s?(H). Thus, v has a second weak derivative v′′ ∈ L2

s?(H) and by possibly
replacing (vδ)δ∈(0,1] again by a subsequence, one obtains (3.66). Further,

‖v(z)− v(ẑ)‖H ≤

∣∣∣∣∣
∫ z

ẑ
‖v′(r)‖H dr

∣∣∣∣∣ ≤ |z − ẑ|1/2 ‖v′‖L2(H)

for every z, ẑ ≥ 0, showing that v : [0,+∞) → H is uniformly continuous.

In particular, since v′ ∈ W 1,2
1
2
, 3s−1

s

(H), Lemma 3.8 and (3.53) imply that v ∈
C1([0,+∞);H) ∩ L∞(H). By the limits (3.63) and (3.66), the trace theorem

on W 1,2
1
2
, 3s−1

s

(H) (Lemma 3.8) implies that (3.64) holds. For z > 0, Cauchy-

Schwarz’s inequality gives

z−
1−2s
2s

1

2
‖v′δ(z)− v′(z)‖2H =

∫ +∞

z
r(r)−

1−2s
2s (v′′δ (r)− v′′(r), v′δ(r)− v′(r))H dr

+ 2s−1
2s

∫ +∞

z
r−

1
2s

1

2
‖v′δ(r)− v′(r)‖2H dr

≤ ‖z
3s−1
2s (v′′δ − v′′)‖L2

?(H) ‖v′δ − v′‖L2(H),
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+
∣∣2s−1

2s

∣∣ 1
2z
− 1

2s ‖v′δ − v′‖2L2(H)

= ‖v′′δ − v′′‖L2
s?

(H) ‖v′δ − v′‖L2(H)

+
∣∣2s−1

2s

∣∣ 1
2z
− 1

2s ‖v′δ − v′‖2L2(H).

Thus, and by (3.63) and (3.56), one has that (3.65). By (3.53), there is a
v0 ∈ H and a subsequence of (vδ)δ∈(0,1] such that vδ(0) ⇀ v0 weakly in H as
δ → 0+. Now, let x ∈ H and for ρ ∈ C∞([0,+∞)) satisfying 0 ≤ ρ ≤ 1, ρ ≡ 1
on [0, 1] and ρ ≡ 0 on [2,+∞), set ξ(z) = ρ(z)x for every z ≥ 0. Since vδ and
v belong to C1([0,+∞);H) and by the limits (3.62) and (3.65), one has that

(vδ(0), x)H = −
∫ 2

0

d

dz
(vδ(z), ξ(z))H dz

= −
∫ 2

0
(v′δ(z), ξ(z))H dz −

∫ 2

0
(vδ(z), ξ

′(z))H dz

→ −
∫ +∞

0
(v′(z), ξ(z))H dz −

∫ 2

0
(v(z), ξ′(z))H dz

= (v(0), x)H

as δ → 0+. Since x ∈ H was arbitrary, this shows that v0 = v(0) and

lim
δ→0+

vδ(0) = v(0) weakly in H.

Moreover, since for every z > 0,

vδ(z) = vδ(0) +

∫ z

0
v′δ(r) dr and v(z) = v(0) +

∫ z

0
v′(r) dr,

the previous limit together with (3.63) yields that (3.61) holds. �

Continuation of the proof of Theorem 3.2.

5. The limit v is a solution of (3.3). For a compact interval K := [a, b] with

0 < a < b < +∞, let L2
K(H) denote the set of all L2-integrable functions

v : K → H and AK denote the operator

AK :=
{

(v, w) ∈ L2
K(H)× L2

K(H)
∣∣∣w(z) ∈ Av(z) for a.e. z ≥ 0

}
.

Then, since A is maximal monotone on H and K has finite measure, it follows
that AK is maximal monotone on L2

K(H). Moreover, since the restrictions
on K of functions v ∈ L2

s?(H), L2(H), and L2
s?(H) belong to L2

K(H), the

equation (3.26) can be rewritten as

AKvδ + δvδ 3 z−
1−2s
s v′′δ in L2

K(H).

By (3.53) and (3.66), fδ := z−
1−2s
s v′′δ − δ vδ satisfies fδ ∈ AKvδ and

(3.68) lim
δ→0+

fδ = z−
1−2s
s v′′ weakly in L2

K(H).

By (3.62), if

(3.69) lim
δ→0+

(vδ, fδ)L2
K(H) ≤ (v, z−

1−2s
s v′′)L2

K(H),

then by [Bre73, Proposition 2.15], we have that

v ∈ D(AK) and z−
1−2s
s v′′ ∈ AKv.
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To see that (3.69) holds, we write

(vδ, fδ)L2
K(H)−(v, z−

1−2s
s v′′)L2

K(H) = (vδ−v, fδ)L2
K(H)+(v, fδ−z−

1−2s
s v′′)L2

K(H)

and note that by (3.68), one has that

(v, fδ − z−
1−2s
s v′′)L2

K(H) = (v, fδ)L2
K(H) − (v, z−

1−2s
s v′′)L2

K(H) → 0

as δ → 0+. In addition, since K = [a, b], and by the limits (3.61), (3.62),
(3.63), (3.65) and since by (3.53), δvδ → 0 strongly in L2

loc(H), we have that

(vδ − v, fδ)L2
K(H) = (vδ − v, z−

1−2s
s v′′δ − δvδ)L2

K(H)

= (vδ − v, z−
1−2s
s (v′′δ − v′′))L2

K(H)

+ (vδ − v, z−
1−2s
s v′′ − δvδ)L2

K(H)

=

∫ b

a
(vδ(z)− v(z), v′′δ (z)− v′′(z))H z−

1−2s
s dz

+ (vδ − v, z−
1−2s
s v′′ − δvδ)L2

K(H)

=

∫ b

a

d

dz
(vδ(z)− v(z), v′δ(z)− v′(z))H z−

1−2s
s dz

−
∫ b

a
‖v′δ(z)− v′(z)‖2H z−

1−2s
s dz

+ (vδ − v, z−
1−2s
s v′′ − δvδ)L2

K(H)

= (vδ(z)− v(z), v′δ(z)− v′(z))H z−
1−2s
s

∣∣∣b
a

+
1− 2s

s

∫ b

a
(vδ(z)− v(z), v′δ(z)− v′(z))H z−

1−s
s dz

−
∫ b

a
‖v′δ(z)− v′(z)‖2H z−

1−2s
s dz

+ (vδ − v, z−
1−2s
s v′′ − δvδ)L2

K(H)

→ 0 as δ → 0+,

This show that (3.69) holds and since the compact sub-interval K = [a, b]
of R+ was arbitrary, we have thereby shown that v is a solution of (3.22)
or equivalently, a strong solution of (1.3). It remains to show that v′(0) ∈
∂H j̃(v(0) − ϕ). To see this, note first that if j is the indicator function, then
condition (3.23) reduces to the condition v(0) = ϕ. Since vδ(0) = ϕ for all
δ > 0, we have by (3.61) that v(0) = ϕ. Now, suppose ∂H j̃ : D(∂H j̃) → H is
a weakly continuous mapping. Then, since v′δ(0) = ∂H j̃(vδ(0) − ϕ) for every

δ ∈ (0, 1], the weak continuity of ∂H j̃ together with (3.61) and (3.64) imply
that v(0)− ϕ ∈ D(∂H j̃) and v′(0) = ∂H j̃(v(0)− ϕ).

6. The solution v of (3.3) satisfies v ∈ L∞(H) and (3.6)-(3.13). Thanks to

(3.65), we can send δ → 0+ in (3.57) and obtain (3.7). Due to (3.65)
and (3.61), sending δ → 0+ in (3.58) yields that

d

dz

1

2
‖v(z)‖2H = (v′(z), v(z))H ≤ 0 for all z ≥ 0.
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Hence, (3.6) holds and, in particular, v ∈ L∞(H). By (3.65), sending δ → 0+
in (3.57) and using that v ∈ C1([0,+∞);H), one obtains (3.7). To see
that (3.8) holds, we first note that by (3.65) and (3.61), sending δ → 0+
in (3.58) and using that v ∈ C1([0,+∞);H) yields

(3.70) (v′(z), v(z))H ≤ 0 for every z ≥ 0.

Moreover, since v is a strong solution of (1.3) and since A is monotone,∫ T

ε
z (v′′(z), v(z))H dz ≥ 0

for every T > ε > 0. Using this estimate, one sees that

T (v′(T ), v(T ))H − ε(v′(ε), v(ε))H

≥
∫ T

ε

d

dz

1

2
‖v(z)‖2H dz +

∫ T

ε
z ‖v′(z)‖2H dz

=
1

2
‖v(T )‖2H −

1

2
‖v(ε)‖2H +

∫ T

ε
z‖v′(z)‖2H dz

≥ −1

2
‖v(ε)‖2H +

∫ T

ε
z‖v′(z)‖2H dz

Rearranging this inequality and applying (3.70) and (3.6), one gets∫ T

ε
z‖v′(z)‖2H dz ≤ T (v′(T ), v(T ))H − ε(v′(ε), v(ε))H +

1

2
‖v(ε)‖2H

≤ −ε (v′(ε), v(ε))H +
1

2
‖v(0)‖2H .

Since v ∈ C1([0,+∞);H), sending first ε → 0+ and then T → +∞ in the
resulting inequality shows that (3.8) holds. By (3.7) and (3.8), we see that

z2

2
‖v′(z)‖2H ≤

∫ z

0
r‖v′(r)‖2H dr ≤ 1

2
‖v(0)‖2H

for every z > 0, which shows that (3.9) holds. The estimates (3.11)-(3.13) are
obtained from (3.54)-(3.56) by taking advantage of the underlying weak limit.
Finally, we want to show that (3.10) holds. To do this, let h > 0. Then, by
the monotonicity of A, one has that(

(z + h)
1−2s
s v′′(z + h)− z

1−2s
s v′′(z), v(z + h)− v(z)

)
H
≥ 0

for almost every z > 0. Let ξ ∈ C2([0,+∞)) be such that

ψ(z) := ξ(z)(z + h)
1−2s
s

is increasing and satisfies ψ(0) = 0. (For example, take

(3.71) ξ(z) = zβ(z + h)−
1−2s
s for every z ≥ 0,

for some β > 0.) Then,∫ z

0
ψ(r) (v′′(r + h)− v′′(r), v(r + h)− v(r))H dr

+

∫ z

0
ξ(r)

(
(r + h)

1−2s
s − r

1−2s
s

)
(v′′(r), v(r + h)− v(r))H dr ≥ 0
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and hence

ψ(z) (v′(z + h)− v′(z), v(z + h)− v(z))H

−
∫ z

0
ψ′(r) (v′(r + h)− v′(r), v(r + h)− v(r))H dr

−
∫ z

0
ψ(r)‖v′(r + h)− v′(r)‖2H dr

+

∫ z

0
ξ(r)

(
(r + h)

1−2s
s − r

1−2s
s

)
(v′′(r), v(r + h)− v(r))H dr ≥ 0.

Therefore, and since (v′(z + h)− v′(z), v(z + h)− v(z))H ≤ 0,∫ z

0
ψ(r)‖v′(r + h)− v′(r)‖2H dr +

∫ z

0
ψ′(r)

d

dr

1

2
‖v(r + h)− v(r)‖2H dr

≤ ψ(z) (v′(z + h)− v′(z), v(z + h)− v(z))H

+

∫ z

0
ξ(r)

(
(r + h)

1−2s
s − r

1−2s
s

)
(v′′(r), v(r + h)− v(r))H dr

≤
∫ z

0
ξ(r)

(
(r + h)

1−2s
s − r

1−2s
s

)
(v′′(r), v(r + h)− v(r))H dr.

Now, integrating by parts, yields∫ z

0
ψ(r)‖v′(r + h)− v′(r)‖2H dr + ψ′(z)

1

2
‖v(z + h)− v(z)‖2H

≤
∫ z

0
ξ(r)

(
(r + h)

1−2s
s − r

1−2s
s

)
(v′′(r), v(r + h)− v(r))H dr

+

∫ z

0
ψ′′(r)

1

2
‖v(r + h)− v(r)‖2H dr + ψ′(0)

1

2
‖v(0 + h)− v(0)‖2H .

Dividing this inequality by h2 and sending h→ 0+, yields∫ z

0
ψ(r)‖v′′(r)‖2H dr + ψ′(z)

1

2
‖v′(z)‖2H

≤ 1− 2s

s

∫ z

0
ξ(r) r

1−3s
s (v′′(r), v′(r))H dr

+

∫ z

0
ψ′′(r)

1

2
‖v′(r)‖2H dr + ψ′(0)

1

2
‖v′(0)‖2H .

Inserting ξ from (3.71), then∫ z

0
rβ‖v′′(r)‖2H dr + β zβ−1 1

2
‖v′(z)‖2H

≤ 1− 2s

s

∫ z

0
rβ−1 (v′′(r), v′(r))H dr

+ β(β − 1)

∫ z

0
rβ−2 1

2
‖v′(r)‖2H dr + β zβ−1

|z=0

1

2
‖v′(δ)‖2H .

Choosing β = 3 in this estimate, then one finds,∫ z

0
r3‖v′′(r)‖2H dr + 3 z2 1

2
‖v′(z)‖2H

≤ 1− 2s

s

∫ z

0
r2 (v′′(r), v′(r))H dr + 3

∫ z

0
r ‖v′(r)‖2H dr.
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Thus, if s ≥ 1/2, then by applying (3.7), one sees that∫ z

0
r3‖v′′(r)‖2H dr ≤ 3

‖ϕ‖2H
2

and hence the first part of (3.10) holds by sending z → +∞. If 0 < s < 1/2,
then 1−2s

s > 0 and so, by Young’s inequality, we have for every ε > 0 that∫ z

0
r3‖v′′(r)‖2H dr + 3 z2 1

2
‖v′(z)‖2H

≤ ε
∫ z

0
‖r

3
2 v′′(r)‖2H dr +

s

1− 2s

1

4ε

∫ z

0
‖r

1
2 v′(r)‖2H dr + 3

∫ z

0
r ‖v′(r)‖2H dr.

Choosing ε = 1/2, one finds

1

2

∫ z

0
r3‖v′′(r)‖2H dr ≤

(
s

1− 2s

1

2
+ 3

)∫ z

0
‖r

1
2 v′(r)‖2H dr

and hence by applying (3.7) and sending z → +∞, one sees that the second
part of (3.10) holds.

To see that for boundary data ϕ ∈ D(A)
H

, there is a solution v of Dirichlet
problem (3.4) satisfying (3.6)-(3.10), and (3.14), one proceeds as in the proof of
Theorem 1.2 and Theorem 1.7. This completes the proof of this theorem. �

Next, we outline the proof that the DtN operator Θ1−2s is monotone and
establish the characterization of the closure Θs.

Proof of Corollary 3.7. For given ϕ1 and ϕ2 ∈ D(A), let v1, v2 ∈ L∞(H) be
two strong solutions of (3.3) respectively to boundary data ϕ1 and ϕ2. Then
by the monotonicity of A,

d2

dz2

1

2
‖v1(z)− v2(z)‖2H = (v′′1(z)− v′′2(z), v1(z)− v2(z))H

+ ‖v′1(z)− v′2(z)‖2H ≥ 0.

(3.72)

Thus, the map z 7→ 1
2‖w(z)‖2H is convex on [0,+∞). Since v1 − v2 ∈ L∞(H)

and since every bounded convex function is necessarily decreasing, we have
that z 7→ 1

2‖w(z)‖2H is decreasing on [0,+∞). Thus,

d

dz

1

2
‖v1(z)− v2(z)‖2H = (v′1(z)− v′2(z), v1(z)− v2(z))H ≤ 0

for every z ≥ ẑ ≥ 0, which shows that Θsϕ := −(2s)1−2sv′(0) is a monotone
operator. It follows from the definition of Θs and by Theorem 3.6 that D(A)
is a subset of D(Θs). On the other hand, for every ϕ ∈ D(Θs), there is a
solution v ∈ C1([0,+∞);H) of Dirichlet problem (3.4) with v(0) = ϕ. Since

v(t) ∈ D(A) for a.e. t > 0, it follows that ϕ ∈ D(A)
H

, showing that D(Θs) ⊆
D(A)

H
. Further, by the regularity v ∈ C1([0,+∞);H) and the uniqueness

of the solutions to Dirichlet problem (3.4), the operator Θs is a well-defined
mapping from D(Θs) to H.

Next, we show that the closure Θs of Θs in H ×Hw coincides with the set

B :=

{
(ϕ,w) ∈ H ×H

∣∣∣∣∣
∃ (ϕn, wn) ∈ Θs s.t. lim

n→+∞
(ϕn, wn) = (ϕ,w)

in H ×Hw & a strong solution v of (1.3)
satisfying (3.6) & v(0) = ϕ in H.

}
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Obviously, the set B is cointained in Θs. So, let (ϕ,w) ∈ Θs. Then, there
is a sequence ((ϕn, wn))n≥1 ⊆ Θs such that (ϕn, wn) → (ϕ,w) in H × Hw

as n → +∞. By definition of Θs, there are solutions vn ∈ C1([0,+∞);H)
of Dirichlet problem (3.4) with vn(0) = ϕn and satisfying Θsvn(0) = wn.

Since every ϕn ∈ D(A)
H

, Theorem 3.6 yields that each vn satisfies (3.6) and
by (3.14), (vn)n≥0 is a Cauchy sequence in Cb([0,+∞);H). Hence, there is a
v ∈ Cb([0,+∞);H) such that vn → v in Cb([0,+∞);H) as n → +∞ and so,

v(0) = ϕ. Since each ϕn ∈ D(A)
H

, we also have that ϕ ∈ D(A)
H

. Hence,
Theorem 3.6 yields the existence of a unique strong solution v of (3.4), proving
that (ϕ,w) ∈ B.

Now, for given λ > 0, the functional j : H → [0,+∞) given by j(v) =
1

2λ‖v‖
2
H , (v ∈ H), is strictly coercive, continuously differentiable on H and its

Fréchet derivative j′ coincides with the subdifferential ∂Hj given by ∂Hj(v) =
d
dv j(v) = 1

λv, (v ∈ H). Note, ∂Hj is a bounded linear operator onH and hence,
in particular, weakly continuous, and A is ∂Hj monotone. Thus, by Theo-
rem 3.6, for every ϕ ∈ D(A), there is a unique solutions v ∈ C1([0,+∞);H)
of

(3.73)

{
z−

1−2s
s v′′(z) ∈ A(v(z)) for a.e. z > 0,

−(2s)1−2sv′(0) + λv(0) = ϕ.

By definition of Θs, we have thereby shown that for every ϕ ∈ D(A) and
λ > 0, there is a v(0) ∈ D(Θs) satisfying

(3.74) v(0) + λΘsv(0) = ϕ.

Thus, D(A) ⊆ Rg(IH + λΘs) for every λ > 0. To see that also D(A)
H ⊆

Rg(IH + λΘs), take ϕ ∈ D(A)
H

. Then, there is a sequence (ϕn)n≥1 ⊆ D(A)
such that ϕn → ϕ in H as n → +∞. Moreover, since D(A) ⊆ Rg(IH +
λΘs), for each ϕn, there is a unique solution vn ∈ C1([0,+∞);H) of Dirichlet
problem (3.4) satisfying Θsvn(0) + λvn(0) = ϕn. Thus by the monotonicity of
Θs, one has that

‖vn(0)− vm(0)‖2H =
1

λ
(vn(0)− vm(0), ϕn − ϕm)H

− 1

λ
(vn(0)− vm(0),Θsvn(0)−Θsvm(0))H

≤ 1

λ
‖vn(0)− vm(0)‖H ‖ϕn − ϕm‖H

and so,

(3.75) ‖vn(0)− vm(0)‖H ≤
1

λ
‖ϕn − ϕm‖H .

Since each vn(0) ∈ D(A)
H

, vn satisfies (3.6) and (3.14)holds. Combining this
with (3.75), one sees that (vn)n≥0 is a Cauchy sequence in Cb([0,+∞);H)
and so, there is a v ∈ Cb([0,+∞);H) such that vn → v in Cb([0,+∞);H) as

n→ +∞. In particular, vn(0)→ v(0) in H as n→ +∞. Thus, v(0) ∈ D(A)
H

and so, Theorem 3.6 yields that v ∈ C1([0,+∞);H) and v is a solution of
Dirichlet problem (3.4). Moreover, we have that

w := lim
n→+∞

Θsvn(0) = ϕ− λv(0) exists in H,
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showing that (v(0), w) ∈ Θs and Θsv(0) + λv(0) = ϕ. This proves that

D(A)
H ⊆ Rg(IH +λΘs). Thus, if D(A)

H
= H, then Θs is maximal monotone

on H. This completes the proof of this corollary. �

4. Interpolation properties

Our first theorem of this section, allows us to establish interpolation prop-
erties and comparison principles of the semigroup {T̃s(t)}t≥0 generated by
−Θs.

Theorem 4.1. Let A be a maximal monotone operator on H with 0 ∈ Rg(A).
Suppose, φ : H → R∪{+∞} is convex, proper and lower semicontinuous such
that A is ∂Hφ-monotone. Then for every for 0 < s < 1, Θs is ∂Hφ-monotone.

In the case H = L2(Σ, µ) the Lebesgue space of 2-integrable functions
defined on a σ-finite measure space (Σ, µ), then Theorem 4.1 provides the

following interpolation properties of the semigroup {T̃r}r≥0 generated by −Θs.

Corollary 4.2. Let (Σ, µ) be a σ-finite measure space and A a maximal mono-
tone operator on L2(Σ, µ) with 0 ∈ Rg(A). If A is completely accretive, then
for every 0 < s < 1, the DtN operator Θs is completely accretive on L2(Σ, µ).
In particular, if the closure Θs of Θs is maximal monotone, then the semigroup
{T̃s(t)}t≥0 generated by −Θs is Lψ-contractive on L2(Σ, µ) for any N -function

psi, {T̃s(t)}t≥0 is L1- and L∞-contractive on L2(Σ, µ), and order preserving.

The proof of Corollary 4.2 follows immediately from Theorem 4.1 since if
A is completely accretive on L2(Σ, µ), then for every λ > 0, the resolvent JAλ
of A is a complete contraction, which by Proposition 2.2 means that for every
convex, lower semicontinous function j : R → R+ satisfying j(0) = 0, A is
∂Hφj-monotone for φj : L2(Σ, µ)→ R+ given by

φj(u) =

{∫
Σ j(u) dµ if j(u) ∈ L1(Σ;µ),

+∞ if otherwise,

for every u ∈ L2(Σ, µ). In particular, for every N -function ψ and α > 0, A is

∂Hφj-monotone for j = ψ( ·α), and A is ∂Hφj-monotone for j = ψ(max{·,0}
α ).

Thus, by Theorem 4.1, the semigroup {T̃s(t)}t≥0 generated by −Θs is Lψ-
contractive on L2(Σ, µ) for any N -function psi and order preserving. Choosing

ψ = sq for q ∈ (1,+∞). Letting q → 1 or q → +∞ yields that {T̃s(t)}t≥0 is
L1- and L∞-contractive on L2(Σ, µ).

Remark 4.3 (Interpolation of {T̃s(t)}t≥0 on Lψ(Σ, µ)). By Corollary 4.2, if

there is a u0 ∈ L1 ∩ L∞(Σ, µ) such that the orbit T̃s(·)u0 := {T̃s(t)u0 | t ≥ 0}
is locally bounded on [0,+∞) with values in L1 ∩ L∞(Σ, µ), then for every

N -function ψ, every T̃s(t) of the semigroup {T̃s(t)}t≥0 generated by −Θs has

unique contractive extension on Lψ(Σ, µ), L1(Σ, µ) and on L2 ∩ L∞(Σ, µ)
L∞

,

which we denote again by T̃s(t).

We continue by giving the proof of the ∂Hφ-monotonicity of the DtN oper-
ator Θs.
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Proof of Theorem 4.1. For µ > 0, let φµ : H → R be the regularization of φ
defined by

φµ(v) = min
w∈H

1

µ2
‖w − v‖2H + φ(w) for all v ∈ H.

By [Bre73, Proposition 2.11], φµ ∈ C1(H;R) and the Fréchet derivative φ′µ :

H → H is Lipschitz continuous. Thus, for every w ∈ W 1,1
loc ((0,+∞);H),

φ′µ(w(z)) is weakly differentiable at almost every z > 0 and by the monotonic-
ity of φ′µ, one has that

(4.1)
(

d
dzφ
′
µ(w(z)), w′(z)

)
H
≥ 0 for a.e. z > 0.

Now, let ϕ, ϕ̂ ∈ D(Θs) and v and v̂ two solutions of Dirichlet problem (3.3)
with initial value v(0) = ϕ and v̂(0) = ϕ̂ ∈ D(A). Since v and v̂ satisfy

z−
1−2s
s v′′(z) ∈ Av(z) and z−

1−2s
s v̂′′(z) ∈ Av̂(z)

for almost every z > 0 and since A is ∂Hφ-monotone (cf [Bre73, Proposi-
tion 4.7]), one has that

z−
1−2s
s (v′′(z)− v̂′′(z), φ′µ(v(z)− v̂(z)))H ≥ 0

for almost every z > 0. Thus, if we set w = v − v̂, then

(4.2) (w′′(z), φ′µ(w(z)))H ≥ 0 for almost every z > 0.

Moreover, since v(0) and v̂(0) ∈ D(A), one has w′ ∈ W 1,2
1
2
, 3s−1

2s

(H) and w ∈

W 1,2
1−s
2s

, 1
2

(H), and by the Lipschitz continuity of φ′µ, φ′µ◦w ∈W
1,2
1−s
2s

, 1
2

(H). There-

fore, we can apply the integration by parts rule (3.16) of Lemma 3.8. This
together with (4.1) and (4.2), shows that

−(w′(0), φ′µ(w(0)))H =

∫ +∞

0
(w′′(z), φ′µ(w(z)))H dz

+

∫ +∞

0

(
w′(z),

d

dz
φ′µ(w(z))

)
H

dz ≥ 0.

Since w = v − v̂ and ϕ, ϕ̂ ∈ D(Θs) were arbitrary, this implies by [Bre73,
Proposition 4.7]) that Θs is ∂Hφ-monotone. �

5. Applications

In this section, we outline an application of Theorem 1.2 - Theorem 1.7.

Let Σ be an open subset of Rd, (d ≥ 1), and µ = Ld be the d-dimensional
Lebesgue measure. For 1 < p < +∞, suppose that a : Σ × Rd → Rd is a
Carathéodory function satisfying the following p-coercivity, growth and mono-
tonicity conditions

a(x, ξ)ξ ≥ η|ξ|p(5.1)

|a(x, ξ)| ≤ c1|ξ|p−1 + h(x)(5.2)

(a(x, ξ1)− a(x, ξ2))(ξ1 − ξ2) > 0(5.3)
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for a.e. x ∈ Σ and all ξ, ξ1, ξ2 ∈ Rd with ξ1 6= ξ2, where h ∈ Lp
′
(Σ) and

c1, η > 0 are constants independent of x ∈ Σ and ξ ∈ Rd. Under these
assumptions, the second order quasi linear operator

Bu := −div(a(x,∇u)) in D′(Σ)

for u ∈ W 1,p
loc (Ω) belongs to the class of Leray-Lions operators (cf. [LL65]), of

which the p-Laplace operator ∆pu = div(|∇u|p−2∇u) is a classical prototype.
Here, we write Lq(Σ) for Lq(Σ, µ) and if Lq0(Σ) is the closed subspace of Lq(Σ)
of all u ∈ Lq(Σ) satisfying

∫
Σ udx = 0.

Then, the operator B either equipped with homogeneous Dirichlet boundary
conditions

(5.4) u = 0 on ∂Σ× (0,∞) if Σ ⊆ Rd,

homogeneous Neumann boundary conditions

(5.5) a(x,∇u) · ν = 0 on ∂Σ× (0,∞) if |Σ| <∞,

or, homogeneous Robin boundary conditions

(5.6) a(x,∇u) · ν + b(x)|u|p−1u = 0 on ∂Σ× (0,∞) if |Σ| <∞

is an m-completely accretive, single-valued, operator A on L2(Σ) (respectively,
on L2

0(Σ) if B is equipped with (5.5)) with dense domain D(A) in L2(Σ)
(respectively, in L2

0(Σ)). In particular, A is a maximal monotone on L2(Σ)
(respectively, in L2

0(Σ)) satisfying A0 = 0.
Thus by Theorem 1.2, the following Dirichlet problem is well-posed. For

every ϕ ∈ L2(Σ) (respectively, in L2
0(Σ)) and 0 < s < 1, there is a unique

solution u : Σ× [0,+∞)→ R of
−1−2s

r ur − urr − divx(a(x,∇xu)) = 0 for (x, r) ∈ Σ× R+,

u satisfies (5.4), ((5.5) for ϕ ∈ L2
0(Σ)), or (5.6) for (x, r) ∈ ∂Σ× R+,

u(·, 0) = ϕ(·) on Σ.

Further by Theorem 1.3, for every 0 < s < 1, there is a strongly con-
tinuous semigroup {Ts(t)}t≥0 generated by −As on L2(Σ) (respectively, on
L2

0(Σ)). The semigroup {Ts}t≥0 is order preserving, and each Ts(t) has a

unique contractive extension on Lψ(Σ) (respectively, on Lψ0 (Σ)) for any N -

function, on L1(Σ) and on L2 ∩ L∞(Σ)
L∞

. In particular, for every ϕ ∈ L2(Σ)
(respectively, ϕ ∈ L2

0(Σ)) and 0 < s < 1, there is a unique solution U :
Σ× [0,+∞)× [0,+∞)→ R of boundary-value problem

−1−2s
r Ur − Urr − divx(a(x,∇xU)) = 0 for (x, r, t) ∈ Σ× R+ × R+,

U either satisfies (5.4), (5.5), or (5.6) for (x, r, t) ∈ ∂Σ× R+ × R+,

U(0, t) = Ts(t)ϕ on Σ for everyt ≥ 0,

lim
t→0+

t1−2sUr(r, t) ∈ d
dtTs(t) on Σ, for every t > 0,

U(·, 0, 0) = ϕ(·) on Σ.
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Finally, due to Theorem 1.7, for every ϕ ∈ D(A), λ > 0, and 0 < s < 1, there
is a unique solution u : Σ× [0,+∞)→ R of the Robin problem

−1−2s
r ur − urr − divx(a(x,∇xu)) = 0 for (x, r) ∈ Σ× R+,

u either satisfies (5.4), (5.5), or (5.6) for (x, r) ∈ ∂Σ× R+,

lim
r→0+

r1−2sur(r) + λu(·, 0) = ϕ(·) on Σ.
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Birkhäuser Verlag, Basel, 1995.

[MCSA01] Mart́ınez Carracedo, C., Sanz Alix, M. The theory of fractional powers of oper-
ators, volume 187 of North-Holland Mathematics Studies. North-Holland Pub-
lishing Co., Amsterdam, 2001.

[RR91] Rao, M. M., Ren, Z. D. Theory of Orlicz spaces, volume 146 of Monographs and
Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York,
1991.
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