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Abstract

We prove Lusztig’s conjectures P1–P15 for the affine Weyl group of type C̃2 for all choices of positive weight function.
Our approach to computing Lusztig’s a-function is based on the notion of a “balanced system of cell representations”.
Once this system is established roughly half of the conjectures P1–P15 follow. Next we establish an “asymptotic
Plancherel Theorem” for type C̃2, from which the remaining conjectures follow. Combined with existing results in the
literature this completes the proof of Lusztig’s conjectures for all rank 1 and 2 affine Weyl groups for all choices of
parameters.

Introduction

The theory of Kazhdan-Lusztig cells plays a fundamental role in the representation theory of Coxeter groups and Hecke
algebras. In their celebrated paper [12] Kazhdan and Lusztig introduced the theory in the equal parameter case, and
in [14] Lusztig generalised the construction to the case of arbitrary parameters. A very specific feature in the equal
parameter case is the geometric interpretation of Kazhdan-Lusztig theory, which implies certain “positivity properties”
(such as the positivity of the structure constants with respect to the Kazhdan-Lusztig basis). This was proved in the
finite and affine cases by Kazhdan and Lusztig in [13], and the case of arbitrary Coxeter groups was settled only very
recently by Elias and Williamson in [4]. However, simple examples show that these positivity properties no longer hold
for unequal parameters, hence the need to develop new methods to deal with the general case.

A major step in this direction was achieved by Lusztig in his book on Hecke algebras with unequal parameters [15,
Chapter 14] where he introduced 15 conjectures P1–P15 which capture essential properties of cells for all choices of
parameters. In the case of equal parameters these conjectures can be proved for finite and affine types using the above
mentioned geometric interpretation (see [15]). For arbitrary parameters the existing state of knowledge is much less
complete.

Recently in [11] we developed an approach to proving P1–P15 and applied it to the case G̃2 with arbitrary parameters.
This provided the first infinite Coxeter group, apart from the infinite dihedral group, where Lusztig’s conjectures have
been established for arbitrary parameters. Indeed outside of the equal parameter case P1–P15 are only known to hold
in the following very limited number of cases:

• the quasisplit case where a geometric interpretation is available [15, Chapter 16];

• finite dihedral type [7] and infinite dihedral type [15, Chapter 17] for arbitrary parameters;

• finite type Bn in the “asymptotic” parameter case [2, 7];

• finite type F4 for arbitrary parameters [7];

• affine type G̃2 for arbitrary parameters [11].

Our approach in [11] hinges on two main ideas: (a) the notion of a balanced system of cell representations for the Hecke
algebra, and (b) the asymptotic Plancherel formula. In the present paper we develop these ideas in type C̃2. This three
parameter case turns out to be considerably more complicated than the two parameter G̃2 case, and this additional
complexity requires us to take a somewhat more conceptual approach here.

We now briefly describe the ideas (a) and (b) above. Let (W,S) be a Coxeter system with weight function L :W → N>0

and associated multi-parameter Hecke algebra H defined over Z[q, q−1]. Let Λ be the set of two-sided cells of W with
respect to L, and recall that there is a natural partial order ≤LR on the set Λ. Let (Cw)w∈W denote the Kazhdan-Lusztig
basis of H.

One of the main challenges in proving Lusztig’s conjectures is to compute Lusztig’s a-function since, in principle, it
requires us to have information on all the structure constants with respect to the Kazhdan-Lusztig basis. In [11] we
showed that the existence of a balanced system of cell representations is sufficient to compute the a-function. Such a
system is a family (πΓ)Γ∈Λ of representations of H, each equipped with a distinguished basis, satisfying various axioms
including (1) πΓ(Cw) = 0 for all w ∈ Γ′ with Γ′ 6≥LR Γ, (2) the maximal degree of the coefficients that appear in the
matrix πΓ(Cw) is bounded by a constant aπΓ , (3) this bound is attained if and only if w ∈ Γ. This concept is inspired
by the work of Geck [7] in the finite dimensional case.

Thus a main part of the present paper is devoted to establishing a balanced system of cell representations in type C̃2

for each choice of parameters. For this purpose we use the explicit partition of W into Kazhdan-Lusztig cells that was
obtained by the first author in [10]. It turns out that the representations associated to finite cells naturally give rise to
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balanced representations and so most of our work is concerned with the infinite cells. In type C̃2 there are either 3 or
4 such two-sided cells depending on the choice of parameters. To each of these two-sided cells we associate a natural
finite dimensional representation admitting an elegant combinatorial description in terms of alcove paths. Using this
description we are able to give a combinatorial proof of the balancedness of these representations. In fact we study
these representations as representations of the “generic” affine Hecke algebra of type C̃2, thereby effectively analysing all
possible choices of parameters simultaneously.

Once a balanced system of cell representations is established for each choice or parameters we are able to compute
Lusztig’s a-function for type C̃2, and combined with the explicit partition of W into cells the conjectures P4, P8, P9,
P10, P11, P12, and P14 readily follow.

The second main part of this paper is establishing an “asymptotic” Plancherel formula for type C̃2, with our starting
point being the explicit formulation of the Plancherel Theorem in type C̃2 obtained by the second author in [19] (this is
in turn a very special case of Opdam’s general Plancherel Theorem [18]). In particular we show that in type C̃2 there
is a natural correspondence, in each parameter range, between two-sided cells appearing in the cell decomposition and
the representations appearing in the Plancherel Theorem (these are the tempered representations of H). Moreover we
define a q-valuation on the Plancherel measure, and show that in type C̃2 the q-valuation of the mass of a tempered
representation is twice the value of Lusztig’s a-function on the associated cell. This observation allows us to introduce
an asymptotic Plancherel measure, giving a descent of the Plancherel formula to Lusztig’s asymptotic algebra J . In
particular we obtain an inner product on J , giving a satisfying conceptual proof of P1 and P7. Moreover we are able
to determine the set D of Duflo involutions, and conjectures P2, P3, P5, P6, and P13 follow naturally.

The remaining conjecture P15 is of a slightly different flavour. In [22] Xie has proved this conjecture under an assumption
on Lusztig’s a-function. We are able to verify this assumption using our calculation of the a-function and the asymptotic
Plancherel formula, hence proving P15 and completing the proof of all conjectures P1–P15.

We conclude this introduction with an outline of the structure of the paper. In Section 1 we recall the basics of Kazhdan-
Lusztig theory, and we recall the axioms of a balanced system of cell representations from [11]. Section 2 provides
background on affine Weyl groups, root systems, the affine Hecke algebra, and the combinatorics of alcove paths. In
Section 3 we recall the partition of C̃2 into cells for all choices of parameters from [10], and introduce some notions such as
the generating set of a two-sided cell, cell factorisation and the ã-function. In Section 4 we define various representations
of the affine Hecke algebra in preparation for the important Sections 5 and 6 where we establish the existence of the
a balanced system of cell representations for each choice of parameters. The main work here is in Section 6, where
we conduct a detailed combinatorial analysis of certain representations associated to the infinite two-sided cells. In
Section 7 we establish connections between the Plancherel Theorem and the decomposition into cells, hence establishing
the asymptotic Plancherel Theorem for type C̃2. The proofs of P1–P15 are given progressively throughout the paper
(see Corollaries 3.1, 6.2, 6.23, 7.9, 7.11, and Theorems 7.7 and 7.13).

1 Kazhdan-Lusztig theory and balanced cell representations

In this section we recall the definition of the generic Hecke algebra and the setup of Kazhdan-Lusztig theory, including
the Kazhdan-Lusztig basis, Kazhdan-Lusztig cells, and the Lusztig’s conjectures P1–P15. In this section (W,S) denotes
an arbitrary Coxeter system (with |S| <∞) with length function ℓ :W → N. For I ⊆ S let WI be the standard parabolic
subgroup generated by I .

1.1 Generic Hecke algebras and their specialisations

Let (qs)s∈S be a family of commuting invertible indeterminants with the property that qs = qs′ whenever s and s′

are conjugate in W . Let Rg = Z[(q±1
s )s∈S]. The generic Hecke algebra of type (W,S) is the Rg-algebra Hg with basis

{Tw | w ∈ W } and multiplication given by (for w ∈ W and s ∈ S)

TwTs =

{

Tws if ℓ(ws) = ℓ(w) + 1

Tws + (qs − q−1
s )Tw if ℓ(ws) = ℓ(w)− 1.

(1.1)

We set qw := qs1 · · · qsn where w = s1 . . . sn ∈ W is a reduced expression of w. This can easily be seen to be independent
of the choice of reduced expression (using Tits’ solution to the Word Problem).

Let L : W → N be a positive weight function on W . Thus L : W −→ N satisfies L(ww′) = L(w) + L(w′) whenever
ℓ(ww′) = ℓ(w) + ℓ(w′). Let q be an invertible indeterminate and let R = Z[q, q−1] be the ring of Laurent polynomials
in q. The Hecke algebra of type (W,S,L) is the R-algebra H = HL with basis {Tw | w ∈ W } and multiplication given by
(for w ∈ W and s ∈ S)

TwTs =

{

Tws if ℓ(ws) = ℓ(w) + 1

Tws + (qL(s) − q−L(s))Tw if ℓ(ws) = ℓ(w)− 1.
(1.2)

We refer to (Tw)w∈W as the “standard basis” of H. Of course H is obtained from Hg via the specialisation qs 7→ qL(s),
with the multiplicative property of weight functions ensuring that this specialisation compatible with the fact that
qs = qs′ whenever s and s′ are conjugate in W . For a given weight function L, we denote the above specialisation by
ΘL : Hg → H.
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While Kazhdan-Lusztig theory is setup in terms of the specialised algebra H = HL, we will also need the generic algebra
Hg at times in this paper (particularly in Section 6). We sometimes write Qs = qs − q−1

s , or Qs = qL(s) − q−L(s)

depending on context (particularly in matrices for typesetting purposes). If S = {s0, . . . , sn} we will also often write, for
example, 0121 as shorthand for s0s1s2s1, and thus in the Hecke algebra T0121 = Ts0s1s2s1 . In particular, note that 1 is
shorthand for s1, and therefore to avoid confusion we denote the identity of W by e.

1.2 The Kazhdan-Lusztig basis

Let L be a positive weight function and let H = HL. The involution ¯ on R which sends q to q−1 can be extended to an
involution on H by setting

∑

w∈W

awTw =
∑

w∈W

aw T
−1
w−1 .

In [12], Kazhdan and Lusztig proved that there exists a unique basis {Cw | w ∈W } of H such that, for all w ∈ W ,

Cw = Cw and Cw = Tw +
∑

y<w

Py,wTy where Py,w ∈ q
−1

Z[q−1].

This basis is called the Kazhdan-Lusztig basis (KL basis for short) of H. The polynomials Py,w are called the Kazhdan-
Lusztig polynomials, and to complete the definition we set Py,w = 0 whenever y 6< w (here ≤ denotes Bruhat order on W )
and Pw,w = 1 for all w ∈ W . We note that the Kazhdan-Lusztig polynomials, and hence the elements Cw, depend on
the the weight function L (see the following example).

Example 1.1. Let (W,S,L) be a Coxeter group and let J ⊆ S be such that the group WJ generated by J is finite.
Let wJ be the longest element of WJ . The Kazhdan-Lusztig element CwJ

is equal to
∑

w∈WJ
qL(w)−L(wJ )Tw. Indeed,

this element has the required triangularity with respect to the standard basis and it is stable under the bar involution.
Further, if we set CwJ

:=
∑

w∈W qwq
−1
wJ
Tw ∈ Hg then we have ΘL(CwJ

) = CwJ
for all positive weight functions L on W .

Now assume that S contains two elements s1, s2 such that (s1s2)
4 = e. If we set a = L(s1) and b = L(s2) then we have

C212 =











T212 + q−b (T12 + T21) +
(

q−b−a − q−b+a
)

T2 + q−2bT1 +
(

q−2b−a − q−2b+a
)

Te if b > a,

T212 + q−a (T21 + T12) + q−2a (T1 + T2) + q−3aTe if a = b,

T212 + q−b (T12 + T21) +
(

q−a−b − q−a+b
)

T2 + q−2bT1 +
(

q−a − q−a−2b
)

Te if b < a.

Indeed, the expressions on the right-hand side are stable under the bar involution and since they have the required
triangularity property, they have to be the Kazhdan-Lusztig element associated to 212. Unlike the case where w = wJ ,
there is no generic element in Hg that specialises to C212 ∈ H(W,S,L) for all positive weight functions L. We also note
that when b > a we have P2,212 = q−b−a − q−b+a, showing that the Kazhdan-Lusztig polynomials can have negative
coefficients in the unequal parameter case.

Let x, y ∈W . We denote by hx,y,z ∈ R the structure constants associated to the Kazhdan-Lusztig basis:

CxCy =
∑

z∈W

hx,y,zCz.

Definition 1.2 ([15, Chapter 13]). The Lusztig a-function is the function a :W → N defined by

a(z) := min{n ∈ N | q−nhx,y,z ∈ Z[q−1] for all x, y ∈ W}.

When W is infinite it is, in general, unknown whether the a-function is well-defined. However in the case of affine Weyl
groups it is known that a is well-defined, and that a(z) ≤ L(w0) where w0 is the longest element of an underlying finite
Weyl group W0 (see [15]). The a-function is a very important tool in the representation theory of Hecke algebras, and
plays a crucial role in the work of Lusztig on the unipotent characters of reductive groups.

Definition 1.3. For x, y, z ∈W let γx,y,z−1 denote the constant term of q−a(z)hx,y,z.

The coefficients γx,y,z−1 are the structure constants of the asymptotic algebra J introduced by Lusztig in [15, Chapter 18].

1.3 Kazhdan-Lusztig cells and associated representations

Define preorders ≤L,≤R,≤LR on W extending the following by transitivity:

x ≤L y ⇐⇒ there exists h ∈ H such that Cx appears in the decomposition in the KL basis of hCy ,

x ≤R y ⇐⇒ there exists h ∈ H such that Cx appears in the decomposition in the KL basis of Cyh,

x ≤LR y ⇐⇒ there exists h, h′ ∈ H such that Cx appears in the decomposition in the KL basis of hCyh
′.

We associate to these preorders equivalence relations ∼L, ∼R, and ∼LR by setting (for ∗ ∈ {L,R,LR})

x ∼∗ y if and only if x ≤∗ y and y ≤∗ x.

The equivalence classes of ∼L, ∼R, and ∼LR are called left cells, right cells, and two-sided cells.
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Example 1.4. For y,w ∈ W we write y � w if and only if there exists x, z ∈ W such that w = xyz and ℓ(w) =
ℓ(x) + ℓ(y) + ℓ(y). In this case it is not hard to see, using the unitriangularity of the change of basis matrix from the
standard basis to the Kazhdan-Lusztig basis, that TxCyTz ∈ Cw +

∑

z<w azCz and therefore w ≤LR y.

We denote by Λ the set of all two-sided cells (note that of course Λ depends on the choice of weight function). Given
any cell Γ (left, right, or two-sided) we set

Γ≤∗
:= {w ∈ W | there exists x ∈ Γ such that w ≤∗ x}

and we define Γ≥∗
, Γ>∗

and Γ<∗
similarly.

To each right cell Υ of W there is a natural right H-module HΥ constructed as follows. The R-modules

H≤RΥ := 〈Cx | x ∈ Υ≤R
〉 and H<RΥ := 〈Cx | x ∈ Υ<R

〉

are right H-modules by definition and therefore the quotient

HΥ := H≤RΥ/H<RΥ

is a right H-module with basis {Cw | w ∈ Υ} where Cw is the class of Cw in HΥ. Given a left cell (respectively a
two-sided cell) we can follow a similar construction to produce left H-modules (respectively H-bimodules).

1.4 Lusztig conjectures

Define ∆ :W → N and nz ∈ R\{0} by the relation

Pe,z = nzq
−∆(z) + strictly smaller powers of q.

This is well defined because Px,y ∈ q−1Z[q−1] for all x, y ∈ W . Let

D = {w ∈ W | ∆(w) = a(w)}.

The elements of D are called Duflo elements (or, somewhat prematurely, Duflo involutions; see P6 below).

In [15, Chapter 13], Lusztig has formulated the following 15 conjectures, now known as P1–P15.

P1. For any z ∈ W we have a(z) ≤ ∆(z).

P2. If d ∈ D and x, y ∈ W satisfy γx,y,d 6= 0, then y = x−1.

P3. If x ∈W then there exists a unique d ∈ D such that γx,x−1,d 6= 0.

P4. If z′ ≤LR z then a(z′) ≥ a(z). In particular the a-function is constant on two-sided cells.

P5. If d ∈ D, x ∈W , and γx,x−1,d 6= 0, then γx,x−1,d = nd = ±1.

P6. If d ∈ D then d2 = e (the identity).

P7. For any x, y, z ∈ W , we have γx,y,z = γy,z,x.

P8. Let x, y, z ∈ W be such that γx,y,z 6= 0. Then x−1 ∼R y, y−1 ∼R z, and z−1 ∼R x.

P9. If z′ ≤L z and a(z′) = a(z), then z′ ∼L z.

P10. If z′ ≤R z and a(z′) = a(z), then z′ ∼R z.

P11. If z′ ≤LR z and a(z′) = a(z), then z′ ∼LR z.

P12. If I ⊆ S then the a-function of WI is the restriction to WI of the a-function of W .

P13. Each right cell Υ of W contains a unique element d ∈ D, and we have γx,x−1,d 6= 0 for all x ∈ Υ.

P14. For each z ∈W we have z ∼LR z−1.

P15. If x, x′, y, w ∈ W are such that a(w) = a(y) then

∑

y′∈W

hw,x′,y′ ⊗ hx,y′,y =
∑

y′∈W

hy′,x′,y ⊗ hx,w,y′ in R⊗Z R.

1.5 Balanced system of cell representations

In [11] we introduced the notion of a balanced system of cell representations, inspired by the work of Geck [5, 7] in the
finite case. We recall this theory here. If (π,M) is a (right) representation of H, and if B is a basis of M, we write (for
h ∈ H and u, v ∈ B)

π(h;B) and [π(h;B)]u,v

for the matrix of π(h) with respect to the basis B, and the (u, v)th entry of π(h;B).

We define the degree of a Laurent polynomial f(q) ∈ R[q, q−1] to be the greatest integer n ∈ Z such that qn appears in
f(q) with nonzero coefficient (with deg(0) = −∞). For example deg(3q−1 + q−2) = −1 and deg(3q−1 + q2) = 2.
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Definition 1.5. We say that H admits a balanced system of cell representations if for each two-sided cell Γ ∈ Λ there
exists a representation (πΓ,MΓ) defined over an R-polynomial ring RΓ (where we could have RΓ = R) and a basis BΓ of
MΓ such that the following 6 properties hold:

B1. If w /∈ Γ≥LR
then πΓ(Cw) = 0.

B2. There exist bounds aπΓ ∈ N such that deg[πΓ(Cw;BΓ)]u,v ≤ aπΓ for all w ∈ W and all u, v ∈ BΓ.

B3. We have max{deg[πΓ(Cw;BΓ)]u,v | u, v ∈ BΓ} = aπΓ if and only w ∈ Γ. We define the leading matrices by

cπΓ(w;BΓ) = sp|
q−1=0

(

q
−aπΓ [πΓ(Cw;BΓ)]

)

.

B4. The leading matrices cπΓ(w;BΓ), w ∈ Γ, are free over Z.

B5. Let Γ ∈ Λ. For each z ∈ Γ, there exists (x, y) ∈ Γ2 such that γ̃x,y,z−1 6= 0, where γ̃x,y,z−1 ∈ Z is defined by the
equation

cπΓ(x;BΓ)cπΓ(y;BΓ) =
∑

z∈Γ

γ̃x,y,z−1cπΓ(z;BΓ) for x, y ∈ Γ

(see Remark 1.6 below).

B6. If Γ′ ≤LR Γ then aπΓ′ ≥ aπΓ .

Remark 1.6. We make the following remarks:

1) We note that B1 does not depend on the basis BΓ. A representation with property B1 is called a cell representation
for the two-sided cell Γ. It is clear that the representations associated to cells that we introduced in Section 1.3
are cell representations (see [11, Section 2.1]).

2) If the basis BΓ of MΓ is clear from context we will sometimes write cπΓ (w) in place of cπΓ(w;BΓ).

3) By [11, Corollary 2.4] the axioms B1–B4 and B6 alone imply that the Z-span JΓ of the matrices {cπΓ (w;BΓ) |
w ∈ Γ} is a Z-algebra. Hence the definition of γ̃x,y,z−1 in B5 is not itself a separate axiom; these integers are the
structure constants of the algebra JΓ.

4) We note that in B2 and B3 it is equivalent to replace Cw by Tw, because Cw = Tw +
∑

v<w pv,wTv with
pv,w ∈ q−1Z[q−1]. However in B1 one cannot replace Cw by Tw.

5) Finally we note that we have slightly changed the numbering from [11], where B5 was denoted B4′, and B6 was
denoted B5.

In [11] we showed that the existence of a balanced system of cell representations is sufficient to compute Lusztig’s
a-function. In particular, we have:

Theorem 1.7 ([11, Theorem 2.5 and Corollary 2.6]). Suppose that H admits a balanced system of cell representations.
Then a(w) = aπΓ for all w ∈ Γ. Moreover, for each Γ ∈ Λ the Z-algebra JΓ spanned by the matrices {cπΓ (w;BΓ) | w ∈ Γ}
is isomorphic to Lusztig’s asymptotic algebra associated to Γ, and γ̃x,y,z = γx,y,z.

Note that the first part of this theorem implies that the bounds aπΓ are in Definition 1.5 are in fact unique. That is, if
there exist two balanced systems of cell representations then their bounds coincide.

2 Affine Weyl groups, affine Hecke algebras, and alcove paths

We begin this section with some basic facts about root systems and Weyl groups. We then recall the combinatorial
language of alcove paths from [20], and the concept of alcove paths confined to strips from [11]. We also discuss the
combinatorics of the affine Hecke algebra (and extended affine Hecke algebra) of type C̃2.

2.1 Root systems and Weyl groups

Let Φ be the non-reduced root system of type BC2 in the vector space R2. Thus Φ consists of vectors

Φ = Φ+ ∪ (−Φ+), where Φ+ = {α1, α2, α1 + α2, α1 + 2α2, 2α2, 2(α1 + α2)},

with ‖α1‖ =
√
2, ‖α2‖ = 1, and 〈α1, α2〉 = −1. Let Φ0 and Φ1 be the subsystems

Φ0 = ±{α1, α2, α1 + α2, α1 + 2α2} and Φ1 = ±{α1, 2α2, α1 + 2α2, 2α1 + 2α2}

of types B2 and C2, respectively.

Let α∨ = 2α/〈α, α〉. The dual root system is

Φ∨ = ±{α∨
1 , α

∨
2 /2, α

∨
1 + α∨

2 /2, α
∨
1 + α∨

2 , α
∨
2 , 2α

∨
1 + α∨

2 }.

The corrot lattice is the Z-lattice Q spanned by Φ∨. Thus

Q = {mα∨
1 + nα∨

2 /2 | m,n ∈ Z}.
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The fundamental coweights ω1 and ω2 are defined by 〈ωi, αj〉 = δi,j , and thus

ω1 = α∨
1 + α∨

2 /2 and ω2 = α∨
1 + α∨

2 .

In particular, note that ω1, ω2 ∈ Q. Let Q+ be the cone Z≥0ω1 + Z≥0ω2 (note that this notation is non-standard).

For each α ∈ Φ let sα be the orthogonal reflection in the hyperplane Hα = {x ∈ R2 | 〈x,α〉 = 0} orthogonal to α, and
for i ∈ {1, 2} let si = sαi

. The Weyl group of Φ is the subgroup W0 of GL(V ) generated by the reflections s1 and s2
(this is a Coxeter group of type B2 = C2). The Weyl group W0 acts on Q and the affine Weyl group is W = Q ⋊W0

where we identify λ ∈ Q with the translation tλ(x) = x+ λ. The affine Weyl group is a Coxeter group with generating
set S = {s0, s1, s2}, where s0 = tϕ∨sϕ, with ϕ = 2α1 + 2α2 the highest root of Φ.

For each α ∈ Φ and k ∈ Z let Hα,k = {x ∈ R2 | 〈x,α〉 = k}, and let sα,k be the orthogonal reflection in the affine
hyperplane Hα,k. Explicitly, sα,k(x) = x− (〈x, α〉 − k)α∨. Each affine hyperplane Hα,k with α ∈ Φ+ and k ∈ Z divides
R2 into two half spaces, denoted

H+
α,k = {x ∈ R

2 | 〈x, α〉 ≥ k} and H−
α,k = {x ∈ R

2 | 〈x,α〉 ≤ k}.

This “orientation” of the hyperplanes is called the periodic orientation (see Figure 1).

If w ∈W we define the final direction θ(w) ∈ W0 and the translation weight wt(w) ∈ Q by the equation

w = twt(w)θ(w).

Let F denote the union of the hyperplanes Hα,k with α ∈ Φ and k ∈ Z. The closures of the open connected components
of R2\F are called alcoves (these are the closed triangles in Figure 1). The fundamental alcove is given by

A0 = {x ∈ R
2 | 0 ≤ 〈x, α〉 ≤ 1 for all α ∈ Φ+}.

The hyperplanes bounding A0 are called the walls of A0. Explicitly these walls are Hαi,0 with i = 1, 2 and Hϕ,1. We
say that a face of A0 (that is, a codimension 1 facet) has type si for i = 1, 2 if it lies on the wall Hαi,0 and of type s0 if
it lies on the wall Hϕ,1.

The affine Weyl group W acts simply transitively on the set of alcoves, and we use this action to identify the set of
alcoves with W via w ↔ wA0. Moreover, we use the action of W to transfer the notions of walls, faces, and types of
faces to arbitrary alcoves. Alcoves A and A′ are called s-adjacent, written A ∼s A

′, if A 6= A′ and A and A′ share a
common type s face. Thus under the identification of alcoves with elements of W , the alcoves w and ws are s-adjacent.

α1 = α∨
1

ω2

α∨
2 /2

2α2

ω1

•

•

•

•

•

•

•

•

•

•

•

•

•

s1
s2

s0

+

−

+

−

+

−

− +− + − +

+

−

+

−

+

−

−+ −+ −+

es1
s2

s0

Fig. 1: Root system of type BC2, periodic orientation, and adjacency types (dotted, dashed, solid = 0,1,2)

2.2 Alcove paths

For any sequence ~w = (si1 , si2 , . . . , siℓ) of elements of S we have

e ∼si1
si1 ∼si2

si1si2 ∼si3
· · · ∼siℓ

si1si2 · · · siℓ .

In this way, sequences ~w of elements of S determine alcove paths (also called alcove walks) of type ~w starting at the
fundamental alcove e = A0. We will typically abuse notation and refer to alcove paths of type ~w = si1si2 · · · siℓ rather
than ~w = (si1 , si2 , . . . , siℓ). Thus “the alcove path of type ~w = si1si2 · · · siℓ ” is the sequence (v0, v1, . . . , vℓ) of alcoves,
where v0 = e and vk = si1 · · · sik for k = 1, . . . , ℓ.

Let ~w = si1si2 · · · siℓ be an expression for w ∈ W , and let v ∈ W . A positively folded alcove path of type ~w starting at v
is a sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ W such that
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1) v0 = v,

2) vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

3) if vk−1 = vk then vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

The end of p is end(p) = vℓ. Let

P(~w, v) = {all positively folded alcove paths of type ~w starting at v}.

Less formally, a positively folded alcove path of type ~w starting at v is a sequence of steps from alcove to alcove in W ,
starting at v, and made up of the symbols (where the kth step has s = sik for k = 1, . . . , ℓ):

−
x xs

+

(positive s-crossing)

−
xs x

+

(positive s-fold)

+
xxs

−

(negative s-crossing)

If p has no folds we say that p is straight. Note that, by definition, there are no “negative” folds.

If p is a positively folded alcove path we define, for each sj ∈ S,

fj(p) = #(positive sj-folds in p).

2.3 Alcove paths confined to strips

Let α′
1 = α1 and α′

2 = 2α2 (these are the simple roots of Φ1). For i ∈ {1, 2} let

Ui = {x ∈ R
2 | 0 ≤ 〈x, α′

i〉 ≤ 1}

be the region between the hyperplanes Hα′
i
,0 and Hα′

i
,1. It is also convenient to define U3 = U2.

Let ~w = si1 · · · siℓ be an expression for w ∈ W . Let i ∈ {1, 2, 3}. An i-folded alcove path of type ~w starting at v ∈ Ui is a
sequence p = (v0, v1, . . . , vℓ) with v0, . . . , vℓ ∈ Ui such that

1) v0 = v, and vk ∈ {vk−1, vk−1sik} for each k = 1, . . . , ℓ, and

2) if vk−1 = vk then either:

(a) vk−1sik /∈ Ui, or

(b) vk−1 is on the positive side of the hyperplane separating vk−1 and vk−1sik .

We note that condition 2)(a) can only occur if vk−1 and vk−1sik are separated by either Hα′
i
,0 or Hα′

i
,1.

The end of the i-folded alcove path p = (v0, . . . , vℓ) is end(p) = vℓ. Let

Pi(~w, v) = {all i-folded alcove paths of type ~w starting at v}.

Less formally, i-folded alcove paths are made up of the following symbols, where x ∈ Ui and s ∈ S:

−
x xs

+

(positive s-crossing)

−
xs x

+

(s-fold)

+
xxs

−

(negative s-crossing)

(a) When the alcoves x and xs both belong to Ui

+
xsx

−

(s-bounce)

−
xs x

+

(s-bounce)

(b) When xs lies outside of Ui

We refer to the two symbols in (b) as “s-bounces” rather than folds, since they play a different role in the theory. It
turns out that there is no need to distinguish between “positive” and “negative” s-bounces. We note that bounces only
occur on the hyperplanes Hα′

i
,0 and Hα′

i
,1. Moreover, note that there are no folds or crossings on the walls Hα′

i
,0 and

Hα′

i
,1 – the only interactions with these walls are bounces. In the case i = 1 every bounce has type 1. In the case i = 2, 3

the bounces on Hα′
2,0

have type 2, and those on Hα′
2,1

have type 0 (see Figures 1 and 3).

Let p be an i-folded alcove path. For each j ∈ {0, 1, 2} let

fj(p) = #(sj-folds in p) and gj(p) = #(sj-bounces in p).

For i ∈ {1, 2} let Wi = 〈si〉 and let W i
0 denote the set of minimal length coset representatives for cosets in Wi\W0.

Define
θi(p) = ψi(θ(p)) and wti(p) = 〈wt(p), ωi〉,
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where ψi : W0 → W i
0 is the natural projection map taking u ∈ W0 to the minimal length representative of Wiu, and

ω1, ω2 are as defined in Section 2.1. For later use, we also set

θ3 = θ2 and wt3 = wt2.

Thus if wt(p) = mα∨
1 + nα∨

2 /2 then wt1(p) = m and wt2(p) = wt3(p) = n.

Let

τ1 = tω1s1 = s0s1s2 and τ2 = tω1 = s0s1s2s1,

and let τ3 = τ2. Observe that τi preserves Ui. It is not hard to see that for each p ∈ Pi(~w, u) the path τi(p) obtained by
applying τi to each part of p is again a valid i-folded alcove path starting at τiu (the main point here is that in the case
i = 1 the reflection part of τ1 is in the simple root direction α1, and thus sends Φ+\{α1} to itself; in the cases i = 2, 3
the element τ2 = τ3 is a pure translation, and so the result is obvious). Moreover θi(p) is preserved under the application
of τi, and a direct calculation shows that wti(τki (p)) = k + wti(p).

Note that W i
0 is a fundamental domain for the action of 〈τi〉 on Ui. Let B be any other fundamental domain for this

action. For w ∈ Ui we define wtiB(w) ∈ Z and θiB(w) ∈ B by the equation

w = τ
wtiB(w)

i θiB(w),

and for i-folded alcove paths p we define

wtiB(p) = wtiB(end(p)) and θiB(p) = θiB(end(p)).

It is easy to see that in the case B =W i
0 these definitions agree with those for wti(p) and θi(p) made above.

Example 2.1. Figure 3 shows three examples of i-folded alcove paths, with i = 1 in the first two cases, and i = 2 or
i = 3 in the third case. In each case the identity alcove is shaded in dark green. The first and second paths have type
~w = 210121012120 and start at u = e, and the third path has type ~w = 121021210120120 and starts at u = 12.

Fig. 3: i-folded alcove paths

The first and second figures illustrate two choices of fundamental domain B for the action of τ1 on U1 (indicated by
green and red shading). In the first example B = W 1

0 , and we have wt1B(p) = 3 and θ1B(p) = 21. In the second
example B = {e, 2, 0, 20}, and we have wt1B(p) = 2 and θ1B(p) = 0. The third figure illustrates the fundamental domain
B = {12, 2, e, 0} for the action of τ2 = τ3 on U2 = U3. We have wt2B(p) = wt3B(p) = 1 and θ2B(p) = θ3B(p) = 0.

2.4 The affine Hecke algebra of type C̃2

Let (W,S) be the C̃2 Coxeter system and let Hg be the associated generic affine Hecke algebra, as in (1.1). The algebra
Hg is generated by T0 = Ts0 , T1 = Ts1 and T2 = Ts2 subject to the relations (for i = 0, 1, 2)

T 2
i = 1 + QiTi, T0T1T0T1 = T1T0T1T0, T1T2T1T2 = T2T1T2T1, and T0T2 = T2T0,

where qi = qsi and Qi = qi − q−1
i .

Let v ∈ W and choose any expression v = si1 · · · siℓ (not necessarily reduced). Consider the associated straight alcove
path (v0, v1 . . . , vℓ), where v0 = e and vk = si1 · · · sik . Let ε1, . . . , εℓ be defined using the periodic orientation on
hyperplanes as follows:

εk =

{

+1 if vk−1
−|+ vk (that is, a positive crossing)

−1 if vk
−|+ vk−1 (that is, a negative crossing).
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It is easy to check (using Tits’ solution to the Word Problem) that the element

Xv = T ε1
si1

. . . T εℓ
siℓ

∈ Hg

does not depend on the particular expression v = si1 · · · siℓ we have chosen (see [9]). If λ ∈ Q we write

Xλ = Xtλ ,

and it follows from the above definitions that

Xv = Xtwt(v)θ(v)
= Xwt(p)Xθ(v) = Xwt(v)T−1

θ(v)−1 (2.1)

(the second equality follows since twt(v) is on the positive side of every hyperplane through wt(v), and the third equality
follows since Xu = T−1

u−1 for all u ∈ W0). Moreover since Xv = Tv + (lower terms) the set {Xv | v ∈ W } is a basis of Hg,
called the Bernstein-Lusztig basis.

Let Rg[Q] be the free Rg-module with basis {Xλ | λ ∈ Q}. We have a natural action ofW0 on Rg[Q] given by wXλ = Xwλ.
We set

Rg[Q]W0 = {p ∈ Rg[Q] | w · p = p for all w ∈ W0}.
It is a well-known result that the centre of Hg is Z(Hg) = Rg[Q]W0 .

The combinatorics of positively folded alcove paths encode the change of basis from the standard basis (Tw)w∈W of Hg

to the Bernstein-Lusztig basis (Xv)v∈W . This is seen by taking u = e in the following proposition (see [20, Theorem 3.3],
or [11, Proposition 3.2]).

Proposition 2.2. (c.f. [20, Theorem 3.3]) Let w, u ∈ W , and let ~w be any reduced expression for w. Then

XuTw =
∑

p∈P(~w,u)

Q(p)Xend(p) where Q(p) =
2
∏

j=0

(qj − q
−1
j )fj(p).

Let
X1 = Xα∨

1 and X2 = Xα∨

2 /2.

We have X1 = T−1
2 T0T1T

−1
0 T2T1 and X2 = T−1

1 T0T1T2. Note that Xω1 = X1X2 and Xω2 = X1X
2
2 .

The Bernstein relations are (for λ ∈ Q)

T−1
1 Xλ −Xs1λT−1

1 = Q1
Xλ −Xs1λ

X1 − 1
and T−1

2 Xλ −Xs2λT−1
2 = (Q2 + Q0X2)

Xλ −Xs2λ

X2
2 − 1

.

Note that Xλ −Xsiλ = Xsiλ(X〈λ,αi〉α
∨
i − 1) is indeed divisible by Xα∨

i − 1 because 〈λ, αi〉 ∈ Z for all λ ∈ Q.

For later reference we record the following complete set of relations for Hg in the Bernstein-Lusztig presentation. Let
Y1 = Xω1 and Y2 = Xω2 . Then

T 2
1 = 1 + (qa − q−a)T1 T 2

2 = 1 + (qb − q−b)T2 T1T2T1T2 = T2T1T2T1 Y1Y2 = Y2Y1

T−1
1 Y1 = Y −1

1 Y2T1 T−1
2 Y2 = Y 2

1 Y
−1
2 T2 +Q0Y1 T−1

1 Y2 = Y2T
−1
1 T−1

2 Y1 = Y1T
−1
2

Remark 2.3. Let L : W → N>0 be the weight function with L(s1) = a, L(s2) = b, and L(s0) = c, and let H be the
associated affine Hecke algebra, as in (1.2). The results of the above section of course apply equally well to H after
applying the specialisation ΘL. For example, Proposition 2.2 applies with the obvious modification

Q(p) = (qa − q
−a)f1(p)(qb − q

−b)f2(p)(qc − q
−c)f0(p).

2.5 The extended affine Hecke algebra

If q0 = q2 (or, in the specialisation, c = b) one can slightly enlarge the affine Hecke algebra as follows. Let

P = Zω1 + Zω2/2 = Zα∨
1 /2 + Zα∨

2 /2 and P+ = Z≥0ω1 + Z≥0ω2/2.

The Weyl group W0 acts on P , and the extended affine Weyl group is

W̃ = P ⋊W0
∼=W ⋊ (P/Q).

Note that P/Q ∼= Z2. Let σ ∈ W̃ be the nontrivial element of P/Q. Then σsiσ
−1 = sσ(i) for each i = 0, 1, 2, where σ(i)

denotes the nontrivial diagram automorphism of (W,S).

The length function on W is extended to W̃ by setting ℓ(wσ) = ℓ(w) for all w ∈ W̃ . Thus the length 0 elements of W̃
are precisely the elements e and σ.
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Under the assumption q0 = q2 we have Rg = Z[q1, q2, q
−1
1 , q−1

2 ]. The extended affine Hecke algebra is the algebra H̃g

over Rg with basis {Tw | w ∈ W̃} and multiplication (for u, v, w ∈ W and s ∈ S) given by

TuTv = Tuv if ℓ(uv) = ℓ(u) + ℓ(v)

TwTs = Tws + (qs − q
−1
s )Tw if ℓ(ws) = ℓ(w)− 1.

The definition of the Bernstein-Lusztig basis {Xv | v ∈ W̃} can be extended to H̃g by considering W̃ as 2 sheets of W ,
and an alcove path of type ~w = si1 · · · sikσ consists of an ordinary alcove path of type si1 · · · sik followed by a jump to
the σ-sheet of W̃ (see [20]). The centre of H̃g is Rg[P ]W0 .

The Hecke algebra Hg (with q0 = q2) is naturally a subalgebra of H̃g. Indeed H̃g is generated by T0, T1, T2, and the
additional element

Tσ = Xω2/2T−1
2 T−1

1 T−1
2 .

2.6 Schur functions

The following Schur functions will play a role later. Let λ ∈ Q. The Schur function sλ(X) ∈ Z[Q]W0 is the polynomial

sλ(X) =
∑

w∈W0

w

(

Xλ

∏

α∈Φ+
0
(1−X−α∨)

)

. (2.2)

Let λ ∈ P . The dual Schur function s′λ(X) ∈ Z[P ]W0 is the polynomial

s
′
λ(X) =

∑

w∈W0

w

(

Xλ

∏

α∈Φ+
1
(1−X−α∨)

)

. (2.3)

In particular we have

sω1(X) = Xω1 +X−ω1 +Xω1−ω2 +X−ω1+ω2 sω2(X) = 1 +Xω2 +X−ω2 +X2ω1−ω2 +X−2ω1+ω2

s
′
ω1

(X) = 1 +Xω1 +X−ω1 +Xω1−ω2 +X−ω1+ω2 s
′
ω2/2(X) = Xω2/2 +X−ω2/2 +Xω1−ω2/2 +X−ω1+ω2/2.

3 Kazhdan-Lusztig cells in type C̃2

Let W be a Coxeter group of type C̃2 with weight diagram

✐ ✐ ✐
c a b

s0 s1 s2

That is, L(s1) = a, L(s2) = b, and L(s0) = c. In this section we recall the decomposition of W = C̃2 into cells for all
choices of parameters (a, b, c) ∈ N3. We then study the properties of this partition and introduce various notions such as
the generating set of a two-sided cell, cell factorisations and the ã-function. The ã-function is defined using the values of
Lusztig a-function in finite parabolic subgroups of W and as a consequence of the main result of this paper, it turns out
that a = ã, and thus the table listed in Section 3.5 in fact records the values of Lusztig’s a-function (however, of course,
this cannot be assumed at this stage).

3.1 Partition of C̃2 into cells

A positive weight function L on W is completly determined by its values L(s1) = a, L(s2) = b and L(s0) = c on the
set S of generators. If the triplet (a, b, c) ∈ N>0 admits a common divisor d then the algebra H defined with respect to
(a, b, c) is easily seen to be isomorphic to the one defined with respect to (a/d, b/d, c/d). Therefore the Hecke algebra
H defined with respect to (a, b, c) only depends on the ratios b/a and c/a, and hence also the decomposition into cells
depends only on these ratios. Thus we set

r1 =
b

a
and r2 =

c

a

In this paper, many notions will depend on the choice of parameters and, as far as Kazhdan-Lusztig theory is concerned,
it is equivalent to fix a weight function L, a triplet (a, b, c) ∈ N3 or a pair (r1, r2) ∈ Q2. Given D ⊂ Q2

>0, we write

• (a, b, c) ∈ D for (a, b, c) ∈ N3 to mean (b/a, c/a) ∈ D;

• L ∈ D for a weight function L to mean (L(s2)/L(s1), L(s0)/L(s1)) ∈ D.

In a similar spirit, when considering a statistic F that depends on the choice of parameters (for instance the partition
into cells), we will write F (L), or F (a, b, c) or F (r1, r2) to mean that we consider the statistic F with respect to the
weight function L, the triplet (a, b, c) ∈ N3 or the pair (r1, r2) ∈ Q2

>0. Furthermore, if F (r1, r2) = F (r′1, r
′
2) whenever

(r1, r2) and (r′1, r
′
2) belong to a subset D ⊂ Q2

>0, we will also write F (D) to denote the common value of F on D.
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The partition of W into cells has been obtained by the first author in [10]. Even though there are an infinite number of
positive weight functions on W , there are only a finite number of partitions of W into cells (as conjectured by Bonnafé
in [1]). In order to describe these partitions we first need to define a set R of subsets of Q2

>0 on which the partition into
cells will be constant.

We define open subsets A1, . . . , A10 of Q2
>0 in Figure 4. Write Ai′ = A′

i for the region Ai reflected in the line r1 = r2 (we
call this the “dual” region). For “adjacent” regions Ai and Aj (respectively Ai and A′

i), let Ai,j (respectively Ai,i′) be the
line segment Ai∩Aj (respectively Ai∩Ai′) with the endpoints removed. This partitions the set {(x1, x2) ∈ Q2

>0 | x2 ≤ x1}
into 30 regions:

• A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 (open subsets of Q2),

• A1,1′ , A2,2′ , A5,5′ , A1,2, A2,3, A3,4, A4,5, A3,6, A6,7, A4,7, A7,8, A5,8, A7,9, A9,10, A8,10 (open intervals),

• P1 = (1/2, 1/2), P2 = (1, 1), P3 = (3/2, 1/2), P4 = (2, 1), and P5 = (3, 1) (points).

The set Q2
>0 is so partitioned into 55 regions (20 open subsets, 27 open intervals, and 8 points). Let R be the set of all

such regions and let R◦ = {Ai, A
′
i | 1 ≤ i ≤ 10}.

A1

A2 A3

A4

A5

A6

A7

A8

A9

A10

r1

r2

1

1

2

2

Fig. 4: Regions of R2

For any region D ∈ R, the decomposition of W into right cells and two-sided cells is the same for all choices of
parameters (r1, r2) ∈ D. In Figure 5, we represent Λ(D) for all D ∈ R such that D ⊂ {(x1, x2) ∈ Q2

>0 | x2 ≤ x1}. The
alcoves with the same colour lie in the same two-sided cell and the right cells in a given two-sided cell are the connected
components. The Hasse diagram on the right of each partition describes the two-sided order on the two-sided cells, going
from the highest cell at the top to the lowest one at the bottom. Finally to obtain the decomposition and the two-sided
order for a region included in {(x1, x2) ∈ Q2

>0 | x2 > x1} one simply applies the diagram automorphism σ to the partition
for the dual region. Hence the partition of C̃2 into two-sided cells and right cells is known for all choices of parameters.
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A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A1,1′ A2,2′ A5,5′ A1,2 A2,3

A3,4 A4,5 A3,6 A6,7 A4,7

A7,8 A5,8 A7,9 A9,10 A8,10

P1: (q2, q, q) P2: (q, q, q) P3: (q2, q3, q) P4: (q, q2, q) P5: (q, q3, q)

= Γ0

= Γ1

= Γ2

= Γ3

= Γ4

= Γ5

= Γ6

= Γ7

= Γ8

= Γ9

= Γ10

= Γ11

= Γ12

= Γ13

Fig. 5: Decomposition of C̃2 into cells for r2 ≤ r1

Corollary 3.1. Conjecture P14 holds.

Proof. One directly checks that each two-sided cell is invariant under inversion.

3.2 Semicontinuity conjecture

The parameters (r1, r2) ∈ Q2
>0 are called generic if there exists an open subset O of R2 that contains (r1, r2) and such

that for all (r′1, r
′
2) ∈ O ∩ Q2

>0 we have Λ(r1, r2) = Λ(r′1, r
′
2). According to Figure 4, we see that the generic parameters

for W are exactly those that lie in some Ai or A′
i. For D ∈ R we set RD := {A ∈ R◦ | D ⊆ A}. For example,

RP2 = {A2, A3, A4, A5, A2′ , A3′ , A4′ , A5′}.

In [1], Bonnafé has conjectured that the partition of an arbitrary Coxeter group into cells satisfies certain “semicontinuity
properties”. The basic idea of his conjecture is that the partition for all parameters can be determined from the knowledge
of the partition for generic parameters. More precisely the partition Λ(D) for D ∈ R is the finest partition of W that
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satisfies the following property:

For all A ∈ RD, and for all Γ ∈ Λ(A), there exists a cell Γ′ ∈ Λ(D) such that Γ ⊆ Γ′.

In the case of C̃2 the conjecture is known to hold (by direct inspection using Figure 5). Thus it is (retrospectively)
sufficient to know Λ(A) for all A ∈ R◦ to determine Λ(D) for all D ∈ R (in fact, using the diagram automorphism σ
it is enough to know Λ(Ai) for all 1 ≤ i ≤ 10). The most striking example of the semicontinuity phenomenon is when
D = P2 (the equal parameter case) where one has to look at the partition of W into cells for parameters in the regions
A2, A2′ , A3, A3′ , A4, A4′ , A5 and A5′ to determine the partition into cells. As a result, all finite cells get absorbed into
the infinite cells.

3.3 Generating sets of two-sided cell

Recall the definition of � in Example 1.4. Given a subset C of W we denote by C+ the set that consists of all
elements w ∈W that satisfy u � w for some u ∈ C. By inspection of Figure 5 we see that for all D ∈ R and all Γ ∈ Λ(D)
there exists a minimal subset JΓ(D) of W such that

Γ = JΓ(D)+ −
⋃

Γ′<LRΓ

Γ′.

We call this set the generating set of Γ. We have for all D ∈ R and all Γ ∈ Λ(D)

(1) JΓ(D) ⊆ ⋃I(S WI ;

(2) the elements of JΓ are involutions;

(3) if D ∈ R◦ then |JΓ(D)| = 1;

(4) we have

JΓ(D) ⊆
⋃

A∈RD

⋃

Γ′∈Λ(A),Γ′∩Γ 6=∅

JΓ′(A)

where the inclusion can be strict (see the example D = P2 below);

(5) the set {Cw | w ∈ JΓ(D)} generates the module H≤LRΓ;

(6) Γ1 ≤LR Γ2 if and only if JΓ2(D)+ ∩ Γ1 6= ∅.
Of course, it is also possible to have |JΓ(D)| = 1 for some D /∈ R◦. When |JΓ(D)| = 1, we will denote by wΓ the element
of this set (or simply wi if Γ = Γi). In the table below, we give the elements wi for all Aj ∈ R and Γi ∈ Λ(Aj).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Γ0 1212 1212 1212 1212 1212 1212 1212 1212 1212 1212
Γ1 1 20 20 20 20 212 212 212 212 212
Γ2 101 101 101 2 2 101 2 2 2 2
Γ3 1010 1010 1010 1010 1010 1010 1010 1010 20 20
Γ4 e e e e e e e e e e

Γ5 0 0 0 0 010 0 0 010 0 010
Γ6 2 2 212 212 212 − − − − −

Γ7 − − − 101 − 101 1 101 1
Γ8 − − − − − − − − 1010 1010
Γ9 20 − − − − − − − − −

Γ10 − 1 2 − − 2 − − − −

Γ11 − − − − − 20 20 20 − −

Γ12 121 121 1 1 0 1 1 0 1 0

Tab. 1: The set JΓi
(Aj) = {wi} for generic parameters

The set JΓ(D) when Γ ∈ Λ(D) and D /∈ R◦ can be obtained by first computing the right-hand side J of (4) and then
taking the minimal subset Jmin such that J ⊂ J+

min. For instance, if D = P2 and Γ = Γ2 then the right-hand side of (4)
is

J = {s0, s1, s2, s1s2s1, s2s1s2, s1s0s1, s0s1s0}
and thus JΓ2(P2) = {s0, s1, s2} since s1 ≺ s1s2s1, s2s1s2, s0s1s0, s0s1s0.

3.4 Cell factorisations

When the set JΓ(D) contains a unique element then the two-sided cell Γ admits a cell factorisation. We refer to [11, §4]
for a detailed description of this concept in type G2. To illustrate cell factorisation here, consider the lowest two-sided
cell Γ0 in the regime r2 < r1. In this case we see that JΓ0(r1, r2) = {w0} where w0 = s1s2s1s2. By direct inspection of
Figure 5 we have the following representation of elements of Γ0:

• Each right cell Υ ⊆ Γ0 contains a unique element wΥ of minimal length.

• The element w0 is a suffix of each wΥ. Let uΥ = w0w
−1
Υ and B0 = {uΥ | Υ ⊆ Γ0}.
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• We have
Γ0 = {u−1

w0tλv | u, v ∈ B0, λ ∈ Q+}.
Moreover, each w ∈ Γ0 has a unique expression in the form w = u−1w0tλv with u, v ∈ B0 and λ ∈ Q+, and this expression
is reduced (that is, ℓ(w) = ℓ(u−1) + ℓ(w0) + ℓ(tλ) + ℓ(v)). This expression is called the cell factorisation of w ∈ Γ0.

In the infinite cells Γ = Γi with i = 1, 2, 3 cell factorisation (if it exists) takes a similar form:

• Each right cell Υ ⊆ Γ contains a unique element wΥ of minimal length.

• The element wΓ is a suffix of each wΥ and we set uΥ = wΓw
−1
Υ and BΓ = {uΥ | Υ ⊆ Γ}.

• There exists tΓ ∈ W such that
Γ = {u−1

wΓt
n
Γv | u, v ∈ BΓ, n ∈ N},

and moreover each w ∈ Γ has a unique expression in this form, and this expression is reduced.

The specific cell factorisations that we require will be introduced at the appropriate time. Here we give one example for
illustration. Consider Γ = Γ1(r1, r2) with r2 < r1 − 1. Then the set JΓ(r1, r2) contains a unique element wΓ = s2s1s2.
Therefore this cell admits a cell factorisation, and we have

tΓ = 012, and BΓ = {e, 0, 01, 010}.

We represent this factorisation in Figure 6. The set of grey alcoves together with the black alcove A0 on the left hand
side is B−1

Γ , and the small diagram on the right hand side illustrates BΓ. The connected sets of dark blue (respectively
light blue) alcoves are the sets of the form {u−1wΓt

n
Γv | u, v ∈ BΓ} where n is odd (respectively even).

Fig. 6: Cell factorisation of Γ1 in the case r2 < r1 − 1.

There are also cases where there is a kind of “generalised” cell factorisation that involves the extended affine Weyl group.
Specifically, these cases are Γ0 with r2 = r1, the cell Γ2 in the case r2 = r1 and r2 < 1, and the cell Γ2 in the case r2 = r1
and r2 > 1. We will discuss these factorisations at the appropriate time.

All finite cells except for Γ13 admit a cell factorisation. In these cases tΓ = e, and each element of the cell has a unique
expression in the form u−1wΓv with u, v ∈ BΓ and wΓ ∈ JΓ. For example, if Γ = Γ12 with (r1, r2) ∈ A1 ∪ A2 ∪ A1,2

then JΓ = {s1s2s1} and BΓ = {e, s0}, and if Γ = Γ11 with (r1, r2) ∈ A6 ∪ A7 ∪ A8 ∪ A6,7 ∪ A7,8 then JΓ = {s0s2} and
BΓ = {e, s1, s1s0}.
Suppose that Γ is a cell admitting a cell factorisation. If w ∈ Γ is written as w = u−1wΓt

n
Γv with u, v ∈ BΓ and n ∈ N

we write
uw = u, vw = v, and τw = n

(and in the case of Γ0 we have w = u−1wΓtλv and τw = λ). Let x, y ∈ Γ. With these notations, we have for all generic
parameters:

x ∼L y ⇐⇒ vx = vy and x ∼R y ⇐⇒ ux = uy.

3.5 The ã-function

A useful auxiliary notion is the ã-function, defined as follows. The values of the a-function are explicitely known for
finite dihedral groups (see, for example, [11, Table 1]) and Lusztig’s conjectures have been verified in this case (see [7,
Proposition 5.1]). Therefore, for all choices of parameters, we can define a-functions ak : WIk → N (k = 0, 1, 2) where
Ik := S\{k}, however we emphasise that it is not clear that ak is the restriction of a to WIk ; this is the content of P12.
It turns out, by direct observation, that if u, v ∈ Γ lie in a common two-sided cell, with u ∈ WIj and v ∈ WIk for
j, k ∈ {0, 1, 2}, then aj(u) = ak(v). These observations, together with the fact that every two-sided cell intersects a finite
parabolic subgroup, allows us to define a function ã :W → N (for each choice of parameters) by

ã(w) = ak(u) whenever w ∈ Γ ∈ Λ(r1, r2) and u ∈ Γ ∩WIk .

By definition ã is constant on each two-sided cell Γ, and therefore we write ã(Γ) for the value of ã on any element of Γ,
thereby considering ã as a function ã : Λ(r1, r2) → N. We remark that ã is a deacreasing function on the set Λ. Indeed
it is not hard to check that ã(Γ) ≥ ã(Γ′) whenever Γ ≤LR Γ′. Finally, the values of ã are “generically invariant” on the
regions D ∈ R as shown in the following proposition.
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Proposition 3.2. Let A ∈ R◦ and Γ ∈ Λ(A). There exists a unique triple (x1, x2, x3) ∈ Z3 such that

ã(Γ) = x1a+ x2b+ x3c for all (a, b, c) ∈ A.

Furthermore, if D ∈ R is such that D ⊆ A, then for all Γ′ ∈ Λ(D) such that Γ ⊆ Γ′ we have

ã(Γ′) = x1a+ x2b+ x3c for all (a, b, c) ∈ D.

Proof. This can deduced from the values of the a-function in dihedral groups: see, for example, [11, Table 1].

Since the values of ã-function will play a crucial role in the reminder of the paper, we record these values in the table
below.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Γ0 2a+ 2b 2a+ 2b 2a+ 2b 2a + 2b 2a+ 2b 2a+ 2b 2a+ 2b 2a+ 2b 2a + 2b 2a+ 2b
Γ1 a b+ c b+ c b+ c b+ c −a+ 2b −a+ 2b −a+ 2b −a + 2b −a+ 2b
Γ2 2a − c 2a − c 2a − c b b 2a− c b b b b

Γ3 2a+ 2c 2a+ 2c 2a+ 2c 2a + 2c 2a+ 2c 2a + 2c 2a+ 2c 2a + 2c b+ c b+ c

Γ4 0 0 0 0 0 0 0 0 0 0
Γ5 c c c c −a+ 2c c c −a+ 2c c −a+ 2c
Γ6 b b −a+ 2b −a+ 2b −a+ 2b − − − − −

Γ7 − − − 2a− c a − 2a − c a 2a− c a

Γ8 − − − − − − − − 2a + 2c 2a+ 2c
Γ9 b+ c − − − − − − − − −

Γ10 − a b − − b − − − −

Γ11 − − − − − b+ c b+ c b+ c − −

Γ12 2a − b 2a− b a a c a a c a c

Tab. 2: The values of ã(Γi) for (b/a, c/a) ∈ Aj

Table 2 only lists the values of ã(Γk) for (a, b, c) such that (r1, r2) ∈ Ai for some 1 ≤ i ≤ 10. The remaining cases can
also be computed using Proposition 3.2. However we now explain another method to deduce these values (essentially
due to semicontinuity).

• Firstly, if r2 > r1 then ã(Γk(a, b, c)) = ã(Γk(a, c, b)).

• Secondly, suppose that (r1, r2) ∈ D and 1 ≤ k ≤ 13. Let A ∈ RD and let Γ ∈ Λ(A) be such that Γ ⊆ Γk. Then

ã(Γk(a, b, c)) = lim
(a′,b′,c′)→(a,b,c)

(b′/a′,c′/a′)∈A

ã(Γ(a′, b′, c′))

Thus, for example, to compute ã(Γ2) in the equal parameter case (r1, r2) = (1, 1) we choose any A ∈ RP2 (for example,
A = A2) and any cell Γ ∈ Λ(A) with Γ ⊆ Γ2(1, 1) (for example, Γ ∈ {Γ2(A2),Γ5(A2),Γ6(A2),Γ10(A2),Γ12(A2)}) and
take the limit as (a, b, c) → (a, a, a) in the associated ã(Γ) value from Table 2. Thus we conclude that ã(Γ2(1, 1)) = a.

4 Representations of H

Let (W,S) be the Coxeter group of type C̃2 and let L : W → N be a positive weight function. In this section we
construct representations of H that will ultimately be used to produce a balanced system of cell representations for each
parameter regime. In fact it is convenient to define representations of the generic Hecke algebra Hg of type C̃2, from
which representations of H are obtained by the specialisation ΘL. In what follows we will use the same notations (eg,
πi) for the representations of Hg and H.

4.1 The diagram automorphism

Let σ be the nontrivial diagram automorphism of (W,S). Then σ induces a ring automorphism of Rg by swapping q0
and q2, and it is easy to check that the formula

(

∑

w∈W

awTw

)σ

=
∑

w∈W

aσwTwσ for aw ∈ Rg

defines an involutive automorphism of Hg.

Suppose that (π,M) be a right Hg-module over a ring S = Rg[ζ
±1
1 , . . . , ζ±1

n ], where ζ1, . . . , ζn are invertible pairwise
commuting indeterminants. The diagram automorphism σ of (W,S) gives rise to a “σ-dual” representation (πσ,M) of
Hg by

πσ(h) = π(hσ)σ,

where the outer σ is the homomorphism of EndS(M) induced by σ.

This construction will allow us to concentrate on the case c ≤ b for much of what follows, with the c > b case dealt with
by replacing each representation with its σ-dual.



4 Representations of H 16

4.2 The principal series representation

Let ζ1 and ζ2 be commuting indeterminants, and let M0 be the 1-dimensional right Rg[Q] module over the ring
Rg[ζ1, ζ2, ζ

−1
1 , ζ−1

2 ] with generator ξ0 and Rg[Q]-action given by linearly extending

ξ0 ·Xµ = ξ0 ζ
µ where ζµ = ζm1 ζ

n
2 if µ = mα∨

1 + nα∨
2 /2.

Let (π0,M0) be the induced right Hg-module. That is,

M0 = Ind
Hg

Rg [Q]
(M0) =M0 ⊗Rg [Q] Hg.

We sometimes write π0 = πζ
0 when the dependence on ζ = (ζ1, ζ2) requires emphasis.

Note that {ξ0 ⊗Xu | u ∈ W0} is a basis of M0. More generally, if B is a fundamental domain for the action of Q on W
then it is clear that

B = {ξ0 ⊗Xu | u ∈ B}
is a basis of M0. We will often write π0(Tw;B) in place of π0(Tw;B), even though strictly speaking B is not a basis of
M0 (c.f. notation in Section 1.5).

We have the following important alcove path interpretation of the matrix coefficients [π0(Tw;B)]u,v, as in [11].

Theorem 4.1. Let B be a fundamental domain for the action of Q on W . For u, v ∈ B we have

[π0(Tw;B)]u,v =
∑

{p∈P(~w,u)|θB(p)=v}

Q(p)ζwtB(p), where Q(p) =
2
∏

j=0

(qj − q
−1
j )fj(p)

and where ~w is any reduced expression for w.

For example, the matrices for π0(T0) with respect to the “standard basis” B =W0 and Lusztig’s “box basis” B = B0 are

π0(T0;W0) =

















0 0 0 0 0 ζ1ζ2 0 0
0 0 0 0 ζ2 0 0 0
0 0 0 0 0 0 0 ζ1ζ2
0 0 0 0 0 0 ζ2 0

0 ζ−1
2 0 0 Q0 0 0 0

ζ−1
1 ζ−1

2 0 0 0 0 Q0 0 0

0 0 0 ζ−1
2 0 0 Q0 0

0 0 ζ−1
1 ζ−1

2 0 0 0 0 Q0

















and π0(T0;B0) =









0 1 0 0 0 0 0 0
1 Q0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 Q0 0 0 0
0 0 0 1 0 Q0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 Q0









,

where we order W0 = (e, 1, 2, 12, 21, 121, 212, 1212) and B0 = (e, 0, 01, 012, 010, 0102, 01021, 010210).

Remark 4.2. Suppose that q0 = q2. The representation π0 can be extended to the extended affine Hecke algebra H̃g

as follows. Introduce an indeterminant ζ
1/2
1 with (ζ

1/2
1 )2 = ζ1. Let M0 be the 1-dimensional right Rg[P ] module with

ξ0 ·Xµ = ξ0 ζ
µ, where if µ = mα∨

1 /2+nα
∨
2 /2 then ζµ = (ζ

1/2
1 )mζn2 . Let (π0,M0) be the induced right H̃g module. Then

the restriction of π0 to Hg agrees with the representation defined above.

4.3 Induced representations

Let Hi (i = 1, 2) be the subalgebra of Hg generated by Ti, X1 and X2. Let ζ be an invertible indeterminant. Let M1 be
the 1-dimensional (right) H1-module over the ring Rg[ζ, ζ

−1] generated by ξ1 with

ξ1 · T1 = ξ1(−q
−1
1 ) ξ1 ·X1 = ξ1(q

−2
1 ) ξ1 ·X2 = ξ1(−q1ζ),

and for j ∈ {2, 3} let Mj be the 1-dimensional (right) H2-module over the ring Rg[ζ, ζ
−1] generated by ξj with

ξ2 · T2 = ξ2(−q
−1
2 ) ξ2 ·X1 = ξ2(q0q2ζ) ξ2 ·X2 = ξ2(q

−1
0 q

−1
2 )

ξ3 · T2 = ξ3(−q
−1
2 ) ξ3 ·X1 = ξ3(−q

−1
0 q2ζ) ξ3 ·X2 = ξ3(−q0q

−1
2 ).

One uses the formulae in Section 2.4 to check that the above formulae do indeed define representations of H1 and H2.

Let (πj ,Mj) with j = 1, 2, 3 be the representations M1 = Ind
Hg

H1
(M1) and Mj = Ind

Hg

H2
(Mj) for j = 2, 3. Then each

Mj is a 4-dimensional (right) Hg-module. Indeed {ξi ⊗Xu | u ∈W i
0} is a basis of Mi (where we set W 3

0 =W 2
0 ). More

generally, if B is a fundamental domain for the action of τi on Ui (see Section 2.3) then

B = {ξi ⊗Xu | u ∈ B}
is a basis of Mi.

If p is an i-folded alcove path we define

Qi(p) =











(−q−1
1 )g1(p)

∏3
j=0(qj − q−1

j )fj(p) if i = 1

(−q−1
2 )g2(p)(−q−1

0 )g0(p)
∏3

j=0(qj − q−1
j )fj(p) if i = 2

(−q−1
2 )g2(p)q

g0(p)
0

∏3
j=0(qj − q−1

j )fj(p) if i = 3.

(4.1)

We note that the action of τi on the set of i-folded alcove paths preserves Qi.

We have the following analogue of Theorem 4.1, giving a combinatorial formula for the matrix entries of πi(Tw;B)
(i = 1, 2, 3) in terms of i-folded alcove paths.
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Theorem 4.3. Let w ∈W , i ∈ {1, 2, 3}, and let B be a fundamental domain for the action of τi on Ui. Then

[πi(Tw;B)]u,v =
∑

{p∈Pi(~w,u)|θi
B
(p)=v}

Qi(p)ζ
wtiB(p),

where ~w is any choice of reduced expression for w.

Proof. The proof is by induction, exactly as in [11, Theorem 7.2, Corollary 7.3].

For example, using the “standard basis” B =W i
0 we have

π1(T0;W
1
0 ) =

( 0 0 ζ 0
0 0 0 ζ

ζ−1 0 Q0 0

0 ζ−1 0 Q0

)

π1(T1;W
1
0 ) =





−q
−1
1 0 0 0

0 Q1 1 0
0 1 0 0

0 0 0 −q
−1
1



 π1(T2;W
1
0 ) =

(

Q2 1 0 0
1 0 0 0
0 0 Q2 1
0 0 1 0

)

π2(T0;W
2
0 ) =





0 0 0 ζ

0 −q
−1
0 0 0

0 0 −q
−1
0 0

ζ−1 0 0 Q0



 π2(T1;W
2
0 ) =

(

Q1 1 0 0
1 0 0 0
0 0 Q1 1
0 0 1 0

)

π2(T2;W
2
0 ) =





−q
−1
2 0 0 0

0 Q2 1 0
0 1 0 0

0 0 0 −q
−1
2





π3(T0;W
2
0 ) =

(

0 0 0 ζ
0 q0 0 0
0 0 q0 0

ζ−1 0 0 Q0

)

π3(T1;W
2
0 ) =

(

Q1 1 0 0
1 0 0 0
0 0 Q1 1
0 0 1 0

)

π3(T2;W
2
0 ) =





−q
−1
2 0 0 0

0 Q2 1 0
0 1 0 0

0 0 0 −q
−1
2



 .

4.4 Square integrable representations

The representations in this section will play a role in the analysis of the finite cells. It turns out that they are also
“square integrable representations” (of certain natural C-algebra specialisations of Hg), although this fact will not be
particularly important in this paper.

Define 1-dimensional representations πi, 4 ≤ i ≤ 9, of Hg by

(π4(T0), π4(T1), π4(T2)) = (−q
−1
0 ,−q

−1
1 ,−q

−1
2 ) (π5(T0), π5(T1), π5(T2)) = (q0,−q

−1
1 ,−q

−1
2 )

(π6(T0), π6(T1), π6(T2)) = (−q
−1
0 ,−q

−1
1 , q2) (π7(T0), π7(T1), π7(T2)) = (−q

−1
0 , q1,−q

−1
2 )

(π8(T0), π8(T1), π8(T2)) = (q0, q1,−q
−1
2 ) (π9(T0), π9(T1), π9(T2)) = (q0,−q

−1
1 , q2)

We now define 3-dimensional representations π10 and π11. These representations were constructed as modules HΥ for
some right cell Υ, however since we now consider them as representations of the generic Hecke algebra Hg we will simply
provide explicit matrices, from which the defining relations are easily checked. In the case π10 we require two choices of
basis for our applications, and we write the resulting matrices as π10( · ;A) and π10( · ;B). In the case π11 we require three
choices of basis, and we write the resulting matrices as π11( · ;A), π11( · ;B), and π11( · ;C). The third case only occurs
for the specialised algebras with q0 = q1, and indeed the matrices provided for this case below only give a representation
of Hg under the specialisation q0 = q1.

π10(T0;A) =

(

−q
−1
0 0 0

1 q0 0

0 0 −q
−1
0

)

π10(T1;A) =

(

q1 µ0,1 µ1,2

0 −q
−1
1 0

0 0 −q
−1
1

)

π10(T2;A) =

(

−q
−1
2 0 0

0 −q
−1
2 0

1 0 q2

)

π10(T0;B) =

(

−q
−1
0 0 0

0 −q
−1
0 0

0 1 q0

)

π10(T1;B) =

(

−q
−1
1 0 0

1 q1 µ0,1

0 0 −q
−1
1

)

π10(T2;B) =

(

q2 µ1,2 0

0 −q
−1
2 0

0 0 −q
−1
2

)

π11(T0;A) =

(

q0 µ0,1 0

0 −q
−1
0 0

0 1 q0

)

π11(T1;A) =

(

−q
−1
1 0 0

1 q1 0

0 0 −q
−1
1

)

π11(T2;A) =

(

q2 µ1,2 ν

0 −q
−1
2 0

0 0 −q
−1
2

)

π11(T0;B) =

(

q0 0 0

0 −q
−1
0 0

0 1 q0

)

π11(T1;B) =

(

−q
−1
1 0 0

1 q1 µ0,1

0 0 −q
−1
1

)

π11(T2;B) =

(

q2 µ1,2 ν′

0 −q
−1
2 0

0 0 −q
−1
2

)

π11(T0;C) =

(

q1 1 0

0 −q
−1
1 0

0 1 q1

)

π11(T1;C) =

(

−q
−1
1 0 0

1 q1 1

0 0 −q
−1
1

)

π11(T2;C) =

(

q2 µ1,2 q21q
−1
2 +q

−2
1 q2

0 −q
−1
2 0

0 0 −q
−1
2

)

where µi,j = qiq
−1
j + q−1

i qj , and

ν = −q0q
−1
1 q

−1
2 + q0q1q

−1
2 + q

−1
0 q

−1
1 q2 − q

−1
0 q1q2, ν′ = q

−1
0 q1q

−1
2 + q0q1q

−1
2 + q

−1
0 q

−1
1 q2 + q0q

−1
1 q2.

Similarly we define a 2-dimensional representation π12, equipped with two choices of basis, by

π12(T0;A) =
(

−q
−1
0 0

1 q0

)

π12(T1;A) =
(

q1 µ0,1

0 −q
−1
1

)

π12(T2;A) =

(

−q
−1
2 0

0 −q
−1
2

)

π12(T0;B) =
(

q0 µ0,1

0 −q
−1
0

)

π12(T1;B) =
(

−q
−1
1 0

1 q1

)

π12(T2;B) =

(

−q
−1
2 0

0 −q
−1
2

)

.

We will some times write πA
i in place of πi( · ;A), and similarly for πB

i and πC
i .
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4.5 A generic version of axiom B1

The aim of this section is to show that the representations πi defined above “generically” satisfy B1 for the cell Γi. Our
first task is to define some specific elements in Hg that specialise to Kazhdan-Lusztig elements. As we have seen in
Example 1.1, this can easily be done when w is the longest element of some parabolic subgroup. In this section, we
extend this construction to all elements in the sets JΓ.

Let D ∈ R and w ∈ JΓ(D) where Γ ∈ Λ(D). Then either w is the longest element of some parabolic subgroup WI or it
is of the form w = sts where L(s) > L(t) for all weight functions L ∈ D. In the first case we set

C(w;D) =
∑

y∈WI

q
−1
w qyTy

and in the second case we set

C(w;D) = Tsts + q
−1
s (Tts + Tst) +

(

q
−1
s q

−1
t − q

−1
s qt

)

Ts + q
−2
s Tt +

(

q
−2
s q

−1
t − q

−2
s qt

)

Te.

Proposition 4.4. For all D ∈ R, Γ ∈ Λ(D) and w ∈ JΓ(D) we have

Θr1,r2(C(w;D)) = Cw for all (r1, r2) ∈ D.

Here, the element Cw on the right-hand side is computed with respect to the parameters (r1, r2).

Proof. This is a consequence of Example 2.12 in [6].

To D ∈ R and Γ ∈ Λ(D) we associate the set of representations RepD(Γ) of Hg defined by

RepD(Γ) = {πi | ∃A ∈ RD such that Γi ∈ Λ(A) and Γi ∩ Γ 6= ∅}.

Note that the condition Γi ∩ Γ 6= ∅ is equivalent to Γi ⊆ Γ by the semicontinuity conjecture.

Example 4.5. When D lies in R◦, we get RepD(Γi) = {πi}. Next assume that D = P2 (the equal parameter case) and
that Γ = Γ2(D). In this case we find that RepD(Γ2) = {π2, π5, π6, π7, π10, π12}.

We prove the following theorem by explicit computations, however we note that the conceptual reason why such a
result holds, at least for finite cells, is that the representations we constructed above are the natural cell modules of the
specialised Hecke algebras (c.f. Section 1.3).

Theorem 4.6. Let D ∈ R and let Γi,Γj ∈ Λ(D). We have

Γi 6≥LR Γj =⇒ π(C(w;D)) = 0 for all π ∈ RepD(Γj) and w ∈ JΓi
(D).

Proof. The representations πi, the cells, the two-sided order ≤LR and the sets JΓ(D) are known explicitly. The proof of
this theorem is therefore a matter of computations. Let us give some examples here. For all parameters in A1, . . . , A10,
the generating set of the lowest two-sided cell Γ0 is always {w0} and we have C(w0;D) =

∑

y∈W0
q−1
w qyTy. Next if πi is

such that i 6= 0 then we can find parameters (r1, r2) ∈ Aj such that Γ0 6≥LR Γi and so we should have

πi(C(w0;D)) = 0 for all i 6= 0.

This is easily checked using the matrices of the representations πi. Next let us look at the case A1 ∈ R◦. According to
the two-sided order given in Figure 5, we should have

• πi(C(w0;A1)) = 0 for all i ∈ {3, 2, 12, 1, 9, 5, 6, 4};
• πi(C(s1s0s1s0;A1)) = 0 for all i ∈ {2, 12, 1, 9, 5, 6, 4};
• πi(C(s1s0s1;A1)) = 0 for all i ∈ {12, 1, 9, 5, 6, 4};
• πi(C(s1s2s1;A1)) = 0 for all i ∈ {1, 9, 5, 6, 4};
• πi(C(s1;A1)) = 0 for all i ∈ {9, 5, 6, 4};
• πi(C(s2s0;A1)) = 0 for all i ∈ {5, 6, 4};
• π4(C(s2;A1)) = π4(C(s0;A1)) = 0

and this can again be easily verified.

From the properties (5) and (6) of the sets JΓ, we see that this theorem can be interpreted as a generic version of B1.
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5 Finite cells

In this section we construct balanced representations for each finite cell. Recall that constructing such a system requires
us to associate not only a representation to each two-sided cell, but also a distinguished basis of that representation.

Theorem 5.1. Each finite two-sided cell Γ admits a representation πΓ equipped with a basis B satisfying B1–B5 with
aπΓ = ã(Γ). Moreover, in all cases where the finite cell Γ admits a cell factorisation we have

cπΓ(w;B) = ±Euw,vw for all w ∈ Γ. (5.1)

Proof. For the moment exclude the cell Γ13 from consideration. For all other finite cells we take πΓ to be the cell module
HΥ where Υ is any right cell contained in Γ, equipped with the natural Kazhdan-Lusztig basis. The matrices for πΓ have
been computed using the CHEVIE package [8, 17] in GAP3 [21]. For 4 ≤ i ≤ 9 we have πΓi

= πi (these representations
are 1-dimensional, and hence have unique representing matrices). For i ∈ {10, 11, 12} we have the following explicit
matrices:

πΓ10 =

{

πA
10 if (r1, r2) ∈ A2 ∪A2,2′

πB
10 if (r1, r2) ∈ A3 ∪A6 ∪ A3,6

πΓ11 =











πA
11 if (r1, r2) ∈ A8

πB
11 if (r1, r2) ∈ A6 ∪A7 ∪A6,7

πC
11 if (r1, r2) ∈ A7,8

πΓ12 =

{

πA
12 if (r1, r2) ∈ X

πB
12 if (r1, r2) ∈ Y

where X = {(r1, r2) ∈ R2
>0 | r2 < r1, r2 < 1, r1 6= 1} and Y = {(r1, r2) ∈ R2

>0 | r2 < r1, r2 > 1} (note that if
(r1, r2) ∈ A7,8 then c = a and hence πC

11 is indeed a representation). It is then immediate that B1 is satisfied. However
we note that B1 also follows from Theorem 4.6 (without needing to know that the representations above are the cell
modules).

Next we claim that B2 and B3 hold, with aΓ = ã(Γ) (with the latter in Table 2). The basic approach is as follows.
By B1 we know that πi(Cw) = 0 whenever w /∈ (Γi)≥LR. Thus it is sufficient to look at those w with w ∈ (Γi)≥LR,
and by Remark 1.6 we can work with the matrices πi(Tw) instead of πi(Cw). We use the Hasse diagrams in Figure 5
to compute the set (Γi)≥LR. In the case that (Γi)≥LR is a union of finite cells (and hence is a finite set) we verify
B2 and B3 directly by computing the matrices πi(Tw) for each w ∈ (Γi)≥LR. For example, consider the case Γ10 with
(r1, r2) ∈ A3 ∪A6 ∪ A3,6. Then Γ≥LR = Γ4 ∪ Γ5 ∪ Γ12 ∪ Γ10, and by computing matrices we have

max{deg[πB
10(Tw)]i,j | 1 ≤ i, j ≤ 3}} =



















0 if w ∈ Γ4

c if w ∈ Γ5

a if w ∈ Γ12

b if w ∈ Γ10.

Since a < b and c < b whenever (r1, r2) ∈ A3 ∪A6 ∪A3,6 the axioms B3 and B4 follow. The case (r1, r2) ∈ A2 ∪A2,2′ is
similar.

More interestingly, sometimes (Γi)≥LR contains an infinite cell. These cases are outlined below (we note that this
situation did not occur in type G̃2; see [11]).

1) Let Γ = Γ5(r1, r2). Then Γ≥LR contains the infinite cell Γ2 in the case (r1, r2) ∈ A5,5′ . The elements of Γ2 are
{u−10(1210)kv | u, v ∈ {e, 1}, k ≥ 0} ∪ {u−12(1012)kv | u, v ∈ {e, 1}, k ≥ 0}. For (r1, r2) ∈ A5,5′ we have b = c
and c > a, and thus if u, v ∈ {e, 1} we have

deg π5(u
−12(1012)kv) = deg π5(u

−10(1210)kv) ≤ c− 2ak − bk + ck = c− 2ak < c.

Thus deg π5(Tw) < c < 2c− a = ãΓ5 for all w ∈ Γ2. The analysis for the cells Γi with 6 ≤ i ≤ 9 is similar.

2) Let Γ = Γ11(r1, r2). Then Γ≥LR contains the infinite cell Γ2 in the cases (r1, r2) ∈ A7 ∪ A8 ∪ A6,7 ∪ A7,8. In
the regime (r1, r2) ∈ A7 ∪ A8 ∪ A7,8 the cell Γ2(r1, r2) admits a cell factorisation with BΓ2 = {e, 1, 10, 101},
t2 = tΓ2 = 1012 and w2 = wΓ2 = 2. If (r1, r2) ∈ A6,7 we have Γ2(r1, r2) = Γ2(A7) ∪ {101}, and so we can use the
cell factorisation in A7 do describe all but one element of Γ2.

Let us consider one case in detail (the remaining cases are similar). Suppose that (r1, r2) ∈ A7,8 (thus c = a and
2a < b < 3a). Let z = q4a−2b. By diagonalising πC

11(t2) we obtain

πC
11(t

n
2 ) = (−1)nq(−3a+b)n

(

−zφn−1(z) −q3a−2bφn(z) −q2a−2bφn(z)

0 q(−4a+2b)n 0

q2aφn(z) qaφn(z) φn+1(z)

)

where φn(z) =
1− zn

1− z
,

with φ−1(z) = −z−1. Since 4a − 2b < 0 for (r1, r2) ∈ A7,8 we have

φn(z) = 1 + z + · · ·+ zn−1 ∈ Z[q−1] for n ≥ 0.

It is then a straightforward (although somewhat tedious) exercise to show that the degrees of the matrix entries
of πC

11(w) are strictly bounded by a+ b for all elements w = u−1w2t
n
2 v ∈ Γ2.
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3) Let Γ = Γ12(r1, r2). Then Γ≥LR contains the infinite cell Γ1 in the case (r1, r2) ∈ A1. For (r1, r2) ∈ A1 the cell Γ1

admits a cell factorisation with BΓ1 = {e, 0, 2, 02}, t1 = tΓ1 = 021, and w1 = wΓ1 = 1. We compute

πA
12(w1t

2n
1 ) = (−1)nq−2nb

(

qa µ0,1

0 −q−a

)

and πA
12(w1t

2n+1
1 ) = (−1)nq−(2n+1)b

(

−qc 0

1 q−c

)

.

It is then easy to compute πA
12(Tw) for all w = u−1w1t

n
1 v with n ∈ N and u, v ∈ BΓ1 , and the result follows.

Thus B1, B2, and B3 hold for all cells Γi with 4 ≤ i ≤ 12. Moreover, these cells admit cell factorisations, and the
leading matrices are easily computed directly, verifying that (5.1) holds. For the cells Γi with 4 ≤ i ≤ 9 the sign in (5.1)
is easily computed (since the associated representations are 1-dimensional). In the remaining cases we have the + sign
except for the case π12 with (r1, r2) ∈ A1 ∪A2 ∪A1,2 in which case we have the − sign.

It is thus clear, from (5.1), that B4 holds. To verify B5 for the cell Γ = Γi we note that if w = u−1wΓv then

cπΓ(u
−1

wΓu)cπΓ(w) = ±Eu,uEu,v = ±Eu,v = ±cπΓ(w).

This completes the analysis for the finite cells Γi with 4 ≤ i ≤ 12.

We now consider the remaining cell Γ = Γ13. This cell appears for (r1, r2) ∈ A2,3 ∪A4,5 ∪A7,8 ∪A9,10 ∪P4 ∪P5. We first
consider the cases (r1, r2) ∈ A4,5 ∪ A7,8 ∪ A9,10 ∪ P4 ∪ P5 (these are precisely the parameters with r2 ≤ r1 and r2 = 1).
In these cases Γ13 = Υ1 ∪Υ2 is a union of two right cells Υ1 = {0, 01, 010} and Υ2 = {1, 10, 101}. Let

πΓ = π5 ⊕ π7 ⊕ πB
12.

By Theorem 4.6, we can see that πΓ satisfies B1.

Next we note that B2 and B3, with aπΓ = a, hold by an easy direct calculation (note that Γ≥LR = Γ4 ∪ Γ13 is finite).
Moreover the leading matrices are computed directly as

cπΓ(0) = E11 +E33 cπΓ(01) = 2E34 cπΓ(010) = −E11 +E33

cπΓ(1) = E22 +E44 cπΓ(10) = E43 cπΓ(101) = −E22 +E44,

and hence B4 holds. Let d1, d2 ∈ Γ13 be the elements d1 = 0 and d2 = 1 (these turn out to be the Duflo involutions; see
Theorem 7.8). Then the formulae above give

cπΓ(di)cπΓ(w) = cπΓ (w) for all w ∈ Υi, i ∈ {1, 2},

and hence B5 holds.

Finally consider (r1, r2) ∈ A2,3. In this case Γ = Υ1 ∪ Υ2 ∪ Υ3 is a union of right cells Υ1 = {1, 10, 12, 121, 1210},
Υ2 = {2, 21, 212, 210}, and Υ3 = {01, 010, 012, 0121, 01210}. Let

πΓ = π6 ⊕ πA
12 ⊕ πB

10.

Once again, Theorem 4.6 yields that πΓ satisfies B1. Moreover B2 and B3 hold by direct calculation with aπΓ = a, and
the leading matrices are computed as

cπΓ(1) = E22 + E55 cπΓ(10) = E23 +E56 cπΓ(12) = E54 cπΓ(121) = −E22 + E55

cπΓ(1210) = −E23 + E56 cπΓ(2) = E11 +E44 cπΓ(21) = 2E45 cπΓ(212) = −E11 + E44

cπΓ(210) = 2E46 cπΓ(01) = E32 +E65 cπΓ(010) = E33 + E66 cπΓ(012) = E64

cπΓ(0121) = −E32 + E65 cπΓ(01210) = −E33 + E66

and B4 follows. Let d1 = 1, d2 = 2, and d3 = 01 (again, these turn out to be the Duflo involutions; see Theorem 7.8).
Then the formulae above give

c(di)c(w) = c(w) for all w ∈ Υi, i ∈ {1, 2, 3}

and hence B5 holds, completing the proof.

6 Infinite cells

In this section we construct balanced representations for the infinite cells Γi with i ∈ {0, 1, 2, 3} for all choices of
parameters. The results of this section, along with Theorem 5.1, give the following:

Theorem 6.1. For each choice of parameters (a, b, c) ∈ Z3
>0 there exists a balanced system of cell representations (πΓ)Γ∈Λ

for H with bounds aπΓ = ã(Γ).

Proof. By Theorem 5.1 and Theorems 6.4, 6.5, 6.15, 6.16, 6.17, 6.21 and 6.22 below we have a system (πΓ)Γ∈Λ for
each parameter range satisfying B1–B5 with aπΓ = ã(Γ). Then B6 follows from the fact that ã(Γ′) ≥ ã(Γ) whenever
Γ′ ≤LR Γ (see Table 2).

Thus, combined with Theorem 1.7 we can compute Lusztig’s a-function. In fact, we have:
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Corollary 6.2. Table 2 (and the discussion immediately following the table) gives the values of Lusztig’s a-function for
all choices of parameters. Moreover, the conjectures P4, P9, P10, P11, and P12 hold.

Proof. It follows from Theorems 1.7 and 6.1 that Lusztig’s a-function is given by Table 2. Conjectures P4, P9, P10,
P11 and P12 are then easily checked using the explicit values of the a-function. In fact, due to the logical dependencies
amongst the conjectures established in [15, Chapter 14] it is sufficient to prove P4, P10, and P12, which are obvious
from the explicit values of the a-function and the explicit decomposition of W into right cells given in Figure 5. Then
P10 ⇒ P9 and P4+P9+P10 ⇒ P11.

Of course it remains to exhibit balanced systems for the infinite cells. We undertake this rather intricate task in the
present section. Let us begin by noting the following immediate consequence of Theorem 4.6.

Corollary 6.3. Let i ∈ {0, 1, 2, 3}. The representation πi satisfies B1 for the cell Γi.

6.1 The lowest two-sided cell

Suppose first that c 6= b. It is sufficient to consider the case c < b, for if c > b one can apply the diagram automorphism σ.
In the case c < b the lowest two-sided cell Γ0 admits a cell factorisation

Γ0 = {u−1
w0tλv | u, v ∈ B0, λ ∈ Q+} where B0 = {e, 0, 01, 012, 010, 0102, 01021, 010210},

and if w = u−1w0tλv is written in this form we define uw = u, vw = v, and τw = λ.

Since B0 is a fundamental domain for the action of Q on W the set B0 = {ξ0 ⊗Xu | u ∈ B0} is a basis of M0. The proof
of the following theorem is very similar to [11, Section 6] with only some minor adjustments, and so we will only sketch
the argument.

Theorem 6.4. Let c < b. The representation π0, equipped with the basis B0 = {ξ0 ⊗Xu | u ∈ B0}, satisfies B1–B5 for
the lowest two-sided cell Γ0, with aπ0 = 2a+ 2b. Moreover, the leading matrices of π0 are

cπ0(w;B0) = sτw (ζ)Euw,vw for w ∈ Γ0,

where sλ(ζ) is the Schur function defined in (2.2).

Proof. We have already verified B1 in Corollary 6.3. To verify B2 we note that degQ(p) ≤ max{2a + 2b, 2a + 2c} for
all positively folded alcove paths, and so for c < b we have degQ(p) ≤ 2a + 2b (see [11, Lemma 6.2]). Thus B2 follows
from Theorem 4.1.

Axiom B3 is verified as in [11, Theorem 6.6], with one additional ingredient: If deg(Q(p)) = 2a+ 2b then necessarily p
has no folds on type 0-walls (for otherwise the degree is bounded by 2a+ b+ c < 2a+ 2b). The only simple hyperplane
direction available in the “box” B0 is a type 0-wall, and thus if p is a maximal path of type u−1w0tλv with u, v ∈ B0 then
by the above observation there is no fold on this wall in the final v-part of the path (see [11, Remark 6.4]). With this
observation in hand the proof of [11, Theorem 6.6] applies verbatim, including the calculation of the leading matrices.
Linear independence of the Schur functions gives B4, and to verify B5 we note that if w ∈ Γ0 then

cπ0(u
−1
w w0uw;B0)cπ0(w;B0) = s0(ζ)sτw (ζ)Euw,uwEuw,vw = sτw (ζ)Euw,vw = cπ0(w;B0),

and the proof is complete.

Now suppose that b = c. In this case we will work in the extended affine Weyl group W̃ and the extended affine Hecke
algebra H̃. See Remark 4.2 for the definition of the principal series representation (π0,M0) in this case.

Let B1/2 = {e, 0, 01, 012} be the “half box”. Each element w ∈ W of the (non-extended) affine Weyl group can be written
uniquely as

w = tλv with either λ ∈ Q and v ∈ B1/2, or with λ ∈ P\Q and v ∈ B1/2σ. (6.1)

We will work with the basis

B0 = {ξ0 ⊗Xu | u ∈ B1/2 ∪ B1/2σ}

of the module M0. Then, as in Theorem 4.1, with respect to this basis we have

[π0(Tw;B0)]u,v =
∑

{p∈P(~w,u)|θ(p)=v}

Q(p)ζwt(p), (6.2)

where, if w = tλv as in (6.1), then wt(w) = λ and θ(w) = v.

We have the following generalised cell factorisation: Each w ∈ Γ0 has a unique expression as

w = u−1
w0tλv with u, v ∈ B1/2 ∪ B1/2σ and λ ∈ P+. (6.3)

If w ∈ Γ0 is written in the form (6.3) then we define uw = u, vw = v, and τw = λ.
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Theorem 6.5. Let c = b. The representation π0, equipped with the basis B0, satisfies B1–B5 for the lowest two-sided
cell Γ0, with aπ0 = 2a+ 2b. Moreover, the leading matrices of π0 are

cπ0(w;B0) = s
′
τw (ζ)Euw,vw for w ∈ Γ0,

where s′λ(ζ) is the Schur function defined in (2.3).

Proof. The proof is again very similar to [11, Theorem 6.6]. The choice of “box” B′
0 = B1/2 ∪B1/2σ again implies that if

p is a maximal path of type u−1w0tλv with u, v ∈ B′
0 then there are no folds in the final v-part of the path. Moreover, a

slight generalisation of [11, Theorem 3.4] gives

s
′
λ(X) =

∑

p∈P( ~w0·~tλ,e)

Xwt(p) for λ ∈ P+,

and the proof of [11, Theorem 6.6] now applies verbatim.

6.2 Slices of the induced representations and folding tables

In the following sections we analyse the remaining infinite cells Γi with i ∈ {1, 2, 3}. The basic idea is to use the
combinatorial description of the matrix entries from Theorem 4.3 to show that the representation πi is balanced for the
cell Γi. Thus we are primarily interested in the i-folded alcove paths that attain the maximal value of deg(Qi(p)), as
these are the terms that contribute to the leading matrices. However the situation is complicated by the large number
of distinct parameter regimes for the cells Γi as the i-folded alcove paths that attain the maximal value of deg(Qi(p))
vary with the parameter regimes.

Therefore it is desirable to be able to work with all parameter regimes simultaneously. To achieve this we work in the
generic Hecke algebra Hg. In this setting the degree of the multivariate polynomial Qi(p) (see (4.1)) is too crude for our
purposes, and so we introduce a more refined statistic, which we call the exponent of Qi(p), defined as follows. Firstly, if
x = (x, y, z) ∈ Z3 then the exponent of the monomial qx := qx1q

y
2q

z
0 is exp(qx) = (x, y, z) ∈ Z3. Let � denote the partial

order on Z3 with (x′, y′, z′) � (x, y, z) if and only if x− x′ ≥ 0, y − y′ ≥ 0, and z − z′ ≥ 0.

Definition 6.6. Let p be an i-folded alcove path. Then Qi(p) has a unique monomial with exponent maximal with
respect to �. We denote this maximal exponent by exp(Qi(p)). Explicitly,

exp(Qi(p)) =











(f1(p)− g1(p), f2(p), f0(p)) if i = 1

(f1(p), f2(p)− g2(p), f0(p)− g0(p)) if i = 2

(f1(p), f2(p)− g2(p), f0(p) + g0(p)) if i = 3.

Note that if exp(Qi(p)) = (x, y, z) then on specialising q0 → qc, q1 → qa, q2 → qb we have

deg(Qi(p)) = xa+ yb+ zc. (6.4)

Definition 6.7. Let B be a fundamental domain for the action of τi on Ui. Let

E(πi;B) = {x ∈ Z
3 | qx appears with nonzero coefficient in some matrix entry of πi(Tw;B) for some w ∈ W},

where B = {ξi ⊗Xu | u ∈ B} is the basis of Mi associated to B.

Lemma 6.8. If B and B′ are fundamental domains for the action of τi on Ui then E(πi;B) = E(πi;B
′).

Proof. We may write each u ∈ B as u = τki u
′ for some k ∈ Z and u′ ∈ B′. We claim that

ξi ⊗Xu = (ξi ⊗Xu′)ζk.

Consider the case i = 2, 3. Then by (2.1) we have Xu = Xkω1Xu′ , and the result follows since ξi ·Xω1 = ξi ζ for i = 2, 3.
If i = 1 then we have Xu = Xk

τ1Xu′ (this follows from the fact that τ1 preserves the orientation of all hyperplanes except
for the hyperplanes in the α1 parallelism class, and that this class is not encountered in U1). Since

ξ1 ·Xτ1 = ξ1 ·Xω1T−1
1 = ξ1 (−q

−1
1 ζ)(−q1) = ξ1 ζ

the claim follows.

Thus the change of basis matrix from the B basis to the B′ basis is a monomial matrix with entries in Z[ζ], and the
lemma follows.

Thus we can define
E(πi) = E(πi;B) for any fundamental domain B.

We will show below (in the course of the proof of Theorem 6.18) that the elements of E(πi) are bounded above in each
component – we will assume this fact for the moment. Let

M(πi) = {maximal elements of the partially ordered set (E(πi),�)}.
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Definition 6.9. Let B be a fundamental domain for the action of τi on Ui. For x = (x, y, z) ∈ Z3 the x-slice of πi(Tw;B)
is the matrix cxπi

(w;B) whose (u, v)th entry is the coefficient of qx in [πi(Tw;B)]u,v. Thus cxπi
(w;B) is a matrix with

entries in Z[ζ, ζ−1].

The following key theorem shows that the slices cxπi
(w;B) with x ∈ M(πi) are sufficient to compute leading matrices in

all parameter ranges.

Theorem 6.10. Let (a, b, c) be a fixed choice of parameters, and suppose that property B2 holds for πi(·,B) with
bound aπi

. Suppose that xa+ yb+ zc ≤ aπi
for all (x, y, z) ∈ M(πi). Then

cπi
(w;B) =

∑

c
x

πi
(w;B),

where the sum is over those x = (x, y, z) ∈ M(πi) with xa+ yb+ zc = aπi
.

Proof. By Theorem 4.3 the entry [cπi
(w;B)]u,v of the leading matrix cπi

(w;B) is given as a sum over paths p ∈ Pi(~w;u)
with deg(Qi(p)) = aπi

. Thus it suffices to show that if exp(Qi(p)) /∈ M(πi) then, after specialising, deg(Qi(p)) < aπi
.

Suppose that p is an i-folded alcove path with exp(Qi(p)) = (x, y, z) /∈ M(πi). Hence there is an i-folded alcove path p′

with (x, y, z) ≺ (x′, y′, z′) = exp(Qi(p
′)) ∈ M(πi). Thus x′ − x, y′ − y and z′ − z are all nonnegative with at least one

being strictly positive. Thus (x′ − x)a+ (y′ − y)b+ (z′ − z)c > 0, and so by (6.4) we have, after specialising,

deg(Qi(p)) = xa+ yb+ zc < x′a+ y′b+ z′c ≤ aπi
,

and hence the result.

Thus our approach in the following sections is to compute M(πi) and the slices corresponding to these maximal exponents.
In fact, the cell Γ2 turns out to be the most complicated, in part due the intricate equal parameter regime. Thus we
give complete details for Γ2, and we will only state the results for the easier cells Γ1 and Γ3.

Remark 6.11. The hypothesis xa + yb + zc ≤ aπi
for all (x, y, z) ∈ M(πi) in Theorem 6.10 is required because it is

a priori possible that there exists and i-folded alcove path p with exp(Qi(p)) = (x, y, z) and xa + yb + zc > aπi
. The

leading contributions from all such paths in Theorem 4.3 must cancel (after specialisation) for otherwise B2 is violated.
While indeed cancellations can (and do) occur, it turns out that the condition xa+ yb+ zc > aπi

in fact never occurs.
We will see this in the course of the calculations in the following sections.

We will use “folding tables” to analyse i-folded alcove paths (i ∈ {1, 2, 3}). We give a brief outline below, and we
refer to [11, §7.2] for further details. Let v ∈ W i

0 and x ∈ W with reduced expression ~x = si1 . . . sin . We denote by
p(~x, v) ∈ Pi(~x, v) the unique i-folded alcove path of type ~x starting at v with no folds. Of course p(~x, v) may still have
bounces, because i-folded alcove paths are required to say in the strip Ui. Nonetheless, we refer to p(~x, v) as the straight
path of type ~x starting at v. Let

I−(~x, v) = {k ∈ {1, . . . , n} | p(~x, v) makes a negative crossing at the kth step}
I+(~x, v) = {k ∈ {1, . . . , n} | p(~x, v) makes a positive crossing at the kth step}
I ∗(~x, v) = {k ∈ {1, . . . , n} | p(~x, v) bounces at the kth step}.

Note that I− ∪ I+ ∪ I∗ = {1, . . . , n}. We define a function

ϕv
~x : I−(~x, v) →W i

0 × Z

as follows. For k ∈ I−(~x, v) let pk be the i-folded alcove path obtained from the straight path p0 = p(~x, v) by folding at
the kth step (note that after performing this fold one may need to include bounces at places where the folded path pk
attempts to exit the strip Ui). Let

ϕv
~x(k) = the unique (u, n) ∈W i

0 × Z such that p(~x, τni u) and pk agree after the kth step.

Equivalently, (u, n) is the unique pair such that end(p(~x, τni u)) = end(pk), and thus τni u is simply the end of the straight
alcove path p(rev(~x), end(pk)), where rev(~x) is the expression ~x read backwards.

Definition 6.12 (Folding tables, see [11]). Fix the enumeration y1, y2, y3, y4 of W i
0 with ℓ(yj) = j − 1 for j = 1, . . . , 4.

For each (j, k) with 1 ≤ j ≤ 4 and 1 ≤ k ≤ ℓ(x) define fj,k(~x) ∈ {−, ∗, 1, 2, 3, 4} by

fj,k(~x) =











− if k ∈ I+(~x, yj)

∗ if k ∈ I ∗(~x, yj)

j′ if k ∈ I−(~x, yj) and ϕ
yj
~x = (yj′ , n) for some n ∈ Z.

The i-folding table of ~x is the 4× ℓ(x) array Fi(~x) with (j, k)th entry equal to fj,k(~x).

Remark 6.13. If ~y is a prefix of ~y then Fi(~y) is the subarray of F(~x) consisting of the first ℓ(y) columns. Also note that
of course any other enumeration of W i

0 can be used in the definition.
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Example 6.14. Let ti = tωi
for i = 1, 2. The 2-folding tables for the elements ~t1 = 0121 and ~t2 = 010212 are shown in

Table 3, where the rows are indexed by W 2
0 in the order e, 1, 12, 121, and the ~t2 table excludes the final column. Note that

we have appended a 0-row and 0-column to the table for convenience. The 0-row is called the “header” of the table. The
folding tables for the elements v ∈ B0 are also given by these tables, because the reduced expressions for the elements of
B0 are the strict prefixes of ~t2, along with 010210 (which is given in the ~t2 table by removing the penultimate column),
along with 012 (which is a subexpression of ~t1).

0 1 2 1

1 − − − −

2 ∗ − ∗ 1

3 ∗ 1 ∗ −

4 1 2 1 3

(a) ~t1 = 0121

0 1 0 2 1 2 0

1 − − ∗ − − ∗ −

2 ∗ − − ∗ − − ∗

3 ∗ 1 2 ∗ 1 2 ∗

4 1 2 ∗ 1 2 ∗ 1

(b) ~t2 = 010212 and ~b0 = 010210

Tab. 3: 2-folding tables

The folding table Fi(~w) can be used to compute Qi(p) for all p ∈ Pi(~w, u) with u ∈ W i
0 as follows (see [11] for more

details). We begin an excursion through the table Fi(~w) starting at the first cell on row ℓ(u) + 1 (the row corresponding
to u ∈ W i

0) with a counter Z starting at Z = 1. At each step we move to a cell strictly to the right of the current cell
and modify Z according to the following rules. Suppose we are currently at the N th cell of row r, and this cell contains
the symbol x ∈ {−, ∗, 1, 2, 3, 4}. Let j ∈ {0, 1, 2} denote the header entry of the N th column.

1) If x = − then we move to the (N + 1)st cell of row r and Z remains unchanged.

2) If x = ∗ then we move to the (N + 1)st cell of row r and replace Z by Z′ where

Z′ =

{

Z × (−q−1
j ) if either i ∈ {1, 2}, or if i = 3 and j = 2

Z × q0 if i = 3 and j = 0.

3) If x = k ∈ {1, 2, 3, 4} then we have two options:

(a) we can move to the (N + 1)st cell of row r and leave Z unchanged, or

(b) we can move to the (N + 1)st cell of row k and replace Z by Z × (qj − q−1
j ).

The set of all such excursions through the table is naturally in bijection with the set of i-folded alcove paths Pi(~w, u),
and the final value of the counter Z at the end of the excursion is Qi(p). Moreover, the final exiting row gives the value
of θi(p). It may help to note that cases (1), (2), (3)(a) and (3)(b) correspond to a positive crossing, bounce, negative
crossing, and fold respectively.

Suppose that ~w = ~tmω1
·~tnω2

where m,n ∈ N, and let u ∈W i
0 . Then Fi(~w) is the concatenation of m copies of the i-folding

table of ~tω1 followed by n copies of the i-folding table of ~tω2 (for this observation to hold it is important that tω1 and
tω2 are translations). Thus the process described above may be regarded as “m passes through the ~tω1 table, followed
by n passes through the ~tω2 table” in an obvious way.

6.3 The cell Γ2

The cell Γ2 is stable on each of the following regions:

R1 = {(r1, r2) ∈ Q
2
>0 | r2 < r1, r2 < 2− r1} R2 = {(r1, r2) ∈ Q

2
>0 | r2 < r1, r2 > 2− r1}

R3 = R1,2 = {(r1, r2) ∈ Q
2
>0 | r2 < r1, r2 = 2− r1} R4 = R1,1′ = {(r1, r2) ∈ Q

2
>0 | r2 = r1, r2 < 2− r1}

R5 = R2,2′ = {(r1, r2) ∈ Q
2
>0 | r2 = r1, r2 > 2− r1} R6 = P2 = {(r1, r2) ∈ Q

2
>0 | r2 = r1, r2 = 2− r1}.

To explain this notation, notice that R1 and R2 are open regions, and R1,2 is the boarder between these regions. Moreover,
R1,1′ is the boarder between the regions R1 and R1′ , where Rj′ denotes the σ-dual of Rj . Similarly R2,2′ if the boarder
between the regions R2 and R2′ .

We begin by describing the cell Γ2 in each of the above regions and setting up notation for the statement of the main
theorems. The cases (r1, r2) ∈ Rj with j = 1, 2 are “generic”, and admit cell factorisations where

wj =

{

101 if j = 1

2 if j = 2
tj =

{

2101 if j = 1

1012 if j = 2
and Bj =

{

(e, 2, 21, 210) if j = 1

(e, 1, 10, 101) if j = 2.

For each j = 1, 2 let zj ∈ Bj be such that B′
j = {z−1

j u | u ∈ Bj} is a fundamental domain for the action of τ2 on U2 with

z−1
j e on the negative side of each hyperplane separating z−1

j e from z−1
j u with u ∈ Bj . Specifically, z1 = 21 and z2 = 1.

Define an ordered basis Bj of M2 by Bj = (ξ2 ⊗X
z−1
j

u
| u ∈ Bj). Thus

Bj =

{

(ξ2 ⊗X12, ξ2 ⊗X1, ξ2 ⊗Xe, ξ2 ⊗X0) if j = 1

(ξ2 ⊗X1, ξ2 ⊗Xe, ξ2 ⊗X0, ξ2 ⊗X01) if j = 2.
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The fundamental domain B′
1 is depicted in the third example in Figure 3.

The region R3 = R1,2 is “non-generic”, and does not admit a cell factorisation. However we have

Γ2(R1,2) = Γ2(R2) ∪ {w1}.

Thus we can use cell factorisation in Γ2(R2) to describe all elements of Γ2(R1,2)\{w1}, and hence the expressions uw,
vw , and τw are defined for w ∈ Γ2(R1,2)\{w1}. We extend this definition by setting

uw1 = vw1 = 101 and τw1 = −1.

The regions R4 = R1,1′ and R5 = R2,2′ may be considered “generic” in a certain sense. Indeed these cases admit a
generalised cell factorisation using the extended affine Weyl group. We have

Γ2(Rj) =W ∩ {u−1
wjt

k
j v | u, v ∈ Bj , k ≥ 0}

where

wj =

{

121 if j = 4

0 if j = 5
tj =

{

01σ if j = 4

12σ if j = 5
and Bj =

{

(e, 0, σ, 0σ) if j = 4

(e, 1, σ, 1σ) if j = 5.

If w = u−1wjt
k
j v with u, v ∈ Bj and k ≥ 0 we write uw = u, vw = v and τw = k. Define an ordered basis Bj of M2 by

Bj =

{

(ξ2 ⊗Xe, ξ2 ⊗X0, ξ2 ⊗Xσ, ξ2 ⊗X0σ) if j = 4

(ξ2 ⊗X1σ , ξ2 ⊗Xσ, ξ2 ⊗X1, ξ2 ⊗Xe) if j = 5.

Finally, the region R6 = P2 is truely “non-generic”, and exhibits rather remarkable behaviour. Every element of
Γ2\{2, 12, 212, 010} can be written in the form w = utkω1

v with k ≥ 0 and u ∈ {e, 1, 21, 121} and v ∈ {e, 0, 01, 012}, and
moreover every element of this form with the exception of e = et0ω1

e lies in Γ2. The following indexing of the elements
of Γ2 will help with the statement of the main theorem. Let (ui) = (e, 1, 21, 121) and (vj) = (e, 0, 01, 012). Then, for
k ≥ 0, we define wk

i,j = uit
k
ω1
vj for all (i, j) /∈ {(1, 1), (1, 2), (2, 4)}, and

wk
1,1 = u1t

k+1
ω1

v1, wk
1,2 = u1t

k+1
ω1

v2 and wk
2,4 =

{

12 if k = 0

u2t
k−1
ω1

v4 if k ≥ 1.

Then
Γ2 = {wk

i,j | 1 ≤ i, j ≤ 4, k ≥ 0} ∪ {0, 2, 212, 010}.
The main theorems of this section are the following three results.

Theorem 6.15. Let (r1, r2) ∈ Rj , with j = 1, 2, 3. Then π2, equipped with the basis Bj , satisfies B1–B5 for the cell
Γ2 = Γ2(r1, r2), with aπ2 = ã(Γ2). Moreover, for j = 1, 2 the leading matrices of π2 are

cπ2(w;Bj) = (−1)jsτw (ζ)Euw,vw for w ∈ Γ2

where sk(ζ) is the Schur function of type A1. In the case j = 3 we have, for w ∈ Γ2,

cπ2(w;B3) = f
uw ,vw
τw (ζ)Euw,vw where f

u,v
k (ζ) =



















sk(ζ)− sk−1(ζ) if u, v 6= 101

sk(ζ)− sk−1(ζ)− ζ−k−1 if u 6= 101 and v = 101

sk(ζ)− sk−1(ζ)− ζk+1 if u = 101 and v 6= 101

sk(ζ)− sk+1(ζ) if u = v = 101,

where sk(ζ) is the Schur function of type A1 and we set s−1(ζ) = 0.

Theorem 6.16. Let (r1, r2) ∈ Rj with j = 4, 5. Then π2, equipped with the basis Bj , satisfies B1–B5 for the cell
Γ2 = Γ2(r1, r2), with aπ2 = ã(Γ2). Moreover the leading matrices of π2 are, for w ∈ Γ2,

cπ2(w;Bj) = (−1)j+1
sτw (ζ

1/2)Euw,vw .

Theorem 6.17. Let (r1, r2) ∈ R6. Then π̃2 = π2 ⊕ π5 ⊕ π6, equipped with the standard W 2
0 -basis for the π2 component,

satisfies B1–B5 for the cell Γ2 = Γ2(R6). Moreover, the leading matrices are as follows (for k ≥ 0):

c(wk
11) = ζkE41 + ζ−k−1E43 c(wk

12) = (ζk+1 + ζ−k−1)E44 c(wk
13) = ζ−k−1E41 + ζkE43

c(wk
14) = (ζk + ζ−k−1)E42 c(wk

21) = ζkE11 + ζ−kE33 c(wk
22) = ζk+1E14 + ζ−kE34

c(wk
23) = ζk+1E13 + ζ−k−1E31 c(wk

24) = ζkE12 + ζ−kE32 c(wk
31) = ζkE21 + ζ−kE23

c(wk
32) = (ζk+1 + ζ−k)E24 c(wk

33) = ζ−k−1E21 + ζk+1E23 c(wk
34) = (ζk+1 + ζ−k−1)E22

c(wk
41) = ζ−kE13 + ζkE31 c(wk

42) = ζ−kE14 + ζk+1E34 c(wk
43) = ζ−k−1E11 + ζk+1E33

c(wk
44) = ζ−k−1E22 + ζk+1E32 c(2) = E22 + E66 c(0) = E44 +E55

c(212) = E22 − E66 c(010) = E44 − E55.
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The proof of the above theorems will be given towards the end of this section. We first analyse the slices of the matrices
π2(Tw;W

2
0 ). This in turn requires, by Theorem 4.3, a rather detailed analysis of 2-folded alcove paths. Each w ∈W can

be written uniquely as
w = utm2 t

n
1 v with u ∈W0, v ∈ B0, and m,n ∈ Z

(where we write t1 = tω1 and t2 = tω2) and necessarily ℓ(w) = ℓ(u) + nℓ(t1) + mℓ(t2) + ℓ(v). We choose and fix the
reduced expressions for each u ∈W0, v ∈ B0, and t1, t2, which are lexicographically minimal. Thus

~w0 = 1212, ~t1 = 0121, and ~t2 = 010212,

and the expressions ~v for v ∈ B0 are the prefixes of ~b0 = 010210, along with the element 012 (see Example 6.14). These
choices give a distinguished reduced expression for each w ∈ W , namely

~w = ~u · ~tm2 · ~tn1 · ~v

with the reduced expressions for each component chosen as above. We fix this choice throughout this section. If p is a
path of type ~w = ~u · ~tm2 · ~tn1 · ~v we write

p = p0 · p0 where p0 is of type ~u and p0 is of type ~tm2 · ~tn1 · ~v. (6.5)

To efficiently record 2-folded alcove paths we will use the notation î to denote an i-fold, and ǐ to denote an i-bounce.
Thus, for example, p = 21̂0̌1̂21 is a 2-folded alcove path whose second and fourth steps are 1-folds, and whose third step
is a 0-bounce (for example, this is a valid 2-folded alcove path starting at 1).

The main theorems of this section will follow from the following combinatorial theorem.

Theorem 6.18. Let p be an 2-folded alcove path of type ~w = ~u · ~t ℓ2 · ~t k1 · ~v with u ∈ W0, v ∈ B0 and k, ℓ ≥ 0 starting
at u0 ∈ W 2

0 . Then exp(Q2(p)) � x for some x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}. Moreover, the paths p
with exp(Q2(p)) = x for some x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)} are precisely the paths p = p0 · p0 with
end(p0) = start(p0) where p0 is listed in Table 4 and p0 is listed in Table 5.

Proof. Write p = p0 · p0 as in (6.5). We claim that:

1) if end(p0) = e then exp(Q2(p0)) � x for some x ∈ {(1, 0, 0), (0, 1, 0), (2,−1, 0)};
2) if end(p0) = 1 then exp(Q2(p0)) � x for some x ∈ {(1, 0, 0), (0, 1, 0)};
3) if end(p0) = 12 then exp(Q2(p0)) � (1, 0, 0);

4) if end(p0) = 121 then exp(Q2(p0)) � (0, 0, 0),

and moreover, the paths where equality is attained are listed in Table 4 (the ∗ in rows 17 and 18 will be explained later).

row u start(p0) p0 exp(Q2(p0)) end(p0)

1 e 121 e (0, 0, 0) 121

2 1 e 1̂ (1, 0, 0) e

3 1 12 1̂ (1, 0, 0) 12

4 1 12 1 (0, 0, 0) 121

5 2 1 2̂ (0, 1, 0) 1

6 12 e 12̂ (0, 1, 0) 1

7 12 12 1̂2 (1, 0, 0) 1

8 21 1 2̂1 (0, 1, 0) e

9 21 1 21̂ (1, 0, 0) 12

10 21 1 21 (0, 0, 0) 121

11 121 e 12̂1 (0, 1, 0) e

12 121 e 1̂2̌1̂ (2,−1, 0) e

13 121 e 121̂ (1, 0, 0) 12

14 121 e 121 (0, 0, 0) 121

15 121 12 1̂21 (1, 0, 0) e

16 212 1 21̂2 (1, 0, 0) 1

17∗ 1212 e 121̂2 (1, 0, 0) 1

18∗ 1212 e 1̂2̌12̂ (1, 0, 0) 1

Tab. 4: Optimal p0 parts
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To establish the claim we note that the paths listed obviously have the stated exponents. One now constructs all paths
p0 of type ~u with u ∈ W0 starting at some u0 ∈ {e, 1, 12, 121}, and verifies the claim directly. For example, the paths
starting and ending at e are precisely the following:

e, 1̂, 2̌, 1̂2̌, 2̌1̂, 12̂1, 1̂2̌1̂, 2̌1̂2̌, 12̂12̌, 1̂2̌1̂2̌

and each of these paths has exponent bounded by some element of {(1, 0, 0), (0, 1, 0), (2,−1, 0)} with equality in the
second, sixth, and seventh cases (listed in rows 2, 11 and 12 of the table).

Let E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}. We claim that if p = p0 ·p0 then exp(Q2(p)) � x for some x ∈ E,
and moreover the paths attaining equality are precisely the concatenations of paths p0 from Table 4 with paths p0 in
Table 5 with end(p0) = start(p0). The proof of this claim occupies the remainder of the proof. When combining two
paths it is useful to note the obvious fact that if x′ � x and y′ � y then x′ + y′ � x+ y.

The folding tables for the elements ~t1 = 0121 and ~t2 = 010212 are shown in Table 3. The following observation will be
used frequently: If a pass of either the ~t1 or ~t2 table is completed on a row containing at least one ∗, and if no folds are
made in this pass, then

exp(Q2(p
0)) ≺ exp(Q2(p

′)), (6.6)

where p′ is the path obtained from p0 by removing this copy of ~t1 or ~t2. Thus such paths necessarily have strictly
dominated exponents, and can therefore be discarded in the following analysis.

The claim follows from the following four points.

1) Suppose that start(p0) = e. Since every entry of the first row of the 2-folding table for ~t1 is −, and since every entry
of the 2-folding table of ~t2 is either − or ∗, it is clear that exp(Q2(p

0)) � (0, 0, 0). Thus, combined with the paths
from Table 4 we have exp(Q2(p)) � x for some x ∈ {(1, 0, 0), (0, 1, 0), (2,−1, 0)} ⊂ E. Moreover we have equality
if and only if the p0 part has no bounce, and therefore equality holds if and only if ℓ = 0 and v ∈ {e, 0, 01, 012},
giving the paths

p0 = ~t k1 · ~v for some k ≥ 0 and v ∈ {e, 0, 01, 012}.
These paths are listed on rows 1/34, 8/37, 15/39 and 24/43 of Table 5 (it is convenient to separate the cases k > 0
and k = 0, and this is indicated by the notation i/j for the table rows).

2) Suppose that start(p0) = 1. Writing p0 = p1 · p2 where p1 is of type ~t ℓ2 and p1 is of type ~t k1 · ~v, we have

exp(Q2(p
0)) = (0,−ℓ,−ℓ) + exp(Q2(p2)).

It is clear that exp(Q2(p2)) � (1,−1,−1) or exp(Q2(p2)) � (0, 0, 0) (depending on whether k > 0 and the possible
fold on the 4th place of ~t1 is taken). Therefore

exp(Q2(p
0)) � (1,−ℓ− 1,−ℓ− 1) or exp(Q2(p

0)) � (0,−ℓ,−ℓ).

Thus exp(Q2(p
0)) � (1,−1,−1) or exp(Q2(p

0)) � (0, 0, 0). In the first case, combining the contribution from p0 we
have exp(Q2(p)) � (2,−1,−1) ≺ (2,−1, 0) ∈ E or exp(Q2(p)) � (1, 0,−1) ≺ (2, 0,−1) ∈ E, and so the combined
path is sub-optimal. In the second case we have exp(Q2(p)) � (1, 0, 0) ∈ E or exp(Q2(p)) � (0, 1, 0) ∈ E, with
equality if and only if k = ℓ = 0 and v = e. This (trivial) path is listed on row 35 of Table 5.

3) Suppose that start(p0) = 12. We first claim that if ℓ > 0 then exp(Q2(p)) ≺ x for some x ∈ E. By the observation
made in (6.6) it suffices to assume that if ℓ > 0 then a fold is made in the first pass of the ~t2 table. Thus the first
part of the path is one of the following:

pa = 0̌1̂0̌212̌ pb = 0̌10̂2̌12 pc = 0̌102̌1̂2̌ pd = 0̌102̌12̂,

with exponents (1,−1,−2), (0,−1, 0), (1,−2,−1), and (0, 0,−1) respectively. The paths pa and pc exit on row 1
of the 2-folding table, and paths pb and pc exit on row 2 of the table. Since no positive contributions occur on the
first row of any of the tables we have (using the first claim) exp(Q2(p)) � (1, 0, 0) + (1,−1,−2) = (2,−1,−2) ≺
(2,−1, 0) ∈ E in the case pa, and exp(Q2(p

0)) � (1,−2,−1) + (1, 0, 0) = (2,−2,−1) ≺ (2, 0,−1) ∈ E in the case
pc. The only possible positive contribution on row 2 of the folding tables comes from the 1-fold in the ~t1 table,
however accessing this fold comes at the cost of both a 0-bounce and a 2-bounce. Hence in case pb we have either
exp(Q2(p)) � (0,−1, 0) + (1, 0, 0) ≺ (1, 0, 0) ∈ E or exp(Q2(p)) � (1,−2,−1) + (1, 0, 0) ≺ (2, 0,−1) ∈ E, and in
case pd we have either exp(Q2(p)) � (0, 0,−1) + (1, 0, 0) ≺ (1, 0, 0) ∈ E or exp(Q2(p)) � (1,−1,−2) + (1, 0, 0) ≺
(2,−1, 0) ∈ E. This establishes the claim.

Thus we may assume that ℓ = 0, and so p0 has type ~t k1 · ~v for some k ≥ 0 and some v ∈ B0. If k > 0 then by
the observation above we may assume that a fold is made in the first pass of the ~t1 table. Thus the first part of
the path is necessarily 0̌1̂21, which has exponent (1, 0,−1) and exits on row 1 of the folding table. Any further ~t1
factors will have no effect on the exponent, and the final ~v factor can have contribution at most (0, 0, 0), and this
occurs if and only if v ∈ {e, 0, 01, 012}. Thus the paths

p0 = 0̌1̂21 · ~tn1 · ~v for n ≥ 0 and v ∈ {e, 0, 01, 012}



6 Infinite cells 28

row ~x start(p0) p0 exp(Q2(p
0)) wt2(p0) θ2(p0) conditions

1 tk1 e ~t k1 (0, 0, 0) k e k ≥ 1

2 12 0̌1̂21 · ~t k−1

1
(1, 0,−1) k − 1 e k ≥ 1

3 121 ~t k−1

1
· 0121̂ (1, 0, 0) −k 12 k ≥ 1

4 121 ~tm
1

· 0̂121 · ~tn
1

(0, 0, 1) n−m e m+ n = k − 1 ≥ 0

5 121 ~tm
1

· 01̂2̌1̂ · ~tn
1

(2,−1, 0) n−m− 1 e m+ n = k − 1 ≥ 0

6 121 ~tm
1

· 012̂1 · ~tn
1

(0, 1, 0) n−m− 1 e m+ n = k − 1 ≥ 0

7 121 ~tm
1

· 0121̂ · 0̌1̂21 · ~tn
1

(2, 0,−1) n−m− 1 e m+ n = k − 2 ≥ 0

8 tk
1
· 0 e ~t k

1
· 0 (0, 0, 0) k + 1 121 k ≥ 1

9 12 0̌1̂21 · ~t k−1

1
· 0 (1, 0,−1) k 121 k ≥ 1

10 121 ~t k1 · 0̂ (0, 0, 1) −k 121 k ≥ 1

11 121 ~tm1 · 0̂121 · ~tn1 · 0 (0, 0, 1) n−m+ 1 121 m+ n = k − 1 ≥ 0

12 121 ~tm1 · 01̂2̌1̂ · ~tn1 · 0 (2,−1, 0) n−m 121 m+ n = k − 1 ≥ 0

13 121 ~tm1 · 012̂1 · ~tn1 · 0 (0, 1, 0) n−m 121 m+ n = k − 1 ≥ 0

14 121 ~tm
1

· 0121̂ · 0̌1̂21 · ~tn
1
· 0 (2, 0,−1) n−m 121 m+ n = k − 2 ≥ 0

15 tk
1
· 01 e ~t k

1
· 01 (0, 0, 0) k + 1 12 k ≥ 1

16 12 0̌1̂21 · ~t k−1

1
· 01 (1, 0,−1) k 12 k ≥ 1

17 121 ~t k
1
· 0̂1 (0, 0, 1) −k 12 k ≥ 1

18 121 ~t k
1
· 01̂ (1, 0, 0) −k − 1 e k ≥ 1

19 121 ~t k−1

1
· 0121̂ · 0̌1̂ (2, 0,−1) −k 12 k ≥ 1

20 121 ~tm
1

· 0̂121 · ~tn
1
· 01 (0, 0, 1) n−m+ 1 12 m+ n = k − 1 ≥ 0

21 121 ~tm1 · 01̂2̌1̂ · ~tn1 · 01 (2,−1, 0) n−m 12 m+ n = k − 1 ≥ 0

22 121 ~tm1 · 012̂1 · ~tn1 · 01 (0, 1, 0) n−m 12 m+ n = k − 1 ≥ 0

23 121 ~tm1 · 0121̂ · 0̌1̂21 · ~tn1 · 01 (2, 0,−1) n−m 12 m+ n = k − 2 ≥ 0

24 tk1 · 012 e ~t k1 · 012 (0, 0, 0) k + 1 1 k ≥ 1

25 12 0̌1̂21 · ~t k−1

1
· 012 (1, 0,−1) k 1 k ≥ 1

26 121 ~t k
1
· 012̂ (0, 1, 0) −k − 1 1 k ≥ 1

27 121 ~t k−1

1
· 0121̂ · 0̌1̂2 (2, 0,−1) −k 1 k ≥ 1

28 121 ~tm
1

· 0̂121 · ~tn
1
· 012 (0, 0, 1) n−m+ 1 1 m+ n = k − 1 ≥ 0

29 121 ~tm
1

· 01̂2̌1̂ · ~tn
1
· 012 (2,−1, 0) n−m 1 m+ n = k − 1 ≥ 0

30 121 ~tm
1

· 012̂1 · ~tn
1
· 012 (0, 1, 0) n−m 1 m+ n = k − 1 ≥ 0

31 121 ~tm
1

· 0121̂ · 0̌1̂21 · ~tn
1
· 012 (2, 0,−1) n−m 1 m+ n = k − 2 ≥ 0

32∗ tk1 · 010 121 ~t k1 · 01̂0 (1, 0, 0) −k 121 k ≥ 1

33∗ 121 ~t k−1

1
· 0121̂ · 0̌10̂ (1, 0, 0) −k − 1 121 k ≥ 0

34 e e e (0, 0, 0) 0 e

35 1 e (0, 0, 0) 0 1

36 12 e (0, 0, 0) 0 12

37 0 e 0 (0, 0, 0) 1 121

38 121 0̂ (0, 0, 1) 0 121

39 01 e 01 (0, 0, 0) 1 12

40 12 0̌1̂ (1, 0,−1) 0 12

41 121 0̂1 (0, 0, 1) 0 12

42 121 01̂ (1, 0, 0) −1 e

43 012 e 012 (0, 0, 0) 1 1

44 12 0̌1̂2 (1, 0,−1) 0 1

45 121 012̂ (0, 1, 0) −1 12

46 010 121 01̂0 (1, 0, 0) 0 121

47 12 0̌10̂ (0, 0, 0) 0 121

Tab. 5: Optimal p0 parts
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(starting at 21) all have exponent precisely (1, 0,−1), and when composed with an optimal p0 path we have
exp(Q2(p)) = (2, 0,−1) ∈ E. These paths are listed on rows 2, 9, 16 and 25 of Table 5.

If k = 0 then p0 has type ~v for some v ∈ B0. By direct observation these paths have exponent bounded by either
(0, 0, 0) or (1, 0,−1). The only paths with exponent (0, 0, 0) are the empty path e and the path 0̌10̂, and the paths
with exponent (1, 0,−1) are precisely 0̌1̂ and 0̌1̂2. Appended with an optimal p0 path we therefore obtain paths
with exponents (1, 0, 0) and (2, 0,−1). These paths are listed on rows 36, 47, 40, and 44 of Table 5.

4) Suppose that start(p0) = 121. A very similar argument to the case start(p0) = 12 shows that if ℓ > 0 then
exp(Q2(p)) ≺ x for some x ∈ E. Thus we may assume that ℓ = 0. Thus p0 has type ~t k1 · ~v for some k ≥ 0 and
v ∈ B0. Since the 4th row of the 2-folding table of ~t1 contains no bounces, one may begin by making any number
k1 ≤ k passes through the folding table with no folds.

If k1 = k then the exponent of p0 is equal to the exponent of the ~v part of p0. The possible paths of type ~v, v ∈ B0,
starting on row 4 are as follows:

e 0 0̂ 01 0̂1 01̂ 010̌ 0̂10̌ 01̂0 010̌2

0̂10̌2 01̂02̌ 010̌2̂ 010̌21 0̂10̌21 01̂02̌1 010̌2̂1 010̌21̂ 010̌210 0̂10̌210

01̂02̌10̌ 010̌2̂10 010̌21̂0̌ 010̌210̂ 012 0̂12 01̂2̌ 012̂.

Thus when appended with an optimal p0 part we have exp(Q2(p)) = (0, 0, 0) + exp(Q2(p
0)) � x for some x ∈ E,

with equality precisely in the following cases of p0:

~t k1
1 · 0̂, ~t k1

1 · 0̂1, ~t k1
1 · 01̂, ~t k1

1 · 01̂0, and ~t k1
1 · 012̂.

These paths are listed in rows 10/38, 17/41, 18/42, 32∗/46, and 26/45 of Table 5 (the ∗ will be explained later in
Remark 6.19, and again it is convenient to split the k1 = 0 and k1 > 0 cases).

If k1 < k then we assume that the (k1 + 1)-st pass of the ~t1 table has a fold. The possibilities on this pass are

pa =0̂121 exponent (0, 0, 1), exit row 1,

pb =01̂2̌1̂ exponent (2,−1, 0), exit row 1,

pc =012̂1 exponent (0, 1, 0), exit row 1,

pd =01̂2̌1 exponent (1,−1, 0), exit row 2,

pe =0121̂ exponent (1, 0, 0), exit row 3.

The paths pa, pb, and pc exiting on row 1 can be followed by any number of ~t1 factors, and then an element
v ∈ {e, 0, 01, 012} (any other elements v ∈ B0 will decrease the exponent). Thus the paths

~t k1
1 · p′ · ~t k2

1 · ~v with k1, k2 ≥ 0, p′ ∈ {pa, pb, pc} and v ∈ {e, 0, 01, 012}

have exponents (0, 0, 1) for p′ = pa, (2,−1, 0) for p′ = pb, and (0, 1, 0) for p′ = pc. These paths are listed in rows
4, 11, 20, 28 (for p′ = pa), 5, 12, 21, 29 (for p′ = pb), and 6, 13, 22, 30 (for p′ = pc).

Consider the path pd. If k1 + 1 < k then there are further passes through the ~t1 table, and by the observation
above there must be a fold on the next pass. Thus p0 starts with ~t k1

1 ·pd · 0̌12̌1̂, which has exponent (2,−2,−1) and
exits on row 1. Since (2,−2,−1) ≺ (2, 0,−1) and no positive contributions can be obtained from row 1 it follows
that in fact k1 + 1 = k. Thus p0 is of the form ~t k−1

1 · pd · p′′ for some path p′′ of type ~v with v ∈ B0. However it is
clear that such a path has exp(Q2(p

0)) ≺ (2, 0,−1), and so pd does not lead to any optimal paths.

Consider the path pe, which exits on row 3. Suppose that k1 + 1 < k. Applying the analysis of the start(p0) = 12
case we see that

p0 = ~t k1
1 · pe · 0̌1̂21 · ~t k2

1 · ~v with k1, k2 ≥ 0 and v ∈ {e, 0, 01, 012}
are the only paths with exponent (1, 0, 0) + (1, 0,−1) = (2, 0,−1). These paths are listed in rows 7, 14, 23 and 31
of Table 5. If k1 + 1 = k then the paths

p0 = ~t k1
1 · pe · p′ with p′ ∈ {0̌1̂, 0̌1̂2}

(listed in rows 19 and 27) are the only paths with exponent (2, 0,−1), and the paths

p0 = ~t k1
1 · pe · p′ with p′ ∈ {e, 0̌10̂}

(listed in rows 3 and 33∗) are the only path with exponent (1, 0, 0).

The theorem now follows by combining Tables 4 and 5.
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Remark 6.19. We note that the paths in rows 17∗ and 18∗ from Table 4, and rows 32∗ and 33∗ from Table 5, while
giving maximal exponent paths, do not contribute to maximal exponents in matrix entries due to cancellations. Let us
explain this further.

Let p0 = 121̂2 and p′0 = 1̂2̌12̂ be the the paths on rows 17∗ and 18∗ of Table 4, and suppose that p0 is a path of type ~t ℓ2 ·~t k1 ·~v
with k, l ≥ 0 and v ∈ B0, with start(p0) = end(p0) = end(p′0) = 1. Let p = p0 · p0 and p′ = p′0 · p0. Note that these paths
are of the same type w = 1212tℓ2t

k
1v, and they have the same start and end alcove. In particular, for any fundamental

domain B, after using τ2 to move the start alcove of both paths into B (if required) we have start(p) = start(p′) = u,
wt2B(p) = wt2B(p

′) = k, and θ2B(p) = θ2B(p
′) = u′, say. The combined contribution to the matrix π2(Tw;B) from these two

paths is in the (u, u′)-entry, and it is given by

(Q2(p) +Q2(p
′))ζk = Q2(p

0)(Q2(p0) +Q2(p
′
0))ζ

k = Q2(p
0)(q1 − q

−1
1 − q

−1
2 (q1 − q

−1
1 )(q2 − q

−1
2 ))ζk

= Q2(p
0)(−q1q

−2
2 − q

−1
1 + q

−1
1 − q

−1
1 q

−2
2 )ζk

Note that the leading terms have cancelled, and hence each remaining exponent x satisfies x ≺ exp(Q2(p)). A similar
comment applies to the paths on rows 32∗ and 33∗ from Table 5. Thus, for the purpose of computing optimal terms in
matrix entries, the paths from these rows can be ignored.

The cancellations outlined above turn out to be the only “generic” cancellations of leading terms that occur for paths
in the tables. However, as we see below, cancellations can and do occur after specialising, where leading terms for one
maximal exponent can cancel with leading terms from another maximal exponent when the exponents lead to equal
degrees on specialisation.

Corollary 6.20. We have M(π2) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}.

Proof. Let E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (2,−1, 0), (2, 0,−1)}. We have shown in Theorem 6.18 that if p is a 2-folded
alcove path then exp(Q2(p)) � x for some x ∈ E. It then follows from Theorem 4.3 that if y is an exponent appearing
with nonzero coefficient in some matrix entry of some π2(Tw;B) then y � x for some x ∈ E. Thus to show that
M(π2) = E it is sufficient to show that each x ∈ E does indeed appear as an exponent in some matrix entry of some
matrix π2(Tw;B) (note – it is a priori not sufficient to show that there exist 2-folded alcove paths with these exponents,
because it is possible for leading terms to cancel in the matrix entries). To this end we use Theorem 4.3 to see that, in
the standard W 2

0 -basis, we have [π2(T1)]e,e = q1 − q−1
1 (exponent (1, 0, 0)), [π2(T2)]1,1 = q2 − q−1

2 (exponent (0, 1, 0)),
[π2(T0)]121,121 = q0 − q−1

0 (exponent (0, 0, 1)), and

[π2(T1T2T1)]e,e = −q
2
1q

−1
2 + q2 + q

−1
2 − q

−2
1 q

−1
2 [π2(T1T0T1)]12,12 = −q

2
1q

−1
0 + q0 + q

−1
0 − q

−2
2 q

−1
0

giving exponents (2,−1, 0) and (2, 0,−1) respectively. Thus M(π2) = E.

We can now prove Theorems 6.15–6.17.

Proof of Theorems 6.15–6.17. Consider the case (r1, r2) ∈ R1. By specialising we have that deg(Q2(p)) is bounded by
each integer xa + yb + zc with (x, y, z) ∈ M(π2) (see (6.4)), and thus deg(Q2(p)) is bounded by 2a − c with equality if
and only if exp(Q2(p)) = (2, 0,−1). We now compute the (2, 0,−1) slice of π2(Tw).

We first find all paths with exponent (2, 0,−1). These paths are obtained by choosing a path p0 from Table 4, and p0

from Table 5, with end(p0) = start(p0) and with exponents summing to (2, 0,−1). Explicitly these paths are as follows:

1) The paths starting at e are p = p0 ·p0 with either row(p0) = 13 and row(p0) ∈ {2, 9, 16, 25, 40, 44}, or row(p0) = 14
and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

2) The paths starting at 1 are p = p0 · p0 with either row(p0) = 9 and row(p0) ∈ {2, 9, 16, 25, 40, 44}, or row(p0) = 10
and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

3) The paths starting at 12 are p = p0 · p0 with either row(p0) = 3 and row(p0) ∈ {2, 9, 16, 25, 40, 44}, or row(p0) = 4
and row(p0) ∈ {7, 14, 19, 23, 27, 31}.

4) The paths starting at 121 are p = p0 · p0 with row(p0) = 1 and row(p0) ∈ {7, 14, 19, 23, 27, 31}.
Each of these paths can be rewritten in the form u−1w1t

N
1 v for some u, v ∈ B1 and N ≥ 0 (recall that t1 = 2101, and

note that t1 = tω1 = 0121). This shows that if exp(Q2(p)) = (2, 0,−1) then w ∈ Γ2(R1).

The paths above combine to give all paths of the form

1) (21)−1 · 1̂0̌1̂ · tN1 · v and (21)−1 · 101 · tN−k−1
1 · 21̂0̌1̂ · tk1 · v with v ∈ B and 0 ≤ k ≤ N − 1.

2) (2)−1 · 1̂0̌1̂ · tN1 · v and (2)−1 · 101 · tN−k−1
1 · 21̂0̌1̂ · tk1 · v with v ∈ B and 0 ≤ k ≤ N − 1.

3) (e)−1 · 1̂0̌1̂ · tN1 · v and (e)−1 · 101 · tN−k−1
1 · 21̂0̌1̂ · tk1 · v with v ∈ B and 0 ≤ k ≤ N − 1.

4) (210)−1 · 1̂0̌1̂ · tN1 · v and (210)−1 · 101 · tN−k−1
1 · 21̂0̌1̂ · tk1 · v with v ∈ B and 0 ≤ k ≤ N − 1.

Using the action of τ2 on U2 we consider the paths in point 4 to start at 0 = τ2 · 121. Then, with respect to the
fundamental domain B′

1 = z−1
1 B1 = {e, 1, 12, 0} the paths in each of the points have weights N or 2k−N , and θ2B′

1
(p) = v

in all cases. Then

c
(2,0,−1)
π2

(u−1
w1t

N
1 v) = −

(

ζN +
N−1
∑

k=0

ζ2k−N

)

Eu,v = −sN(ζ)Eu,v,
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where the minus sign comes from the fact that Q2(p) = (−q0)
−1(q1 − q−1

1 )2 has leading term −q−1
0 q21.

This calculation shows that exp(Q2(p)) = (2, 0,−1) if and only if w ∈ Γ2(R1). It follows that B2 and B3 hold for the
representation π2 equipped with the basis associated to B′

1, with aπ2 = 2a− c. Then, by Theorem 6.10 we have

cπ2(w;B1) = c
(2,0,−1)
π2

(w;B1).

It is then clear that B4 holds (by linear independence of Schur characters), and the formula

cπ2(u
−1
w w1uw;B1)cπ2(w;B1) = (−s0(ζ)Euw,uw )(−sτw (ζ)Euw,vw ) = −cπ2(w;B1)

verifies B5.

The case (r1, r2) ∈ R2 is very similar – one first identifies the paths with exponent (0, 1, 0), and then rewrites these paths
in the cell factorisation u−1w2t

N
2 v with u, v ∈ B2. Next one adjusts the start of the paths according to the fundamental

domain B′
2 = z−1

2 B2 = {e, 1, 0, 01} (paths starting at 121 now start at 0, and those starting at 12 now start at 01). Since
Q2(p) = q2 − q−1

2 has leading term +q2 for all such paths we finally obtain +sN (ζ).

In fact, all other cases are similar (although somewhat more complicated). For example, consider the non-generic case
(r1, r2) ∈ R3, where c = 2a− b and c < b. One proceeds as above, however note that on specialising the maximum value
of xa+ yb+ zc for x ∈ M(π2) is max{a, b, c, 2a − c, 2a − c} = c attained at x = (0, 0, 1) and x = (2,−1, 0). One checks,
directly from Theorem 6.18, that if p is of type ~w with exp(Q2(p)) ∈ {(0, 0, 1), (2,−1, 0)} then w ∈ Γ2(R3). We then
compute the sum of slices

c
(0,0,1)
π2

(w;B2) + c
(2,−1,0)
π2

(w;B2),

and it turns out that this sum is precisely as stated in Theorem 6.15. It follows that exp(Q2(p)) ∈ {(0, 0, 1), (2,−1, 0)} if
and only if w ∈ Γ2(R3). Hence B2 and B3 hold, and Theorem 6.10 shows that the above sum of slices equals cπ2(w;B2).
Axiom B4 readily follows. To verify axiom B5 let u0 = 101 and set du0 = w1 and du = u−1w2u for all u ∈ B2\{u0}
(these turn out to be the Duflo involutions, see Theorem 7.8). Note that cπ2(du) = −Eu,u for all u ∈ B2. Then, for
w ∈ Γ2(R3) we have cπ2(duw ;B2)cπ2(w;B2) = −cπ2(w;B2), and hence B5 holds.

We omit the details for the “generic” cases in Theorem 6.16 which involve the extended affine Weyl group – the general
approach is similar to the above. Thus consider the most intricate case of all – the equal parameter case of Theorem 6.17.
In this case, quite remarkably, the maximum value of xa + yb + zc is a, attained at all x ∈ M(πi). One checks directly
from Theorem 6.18 that if p is of type ~w with exp(Q2(p)) ∈ M(π2) then either w ∈ Γ2(R6) or p0 is on row 32∗ or 33∗.
However, as explained in Remark 6.19, the paths on rows 32∗ and 33∗ may be discarded (as their leading terms cancel
one another). We now compute the sum of all slices:

∑

x∈M(π2)

c
x

π2
(w;W 2

0 )

with respect to the standard basis. A rather miraculous calculation (with many cancellations occurring) shows that
this sum of slices is precisely as stated in Theorem 6.17. This computation can be read immediately off the tables in
Theorem 6.18, because we work in the standard basis and thus no modifications or conversions are required; however
one must be rather careful with signs. For example, let us compute the sum of slices for w = wk

3,3. We look through the
tables to find all paths of type wk

3,3 = 21 · tkω1
· 01. These paths are listed in Table 6.

p0 row p0 row start(p) p exp(Q2(p)) coeff wt2(p) θ2(p) conditions

8 15/39 1 2̂1tk101 (0, 1, 0) +1 k + 1 12 k ≥ 0

9 16 1 21̂0̌1̂21tk−1

1
01 (2, 0,−1) −1 k 12 k ≥ 1

9 40 1 21̂0̌1̂ (2, 0,−1) −1 0 12

10 17/41 1 21tk1 0̂1 (0, 0, 1) +1 −k 12 k ≥ 0

10 18/42 1 21tk
1
01̂ (1, 0, 0) +1 −k − 1 e k ≥ 0

10 19 1 21tk−1

1
0121̂0̌1̂ (2, 0,−1) −1 −k 12 k ≥ 1

10 20 1 21tm
1
0̂121tn

1
01 (0, 0, 1) +1 n−m+ 1 12 m+ n = k − 1 ≥ 0

10 21 1 21tm1 01̂2̌1̂tn101 (2,−1, 0) −1 n−m 12 m+ n = k − 1 ≥ 0

10 22 1 21tm
1
012̂1tn

1
01 (0, 1, 0) +1 n−m 12 m+ n = k − 1 ≥ 0

10 23 1 21tm
1
0121̂0̌1̂21tn

1
01 (2, 0,−1) −1 n−m 12 m+ n = k − 2 ≥ 0

Tab. 6: Paths for wk
3,3
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Therefore, with respect to the standard basis,

c
(1,0,0)
π2

(wk
3,3) = ζ−k−1E2,1

c
(0,1,0)
π2

(wk
3,3) =

(

ζk+1 +

k−1
∑

n=0

ζ2n−k+1

)

E2,3 =
(

ζk+1 + sk−1(ζ)
)

E2,3

c
(0,0,1)
π2

(wk
3,3) =

(

ζ−k +

k−1
∑

n=0

ζ2n−k+2

)

E2,3 = sk(ζ)E2,3

c
(2,−1,0)
π2

(wk
3,3) = −

( k−1
∑

n=0

ζ2n−k+1

)

E2,3 = −sk−1(ζ)E2,3

c
(2,0,−1)
π̃2

(wk
3,3) = −

(

ζk + ζ−k +

k−2
∑

n=0

ζ2n−k+2

)

E2,3 = −sk(ζ)E2,3.

Thus the sum of slices is
∑

x∈M(π2)

c
x

π2
(w;W 2

0 ) = ζ−k−1E2,1 + ζk+1E2,3.

Note the remarkable cancellations that have occurred. The remaining formulae for the sum of slices for each w = wk
i,j

follow very similarly. Then B2 and B3 follow for the representation π2, and it is easy to see that B2 and B3 also hold
for π̃2. Verification of B4 for π̃2 is as follows (note that obviously B4 fails for π2, as cπ2(0) = E4,4 = cπ2(010)). Suppose
that

∑

w∈Γ2

awcπ̃2(w) = 0 for some aw ∈ Z (finitely many of which are nonzero). (6.7)

Write akij = awk
ij

. Consider the (1, 1)-entry of (6.7). This gives

∑

k≥0

ak21ζ
k +

∑

k≥0

ak43ζ
−k−1 = 0.

Since each power of ζ appears at most once, we have ak21 = ak43 = 0 for all k ≥ 0. Similarly, by considering the (1, 2),
(1, 3), (1, 4) and (2, 1) entries of (6.7) gives

ak24 = ak23 = ak41 = ak22 = ak42 = ak31 = ak33 = 0.

The (2, 2)-entry gives

as2 + as2s1s2 +
∑

k≥0

ak44ζ
−k−1 +

∑

k≥0

ak34(ζ
k+1 + ζ−k−1) = 0

Thus ak34 = 0 for all k ≥ 0 (considering the powers ζk+1), and then it follows that ak44 = 0 for all k ≥ 0 (considering
the powers ζ−k−1) and thus as2 + as2s1s2 = 0. Now considering the (6, 6)-entry we have as2 − as2s1s2 = 0, and hence
as2 = as2s1s2 = 0. Continuing in this way we see that akij = 0 for all i, j, k, and hence B4 holds.

To verify B5, note directly from the formulae for cπ̃2(w
k
ij) that

cπ̃2(sj)cπ̃2(w) = cπ̃2(w) for all w in the right cell of sj (with j = 0, 1, 2)

(we note that the elements sj , j = 0, 1, 2, turn out to be the Duflo involutions, see Theorem 7.8). The proof is now
complete.

6.4 The cell Γ1

The analysis of this cell is similar to (and in fact considerably easier than) the Γ2 case.

The stable regions for Γ1 (with r2 ≤ r1) are as follows.

R1 = {(r1, r2) ∈ Q
2
>0 | r2 ≤ r1, r2 < 1− r1} R2 = {(r1, r2) ∈ Q

2
>0 | r2 ≤ r1, r2 > 1− r1, r2 > r1 − 1}

R3 = {(r1, r2) ∈ Q
2
>0 | r2 < r1 − 1} R4 = R1,2 = {(r1, r2) ∈ Q

2
>0 | r2 ≤ r1, r2 = 1− r1}

R5 = R2,3 = {(r1, r2) ∈ Q
2
>0 | r2 = r1 − 1}.

The regimes (r1, r2) ∈ Rj with j = 1, 2, 3 are “generic”, and admit cell factorisations where

wj =











1 if j = 1

02 if j = 2

212 if j = 3

tj =











021 if j = 1

102 if j = 2

012 if j = 3

and Bj =











(e, 2, 0, 02) if j = 1

(e, 1, 10, 12) if j = 2

(e, 0, 01, 010) if j = 3

If w = u−1wjt
k
j v with u, v ∈ Bj and k ≥ 0 we write, as usual, uw = u, vw = v, and τw = k.
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For each j = 1, 2, 3 let zj ∈ Bj be such that {z−1
j u | u ∈ Bj} is a fundamental domain for the action of τ1 on U1 with

z−1
j e on the negative side of each hyperplane separating z−1

j e from z−1
j u with u ∈ Bj . Specifically, zj = 2, 12, e in the

cases j = 1, 2, 3. Define an ordered basis Bj of M1 by Bj = (ξ1 ⊗X
z−1
j

u
| u ∈ Bj). Thus

Bj =











(ξ1 ⊗X2, ξ1 ⊗Xe, ξ1 ⊗X20, ξ1 ⊗X0) if j = 1

(ξ1 ⊗X21, ξ1 ⊗X2, ξ1 ⊗X20, ξ1 ⊗Xe) if j = 2

(ξ1 ⊗Xe, ξ1 ⊗X0, ξ1 ⊗X01, ξ1 ⊗X010) if j = 3.

The fundamental domain B′
1 is depicted in the second example in Figure 3.

The regimes R1,2 and R2,3 are “non-generic”, and do not admit cell factorisations. We have

Γ1(R1,2) = Γ1(R1) ∪ {w2} and Γ1(R2,3) = Γ1(R2) ∪ {w3}.

Thus we can use cell factorisation in Γ1(R1) to describe all elements of Γ1(R1,2)\{w2}, and hence the expressions uw,
vw , and τw are defined for w ∈ Γ1(R1,2)\{w2}. We extend this definition by setting

uw2 = vw2 = 02 and τw2 = −1.

Similarly we can use cell factorisation in Γ1(R2) to describe all elements of Γ1(R2,3)\{w3}, and hence the expressions
uw, vw, and τw are defined for w ∈ Γ1(R2,3)\{w3}. We extend this definition by setting

uw3 = vw3 = 12 and τw3 = −1.

The main theorem of this section is the following. To conveniently state the theorem we will write R4 = R1,2, R5 = R2,3,
B4 = B1, and B5 = B2. Moreover, we let b4 = 02 and b5 = 12.

Theorem 6.21. Let (r1, r2) ∈ Rj , with 1 ≤ j ≤ 5. Then π1, equipped with the basis Bj , satisfies B1–B5 for the cell
Γ1 = Γ1(r1, r2), with aπ1 = ã(Γ1). Moreover, for j = 1, 2, 3 the leading matrices of π1 are

cπ1(w;Bj) = sτw (ζ)Euw,vw for w ∈ Γ1,

where sk(ζ) is the Schur function of type A1. In the cases j = 4, 5 we have, for w ∈ Γ1,

cπ1(w;Bj) = f
uw ,vw
τw (ζ)Euw,vw where f

u,v
k (ζ) =



















sk(ζ)± sk−1(ζ) if u, v 6= bj

sk(ζ)± sk−1(ζ)± ζ−k−1 if u 6= bj and v = bj

sk(ζ)± sk−1(ζ)± ζk+1 if u = bj and v 6= bj

sk(ζ)± sk+1(ζ) if u, v = bj

with the + sign for j = 4, and the − sign for j = 5, and where s−1(ζ) = 0.

Proof. The proof of Theorem 6.21 is similar to the proof of Theorem 6.15, and we will simply make some comments
and omit the details. One first establishes an analogue of Theorem 6.18 using the 1-folding tables for ~t1 and ~t2 given in
Table 7.

0 1 2 1

1 − − − ∗

2 − ∗ − −

3 1 ∗ 1 2

4 2 1 2 ∗

(a) ~t1 = 0121

0 1 0 2 1 2 0

1 − − − − − − −

2 − ∗ 1 − ∗ 1 −

3 1 ∗ − 1 ∗ − 1

4 2 1 3 2 1 3 2

(b) ~t2 = 010212 and ~b0 = 010210

Tab. 7: 1-folding tables

In particular one shows that exp(Q1(p)) � x for some x ∈ {(1, 0, 0), (0, 1, 1), (−1, 2, 0), (−1, 0, 2)}. Then, as in Corol-
lary 6.20 we see that

M(π1) = {(1, 0, 0), (0, 1, 1), (−1, 2, 0), (−1, 0, 2)}.

Next one classifies the paths p for which exp(Q1(p)) = x for some x ∈ M(π1). Theorem 6.21 now follows as in the Γ2

case.
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6.5 The cell Γ3

Again, the analysis of this cell is similar to (and considerably easier than) the Γ2 case.

The cell Γ3 is stable in the following regions:

R1 = {(r1, r2) ∈ Q
2
>0 | r1 − 2 < r2 < r1}

R2 = {(r1, r2) ∈ Q
2
>0 | r2 < r1 − 2}

R3 = R1,2 = {(r1, r2) ∈ Q
2
>0 | r2 = r1 − 2}.

The parameters (r1, r2) ∈ R1 ∪R2 are generic for the cell Γ3, and we have a cell factorisation where

wj =

{

0101 if j = 1

02 if j = 2
tj =

{

2101 if j = 1

1012 if j = 2
and Bj =

{

(e, 2, 21, 210) if j = 1

(e, 1, 10, 101) if j = 2.

For each j = 1, 2 let zj ∈ Bj be such that {z−1
j u | u ∈ Bj} is a fundamental domain for the action of τ2 on U2 with z−1

j e

on the negative side of each hyperplane separating z−1
j e from z−1

j u with u ∈ Bj . Specifically, zj = 21, 1 in the cases
j = 1, 2. Define an ordered basis Bj of M3 by Bj = (ξ1 ⊗X

z−1
j

u
| u ∈ Bj). Thus

Bj =

{

(ξ3 ⊗X12, ξ3 ⊗X1, ξ3 ⊗Xe, ξ3 ⊗X0) if j = 1

(ξ3 ⊗X1, ξ3 ⊗Xe, ξ3 ⊗X0, ξ3 ⊗X01) if j = 2.

The fundamental domain B′
1 is depicted in the third example of Figure 3.

The regime R3 = R1,2 is non-generic for Γ3, and there is no cell factorisation. However we note that

Γ3(R1,2) = Γ3(R2) ∪ {w1}.

Thus we use the cell factorisation in Γ3(R2) to describe the elements of Γ3(R3), with the extension of notation

uw1 = vw1 = 101 and τw1 = −1.

Theorem 6.22. Let (r1, r2) ∈ Rj , with j = 1, 2, 3. Then π2, equipped with the basis Bj , satisfies B1–B5 for the cell
Γ3 = Γ3(r1, r2), with aπ3 = ã(Γ3). Moreover, for j = 1, 2 the leading matrices of π3 are

cπ3(w;Bj) = sτw (ζ)Euw,vw for w ∈ Γ3

where sk(ζ) is the Schur function of type A1. In the case j = 3 we have, for w ∈ Γ3,

cπ3(w;B3) = f
uw ,vw
τw (ζ)Euw,vw where f

u,v
k (ζ) =



















sk(ζ) + sk−1(ζ) if u, v 6= 101

sk(ζ) + sk−1(ζ) + ζ−k−1 if u 6= 101 and v = 101

sk(ζ) + sk−1(ζ) + ζk+1 if u = 101 and v 6= 101

sk(ζ) + sk+1(ζ) if u = v = 101,

where s−1(ζ) = 0.

Proof. Again the proof of Theorem 6.22 is similar to the proof of Theorem 6.15, however the presence of positive
contribution q+1

0 to Q3(p) from the bounces on the “top” wall of the strip U2 requires some additional arguments, which
we now outline. Since the cell Γ3 only occurs in the regime r2 < r1 the key idea is to include the relation (0, 0, 1) ≺ (0, 1, 0)
in the partial order on Z3. This turns out to be most useful in the form (0,−1, 1) ≺ (0, 0, 0) which should be interpreted
as saying that the combined contribution to exponent by performing both a bounce on the top of the strip and a bounce
on the bottom of the strip is negative.

The 3-folding tables of ~t1 and ~t2 are as in Table 3. Note that each row that contains at least one ∗ entry in fact contains
precisely one ∗ in a 0-headed column and one ∗ in a 2-headed column. This fact makes the critical observation (6.6)
remain true: If a pass of either the ~t1 or ~t2 table is completed on a row containing at least one ∗, and if no folds are
made in this pass, then we have

exp(Q3(p)) = exp(Q3(p
′)) + (0,−1, 1) ≺ exp(Q3(p

′)),

where p′ is the path obtained from p by removing this copy of ~t1 or ~t2. Thus such paths necessarily have strictly
dominated exponents.

Incorporating the above observations into the analysis one readily establishes an analogue of Theorem 6.18. Specifically,
for each 3-folded alcove path p we have exp(Q3(p)) � x for some x ∈ {((2, 0, 2), (0, 1, 1)}. Then, as in Corollary 6.20 we
see that

M(π3) = {(2, 0, 2), (0, 1, 1)},

and the paths with exp(Q3(p)) = x for some x ∈ M(π3) are easily classified. Theorem 6.22 follows.
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The proof of Theorem 6.1 is now complete. Moreover, we have explicit formulae for the leading matrices for all cells.
Using these formulae we can easily verify conjecture P8.

Corollary 6.23. Conjecture P8 holds for all choices of parameters.

Proof. Suppose that x, y, z ∈ W and γx,y,z−1 6= 0. It follows that x, y, z ∈ Γ for some Γ ∈ Λ (see Theorem 1.7). Then
γx,y,z−1 is the coefficient of cπΓ(z;BΓ) in the expansion of cπΓ(x;BΓ)cπΓ(y;BΓ). Suppose that Γ admits a cell factorisation.
Then by the explicit formulae from Theorem 5.1 and Section 6 we have cπΓ(w;BΓ) = fw Euw,vw for some constant or
Schur function fw 6= 0. Then

cπΓ(x;BΓ)cπΓ(y;BΓ) = fxfyEux,vxEuy,vy = δvx,uy fxfyEux,vy .

Thus if γx,y,z−1 6= 0 we have vx = uy (that is, x−1 ∼R y), and moreover uz = ux (that is, z ∼R x) and vz = vy (that is,
z−1 ∼R y−1). Hence P8 follows in this case.

If Γ does not admit a cell factorisation then the result follows by more direct computation using the explicit formulae
for the leading matrices, and we omit the easy details.

7 The asymptotic Plancherel formula

At this stage we have computed Lusztig’s a-function, and proved conjectures P4, P8, P9, P10, P11, P12, and P14

(see Corollaries 3.1, 6.2, and 6.23). In this section we prove the remaining conjectures. With the exception of P15, all of
these conjectures follow from a remarkable property (Theorem 7.4) of Opdam’s Plancherel formula which ensures that
there is a descent to an “asymptotic Plancherel formula” on Lusztig’s asymptotic algebra J . This asymptotic Plancherel
formula ensures that P7 holds (since we obtain an inner product on J ), and moreover allows us to prove P1 and compute
the Duflo involutions. Conjectures P2, P3, P5, P6, and P13 all follow. Conjecture P15 is of a slightly different flavour,
and uses an additional ingredient due to Xie [22] (see Theorem 7.13).

7.1 The Plancherel formula

Since the Plancherel Theorem is inherently an analytic concept, we regard H as an algebra over C by specialising q → q
for some real number q > 1 and extending scalars from Z to C. Let πi, i = 0, 1, . . . , 13 be the specialisations of the
representations πi defined earlier. Now we regard ζ ∈ (C×)2 for the representation π0 = πζ

0 and ζ ∈ C× for the
representations πi = πζ

i with i = 1, 2, 3. Write χi for the character of πi for i = 0, 1, . . . , 13.

Define an involution ∗ on H and the canonical trace functional Tr : H → C by

(

∑

w∈W

awTw

)∗

=
∑

w∈W

aw Tw−1 and Tr

(

∑

w∈W

awTw

)

= ae

where now aw denotes complex conjugation. An induction on ℓ(v) shows that Tr(TuT
∗
v ) = δu,v for all u, v ∈ W , and

hence Tr(h1h2) = Tr(h2h1) for all h1, h2 ∈ H. It follows that (h1, h2) = Tr(h1h
∗
2) defines an Hermitian inner product

on H. Let ‖h‖2 =
√

(h, h) be the ℓ2-norm. The algebra H acts on itself by left multiplication, and the corresponding
operator norm is ‖h‖ = sup{‖hx‖2 : x ∈ H, ‖x‖2 ≤ 1}. Let H denote the completion of H with respect to this norm.
Thus H is a non-commutative C∗-algebra. The irreducible representations of H are the (unique) extensions of the
irreducible representations of H that are continuous with respect to the ℓ2-operator norm, and it turns out that these
are the irreducible “tempered” representations of H (see [18, §2.7 and Corollary 6.2]). In particular, every irreducible
representation of H is finite dimensional (since every irreducible representation of H has degree at most |W0|), and it
follows from the general theory of traces on “liminal” C∗-algebras that there exists a unique positive Borel measure µ,
called the Plancherel measure, such that (see [3, §8.8])

Tr(h) =

∫

Irrep(H)

χπ(h) dµ(π) for all h ∈ H.

The Plancherel measure has been computed in general by Opdam [18]. We now recall the explicit formulation in type C̃2

obtained by the second author in [19, §4.7].

Define rational functions cj(ζ), j = 0, 1, 2, 3, by

c0(ζ) =
(1− q−2aζ−1

1 )(1− q−2aζ−1
1 ζ−2

2 )(1− q−b−cζ−1
1 ζ−1

2 )(1 + q−b+cζ−1
1 ζ−1

2 )(1− q−b−cζ−1
2 )(1 + q−b+cζ−1

2 )

(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )

c1(ζ) =
(1 + q−a−b−cζ−1)(1− q−a−b+cζ−1)(1 + qa−b−cζ−1)(1− qa−b+cζ−1)

(1− ζ−2)(1− q2aζ−2)

c2(ζ) =
(1 + q−b+cζ−1)(1− q−2a−b−cζ−1)(1− q−2a+b+cζ−1)

(1− ζ−2)(1− qb+cζ−1)

c3(ζ) =
(1− q−b−cζ−1)(1 + q−2a−b+cζ−1)(1 + q−2a+b−cζ−1)

(1− ζ−2)(1 + qb−cζ−1)
,
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and constants Cj , j = 0, 1, 2, . . . , 8 by

C0 =
1

8q4a+4b
C1 =

q2a − 1

2q2a+4b(q2a + 1)

C2 =
q2b+2c − 1

2q4a+2b(q2b + 1)(q2c + 1)
C3 =

q2b − q2c

2q4a+2b(q2b + 1)(q2c + 1)

C4 =
(q2a+2b+2c − 1)(q4a+2b+2c − 1)

(q2a + 1)(q2b + 1)(q2c + 1)(q2a+2b + 1)(q2a+2c + 1)
C5 =

(q2a−2b−2c − 1)(q4a−2b−2c − 1)

(q2a + 1)(q−2b + 1)(q−2c + 1)(q2a−2b + 1)(q2a−2c + 1)

C6 =
(q2b − q2c)(q2b+2c − 1)

(q2a+2b + 1)(q2a+2c + 1)(q−2a+2b + 1)(q−2a+2c + 1)
C7 =

(q2a+2b−2c − 1)(q4a+2b−2c − 1)

(q2a + 1)(q2b + 1)(q−2c + 1)(q2a+2b + 1)(q2a−2c + 1)

C8 =
(q2a−2b+2c − 1)(q4a−2b+2c − 1)

(q2a + 1)(q−2b + 1)(q2c + 1)(q2a−2b + 1)(q2a+2c + 1)
.

The explicit formulation of the Plancherel formula for C̃2 from [19, §4.7] is as follows.

Theorem 7.1. If r2 ≤ r1 then

Tr(h) = |C0|
∫∫

T2

χ0(h)

|c0(ζ)|2
dζ + |C1|

∫

T

χ1(h)

|c1(ζ)|2
dζ + |C2|

∫

T

χ2(h)

|c2(ζ)|2
dζ + |C3|

∫

T

χ3(h)

|c3(ζ)|2
dζ

+ |C4|χ4(h) + |C5|χ′(h) + |C6|χ12(h) + |C7|χ5(h) + |C8|χ′′(h).

where

χ′ =











χ7 if r1 + r2 > 2

χ10 if 1 < r1 + r2 < 2

χ9 if r1 + r2 < 1

χ′′ =











χ8 if r1 − r2 > 2

χ11 if 1 < r1 − r2 < 2

χ6 if r1 − r2 < 1

.

If r2 > r1 then the Plancherel Theorem is obtained from the r2 < r1 formula by applying σ to all representation, constants,
and c-functions. The defining regions in (χ′′)σ are r2 − r1 > 2, 1 < r2 − r1 < 2, and r2 − r1 < 1.

Proof. See [19, Section 4.7] for the case r1 6= r2, and [19, Section 4.4] for the case r1 = r2.

7.2 The Plancherel formula and cell decomposition

In this section we make an observation comparing the cell decomposition and the Plancherel formula in type C̃2. This
observation was conjectured in [11] to hold in arbitrary affine type, and here we confirm this conjecture for type C̃2.

It is convenient to group the representations that appear under the integral signs in the Plancherel formula into classes
Π0 = {πζ

0 | ζ ∈ T2} and Πi = {πζ
i | ζ ∈ T} for i = 1, 2, 3. The remaining representations (the “point masses”) are taken

to be in their own classes: Πj = {πj} for 4 ≤ j ≤ 12. For each choice (r1, r2) (with r1 = b/a and r2 = c/a as usual)
let Π(r1, r2) denote the set of classes that appear with nonzero coefficient in the Plancherel formula. For example, if
(r1, r2) ∈ A1 then

Π(r1, r2) = {Π0,Π1,Π2,Π3,Π4,Π5,Π6,Π9,Π12}. (7.1)

Let ρ0, . . . , ρ13 denote the representations of the balanced system of cell representations constructed in Theorem 6.1.
Thus typically ρj = πj , with only the following exceptions: In equal parameters we have ρ2 = π2 ⊕ π5 ⊕ π6, for
(r1, r2) ∈ {(r, 1) | r ≥ 1} we have ρ13 = π5 ⊕ π7 ⊕ π12, and for (r1, r2) ∈ A2,3 we have ρ13 = π6 ⊕ π12 ⊕ π10.

Proposition 7.2. For each choice (r1, r2) ∈ Q2
>0 there is a well defined surjective map Ω : Π(r1, r2) → Λ(r1, r2) given

by
Ω(Πj) = Γj if πj is a submodule of ρj (as representations of Hg).

Moreover, on each open region Aj the map Ω is bijective.

Proof. This is by direct observation for each parameter regime. For example, consider (r1, r2) ∈ A1. In this case Π(r1, r2)
is as in (7.1), and from Figure 5 we have Λ(r1, r2) = {Γ0,Γ1,Γ2,Γ3,Γ4,Γ5,Γ6,Γ9,Γ12}, and the result follows in this
case.

For another example, consider (r1, r2) ∈ A2,3. Thus r1 = 1 and 0 < r2 < 1. Then

Π(r1, r2) = {Π0,Π1,Π2,Π3,Π4,Π5,Π6,Π10,Π12} and Λ(r1, r2) = {Γ0,Γ1,Γ2,Γ3,Γ4,Γ5,Γ13}.

Thus Ω(Πj) = Γj for j ∈ {0, 1, 2, 3, 4, 5}, and Ω(Π6) = Ω(Π10) = Ω(Π12) = Γ13 (recall that ρ13 = π6 ⊕ π12 ⊕ π10).

As a final example, consider (r1, r2) = (1, 1) = P2 (equal parameters). In this case

Π(r1, r2) = {Π0,Π1,Π2,Π4,Π5,Π6} and Λ(r1, r2) = {Γ0,Γ1,Γ2,Γ4}.

Since ρ2 = π2 ⊕ π5 ⊕ π6 we have Ω(Πj) = Γj for j ∈ {0, 1, 4} and Ω(Π2) = Ω(Π5) = Ω(Π6) = Γ2. All remaining cases
are similar.

We will sometimes write Ω(π) in place of Ω(Π) if π is a member of the class Π.
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7.3 The asymptotic Plancherel formula

Each rational function f(q) = a(q)/b(q) can be written as f(q) = q−Na′(q−1)/b′(q−1) with N ∈ Z where a′(q−1) and
b′(q−1) are polynomials in q−1 nonvanishing at q−1 = 0. The integer N in this expression is uniquely determined, and
is called the q-valuation of f , written νq(f) = N . For example, νq((q

2 + 1)(q3 + 1)/(q7 − q+ 1)) = 2.

Definition 7.3. Let Π be a class of representations appearing in the Plancherel Theorem. Consider the coefficient in
the Plancherel formula of a generic character χπ with π ∈ Π as a rational function C = C(q) in q by setting q = q. The
q-valuation of Π is defined to be νq(Π) = νq(C(q)). We also write νq(π) = νq(Π) for any π ∈ Π.

Recall that we have seen that Lusztig’s a-function is constant on two-sided cells, and thus we may write a(Γ) for the
value of a(w) for any w ∈ Γ. Moreover the values of the a-function are given in Table 2 (and the discussion immediately
following the table; see Corollary 6.2). The following remarkable property of the Plancherel measure has an analogue in
the finite dimensional case where the Plancherel measure is replaced by the “generic degrees” of the Hecke algebra (see
[16, Chapter 11] and [7]).

Theorem 7.4. For each classes Π appearing the the Plancherel formula in type C̃2 we have νq(Π) = 2a(Ω(Π)).

Proof. If νq(f(q)) = N then we write f(q) ∼ Cq−N where C is the specialisation at q−1 = 0 of qαf(q). Thus Cq−α is
the “leading term” of f(q) when f(q) is expressed as a Laurent power series in q−1. Then we compute, directly from
Theorem 7.1,

|C0|
|c0(ζ)|2

∼ 1

8
×











q−4a−4b|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 if r2 < r1

q−4a−4c|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 if r2 > r1

q−4a−4b|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−1

1 ζ−1
2 )(1− ζ−1

2 )|2 if r1 = r2

showing that νq(Π0) = 2a(Γ0) for all choices of parameters. Similarly we compute

|C1|
|c1(ζ)|2

∼ 1

2
×



















































q2a−4c|1− ζ−2|2 if (r1, r2) ∈ A

q−2b−2c|1− ζ−2|2 if (r1, r2) ∈ B

q2a−4b|1− ζ−2|2 if (r1, r2) ∈ C

q−2a|1− ζ−2|2 if (r1, r2) ∈ D

q−2b−2c|1 + ζ−1|2 if (r1, r2) ∈ E

q2a−4b|1 + ζ−1|2 if (r1, r2) ∈ F

q−2b−2c|1− ζ−1|2 if (r1, r2) ∈ G

A

B

C
D

E

F

G

1

1

|C2|
|c2(ζ)|2

∼ 1

2
×







































































q−2c|1− ζ−2|2 if (r1, r2) ∈ A

q−2b|1− ζ−2|2 if (r1, r2) ∈ B

q−4a+2c|1− ζ−2|2 if (r1, r2) ∈ C

q−4a+2b|1− ζ−2|2 if (r1, r2) ∈ D

q−2b|1− ζ−1|2 if (r1, r2) ∈ E

q−4a+2c|1 + ζ−1|2 if (r1, r2) ∈ F

q−4a+2c|1− ζ−1|2 if (r1, r2) ∈ G

q−4a+2b|1 + ζ−1|2 if (r1, r2) ∈ H

q−2a if (r1, r2) ∈ I

2

2

A E

B

FCG

D

H

I

|C3|
|c3(ζ)|2

∼ 1

2
×







































q−2b−2c|1− ζ−2|2 if (r1, r2) ∈ A

q−4a−4b|1− ζ−2|2 if (r1, r2) ∈ B

q−4a−4c|1− ζ−2|2 if (r1, r2) ∈ C

q−2b−2c|1− ζ−2|2 if (r1, r2) ∈ D

q−4a−4b|1− ζ−1|2 if (r1, r2) ∈ E

q−4a−4c|1− ζ−1|2 if (r1, r2) ∈ F

A

B

C

F
D

E

2

2

and thus νq(Πi) = 2a(Ω(Πi)) for all i = 1, 2, 3 and all choices of parameters.
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For the point masses we have

|C5| ∼







































































q−4a+2b if (r1, r2) ∈ A

q−2a if (r1, r2) ∈ B ∪ E
q−4a+2c if (r1, r2) ∈ C

q−2c if (r1, r2) ∈ D

q−2b if (r1, r2) ∈ F

q−2b−2c if (r1, r2) ∈ G

q−2a/2 if (r1, r2) ∈ H ∪ I
q−2c/2 if (r1, r2) ∈ J

q−2b/2 if (r1, r2) ∈ K

A B

C

D

F

E

G

H

IJ

K

2

2

1

1

|C6| ∼



























































q−2a if (r1, r2) ∈ A ∪D
q−2b if (r1, r2) ∈ B

q−2c if (r1, r2) ∈ C

q−4a+2c if (r1, r2) ∈ E

q−4a+2b if (r1, r2) ∈ F

q−2a/2 if (r1, r2) ∈ G ∪H
q−4a+2c/2 if (r1, r2) ∈ I

q−4a+2b/2 if (r1, r2) ∈ J

A B

C

D
E

F

G

HI

J

1

1

|C7| ∼































q−4a−4b if (r1, r2) ∈ A

q−2b−2c if (r1, r2) ∈ B

q2a−4c if (r1, r2) ∈ C

q−2c if (r1, r2) ∈ D

q2a−4c/2 if (r1, r2) ∈ E

A

B

C

D

E

2

1

|C8| ∼































q−4a−4c if (r1, r2) ∈ A

q−2b−2c if (r1, r2) ∈ B

q2a−4b if (r1, r2) ∈ C

q−2b if (r1, r2) ∈ D

q2a−4b/2 if (r1, r2) ∈ E
A

B

CD E

21
and the result follows (by comparison with Table 2).

Definition 7.5. Using Theorem 7.4 we define the asymptotic Plancherel measure on Irrep(H) by

dµ′(π) = lim
q→∞

q2a(Ω(Π))dµ(π) for all π ∈ Π.
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Theorem 7.6. For r2 ≤ r1 the asymptotic Plancherel measure is as follows. The case r2 > r1 may be obtained by
applying σ. For the infinite cells we have

µ′(π0) =
1

8
×
{

|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 if r2 6= r1

|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−1

1 ζ−1
2 )(1− ζ−1

2 )|2 if r2 = r1

µ′(π1) =
1

2
×











|1− ζ−2|2 if r2 6= r1 − 1 and r2 6= 1− r1

|1− ζ−1|2 if r2 = 1− r1

|1 + ζ−1|2 if r2 = r1 + 1

µ′(π2) =
1

2
×



















|1− ζ−2|2 if r2 6= r1 and r2 6= 2− r1

|1− ζ−1|2 if r2 = r1 and r2 6= 2− r1

|1 + ζ−1|2 if r2 6= r1 and r2 = 2− r1

1 if (r1, r2) = (1, 1)

µ′(π3) =
1

2
×











|1− ζ−2|2 if r2 6= r1 and r2 = r1 − 2

|1− ζ−1|2 if r2 6= r1 and r2 = r1 − 2

0 if r2 = r1

and for the square integrable representations we have µ′(π4) = 1 for all (r1, r2), and

µ′(π5) =

{

1 if r2 6= 1
1
2

if r2 = 1
µ′(π6) =

{

1 if r1 6= 1
1
2

if r1 = 1

µ′(π7) =











1 if r2 > 2− r1 and r2 6= 1
1
2

if r2 > 2− r1 and r2 = 1

0 if r2 ≤ 2− r1

µ′(π8) =

{

1 if r2 < r1 − 2

0 if r2 ≥ r1 − 2

µ′(π9) =

{

1 if r2 < 1− r1

0 otherwise
µ′(π10) =











1 if 1− r1 < r2 < 2− r1 and r1 6= 1
1
2

if 1− r1 < r2 < 2− r1 and r1 = 1

0 otherwise

µ′(π11) =

{

1 if r1 − 2 < r2 < r1 − 1

0 otherwise
µ′(π12) =











1 if r2 < r1, r1 6= 1 and r2 6= 1
1
2

if r2 < r1 and either r1 = 1 or r2 = 1

0 otherwise

Proof. This follows directly from the computations made in the proof of Theorem 7.4.

7.4 Conjecture P1

We can now prove that P1 holds for C̃2, following the technique of [11].

Theorem 7.7. Lusztig’s conjecture P1 holds for C̃2 for all choices of parameters.

Proof. Recall that ∆(w) is defined by Pe,w = nwq
−∆(w) + (strictly smaller powers of q), where nw 6= 0. We are required

to prove that a(w) ≤ ∆(w). This is equivalent to showing that

lim
q→∞

qa(w)Pe,w(q) <∞,

where we write Pe,w(q) for the specialisation of Pe,w at q = q. By the Plancherel Theorem we have

qa(w)Pe,w(q) = qa(w)Tr(Cw) =

∫

Irrep(H)

qa(w)χπ(Cw) dµ(π).

Suppose that w is in the two-sided cell Γ, and hence a(w) = a(Γ). Since the representations πi satisfy B1 and B2 for
their respective cell Ω(πi), it follows that the integral above is over only those classes of representations π ∈ Π ∈ Ω−1(Γ′)
with Γ ≥LR Γ′. For each such class of representations the Plancherel measure is, by Theorem 7.4, of the form

dµ(π) = q−2a(Γ′)(1 +O(q−1))dµ′(π)

where dµ′ is the asymptotic Plancherel measure. Thus the integrand (with respect to the asymptotic Plancherel measure)

is qa(Γ)−a(Γ′)tr(cπ(w))(1+O(q−1)). Since Γ ≥LR Γ′ we have a(Γ′) ≥ a(Γ) (by P4) and thus the power of q in the integrand
is at most 0. It is clear from the explicit C̃2 Plancherel Theorem that the limit may be passed under the integral sign,
and the result follows.
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7.5 Duflo involutions and conjecture P6

In this section we compute the Duflo elements for each cell. We recall that for r2 ≤ r1 all cells admit a cell factorisation
(perhaps within the extended affine Weyl group) with the exceptions

Γ1 in the case (r1, r2) ∈ R1
1,2 = {(r, r′) | r′ ≤ r, r′ = 1− r},

Γ1 in the case (r1, r2) ∈ R1
2,3 = {(r, r′) | r′ = r − 1},

Γ2 in the case (r1, r2) ∈ R2
1,2 = {(r, r′) | r′ < r, r′ = 2− r},

Γ3 in the case (r1, r2) ∈ R3
1,2 = {(r, r′) | r′ = r − 2},

Γ2 in the case (r1, r2) = (1, 1),

Γ13 in all cases in which this cell appears.

Theorem 7.8. Let Γ ∈ Λ. The Duflo elements DΓ = D ∩ Γ are as follows. If Γ admits a cell factorisation then

DΓ = {u−1
wΓu | u ∈ BΓ}.

If Γ does not admit a cell factorisation then (in the local notation of the relevant subsection 6.3–6.5)

DΓ1 = {w2} ∪ {u−1
w1u | u ∈ B1\{02}} if (r1, r2) ∈ R1

1,2

DΓ1 = {w3} ∪ {u−1
w2u | u ∈ B2\{12}} if (r1, r2) ∈ R1

2,3

DΓ2 = {w1} ∪ {u−1
w2u | u ∈ B2\{101}} if (r1, r2) ∈ R2

1,2

DΓ3 = {w1} ∪ {u−1
w2u | u ∈ B2\{101}} if (r1, r2) ∈ R3

1,2

DΓ2 = {0, 1, 2} if (r1, r2) = (1, 1)

DΓ13 = {0, 1} if (r1, r2) ∈ A4,5 ∪A7,8 ∪A9,10 ∪ P4 ∪ P5

DΓ13 = {1, 2, 010} if (r1, r2) ∈ A2,3.

Proof. Let n′
w be the coefficient of q−a(w) in Pe,w . Thus w ∈ D if and only if n′

w 6= 0 (and in this case n′
w = nw).

Moreover, from the asymptotic Plancherel formula we have (see the proof of Theorem 7.7)

n′
w =

∫

Ω−1(Γ)

tr(cπ(w)) dµ
′(π) if w ∈ Γ. (7.2)

In particular, for w ∈ Γi with 4 ≤ i ≤ 12 we have, using Theorem 5.1,

n′
w = tr(cπi

(w))dµ′(πi) = ±tr(Euw,vw )dµ′(πi),

and thus n′
w 6= 0 if and only if w ∈ {u−1wΓi

u | u ∈ BΓi
} as claimed.

For the infinite cells admitting a cell factorisation the analysis is as follows. Consider the lowest two-sided cell Γ0. If
r2 6= r1 then Theorem 6.4 and the asymptotic Plancherel formula give (for w ∈ Γ0)

n′
w =

1

8

∫

T2

sτw (ζ)tr(Euw,vw )|(1− ζ−1
1 )(1− ζ−1

1 ζ−2
2 )(1− ζ−2

1 ζ−2
2 )(1− ζ−2

2 )|2 dζ1dζ2.

It is well known that the Schur functions sλ(ζ) defined in equation (2.2) are orthonormal with respect to the measure
1
8
|(1−ζ−1

1 )(1−ζ−1
1 ζ−2

2 )(1−ζ−2
1 ζ−2

2 )(1−ζ−2
2 )|2 dζ1dζ2, and it follows that n′

w = 0 unless τw = 0 and uw = vw, in which case
n′
w = 1. Hence the result in this case. If r2 = r1 then the analysis is similar, since the Schur functions s′λ(ζ) defined in (2.3)

are orthonormal with respect to the asymptotic Plancherel measure 1
8
|(1−ζ−1

1 )(1−ζ−1
1 ζ−2

2 )(1−ζ−1
1 ζ−1

2 )(1−ζ−1
2 )|2 dζ1dζ2.

Now consider the case Γ2 with (r1, r2) ∈ R2 = {(r, r′) | r′ < r, r′ > 2− r}. In this case we have (see Section 6.3)

Γ2 = {u−1
w2t

k
2v | u, v ∈ B2, k ≥ 0}

where w2 = 2, t2 = 1012, and B2 = {e, 1, 10, 101}. Using the formula in Theorem 6.15 we have cπ2(w;B2) = sτw (ζ)Euw,vw

for w ∈ Γ2, where sk is the Schur function of type A1. The asymptotic Plancherel formula gives

n′
w =

1

2

∫

T

sτw (ζ)tr(Euw,vw )|1− ζ−2|2 dζ,

and since the Schur functions of type A1 are orthonormal with respect to the measure 1
2
|1 − ζ−2|2 dζ it follows that

n′
w 6= 0 if and only if uw = vw and τw = 0. Thus w ∈ {u−1w2u | u ∈ B2} as claimed.

The remaining cases admitting a cell factorisation are similar. However there are slight modifications in the cases Γ2

with r2 = r1 6= 1 where we have cπ2(w) = ±sτw (ζ1/2)Euw,vw . Here the asymptotic Plancherel measure is 1
2
|1− (ζ1/2)−2|2

and so the same analysis applies.

We now consider the cells that do not admit cell factorisations. Consider the case Γ2 with (r1, r2) ∈ R2
1,2. Here we have

Γ2 = {w1} ∪ {u−1
w2t

k
2v | u, v ∈ B2, k ≥ 0}
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where w1 = 101 and w2, t2, and B2 are as above. Recall that we extend the cell factorisation in Γ2(R2) to the element
w1 by setting τw1 = −1 and uw1 = vw1 = 101. The asymptotic Plancherel formula, along with Theorem 6.15, gives

n′
w =

1

2

∫

T

f
uw ,vw
τw tr(Euw,vw )|1 + ζ−1|2 dζ =

1

2
δuw ,vw

∫

T

f
uw ,uw
τw |1 + ζ−1|2 dζ

where

f
u,u
k =

{

sk(ζ)− sk−1(ζ) = s2k(−ζ1/2) if u 6= 101

sk(ζ)− sk+1(ζ) = −s2k+2(−ζ1/2) if u = 101.

Since the elements s2k(−ζ1/2) are orthonormal with respect to the measure |1 + ζ−1|2 dζ the result follows. The first 4
cases listed at the beginning of this section are similar.

Now consider the cell Γ2 in the equal parameter case. We have Ω−1(Γ2) = Π2 ∪Π5 ∪Π6, and so Theorem 6.17 and the
asymptotic Plancherel formula gives (for w ∈ Γ2)

n′
w =

1

2

∫

T

tr(cπ2(w)) dζ +
1

2
tr(cπ5(w)) +

1

2
tr(cπ6(w)),

where the matrices cπ2(w) are obtained from the matrices in Theorem 6.17 by removing the 5th and 6th rows and
columns. Since

∫

T
ζk dζ = δk,0 we obtain

1

2

∫

T

tr(cπ2(w)) dζ =











1 if w = 1
1
2

if w ∈ {0, 2, 010, 212}
0 otherwise

(note that 1 = w0
21). Moreover, we have

cπ5(w) =











1 if w = 0

−1 if w = 010

0 otherwise

and cπ6(w) =











1 if w = 2

−1 if w = 212

0 otherwise.

For example, in the case of cπ5(w), the above claim follows from the fact that γ0(w)− γ1(w)− γ2(w) ≤ 1 with equality
if and only if w ∈ {0, 010}, where γi(w) denotes the number of i generators appearing in any reduced expression of w
(note that since the orders mij of the products sisj are even this statistic is well defined).

Putting these facts together gives

n′
w =

{

1 if w ∈ {0, 1, 2}
0 otherwise,

and hence the result for this cell.

Finally we consider the finite cell Γ13. There are two regimes:

Ω−1(Γ13) =

{

{π5, π7, π
B
12} if (r1, r2) ∈ R1 = A4,5 ∪A7,8 ∪A9,10 ∪ P4 ∪ P5

{π6, π
A
12, π

B
10} if (r1, r2) ∈ R2 = A2,3.

The asymptotic Plancherel measure is a sum of point masses:

dµ′(Ω−1(Γ13)) =
1

2
×
{

δπ5 + δπ7 + δπ12 if (r1, r2) ∈ R1

δπ6 + δπ12 + δπ10 if (r1, r2) ∈ R2,

and thus n′
w = 1

2
tr(cπ13(w)). The result follows using the formulae for the leading matrices from Theorem 5.1.

Corollary 7.9. Conjecture P6 holds for all choices of parameters.

Proof. Using the explicit descriptions in Theorem 7.8 it is clear that the elements of D are involutions.

7.6 An inner product on J and conjectures P2, P3, P5, P7 and P13

In this section we endow Lusztig’s asymptotic algebra JΓ with a natural inner product inherited from the Plancherel
Theorem (a kind of asymptotic Plancherel Theorem). As a consequence we obtain a proof of conjectures P2, P3, P5,
P7, and P13.

Recall that we have proved in Theorem 1.7 that for each Γ ∈ Λ we have that Lusztig’s asymptotic algebra is isomorphic
to the Z-algebra JΓ spanned by the leading matrices {cπΓ,w | w ∈ Γ}. We thus identify Lusztig’s asymptotic algebra
with this concrete algebra, with Jw ↔ cπΓ,w. Define an involution ∗ on JΓ by linearly extending J∗

w = Jw−1 .

Theorem 7.10. Let Γ ∈ Λ. The formula

〈g1, g2〉Γ =

∫

Ω−1(Γ)

tr(g1g
∗
2) dµ

′(π) for g1, g2 ∈ JΓ

defines an inner product on JΓ with {Jw | w ∈ Γ} an orthonormal basis.
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Proof. The proof is exactly as in [11, Theorem 8.14].

Corollary 7.11. Conjectures P2, P3, P5, P7, and P13 hold for all choices of parameters.

Proof. If x, y, z ∈ Γ then γx,y,z = 〈JxJy , Jz−1〉Γ = 〈Jy , Jx−1Jz−1〉Γ = 〈JyJz, Jx−1〉Γ = γy,z,x, and hence P7 holds.

Conjectures P2, P3, P5, and P13 will follow easily from the following observation. By Theorem 7.8 we see that each
right cell Υ contains a unique Duflo involution dΥ ∈ D. Using the explicit formulae for the leading matrices we compute
directly that for all two-sided cells Γ, and all right cells Υ ⊆ Γ, we have

cπΓ(dΥ)cπΓ(w) =

{

±cπΓ(w) if w ∈ Υ

0 if w /∈ Υ
(7.3)

where the sign is independent of w (and thus depends only on dΥ). For example, if Γ admits a cell factorisation then
dΥ = u−1wΓu for some u ∈ BΓ and cπΓ(dΥ) = ±Eu,u. For w ∈ Γ we have cΓ(w) = cEuw,vw for some constant or Schur
function c, and thus

cπΓ(dΥ)cπΓ(w) = ±cEu,uEuw,vw = ±δu,uw cπΓ (w).

Since w ∈ Υ if and only if uw = u the result follows (note also that if w /∈ Γ then cπΓ(w) = 0). For the cases where
Γ does not admit a cell factorisation we have in fact already verified the above formulae in most cases in the course of
establishing B5 (see for example Theorem 5.1 for the cell Γ13, and the final lines in Section 6.3 for the case Γ2 with
equal parameters).

Consider P2. If γx,y,d 6= 0 with d = dΥ then x, y, d ∈ Γ for some two-sided cell Γ. Using P7 we have

γx,y,d = γd,x,y = 〈JdJx, Jy−1〉Γ.

By (7.3) we have x ∈ Υ (otherwise JdJx = 0 and so γx,y,d = 0) and therefore JdJx = ±Jx (recall that Jw ∈ JΓ is
identified with cπΓ(w)). Therefore γx,y,d = ±〈Jx, Jy−1〉Γ, and Theorem 7.10 forces y−1 = x. Thus P2 holds.

Consider P5. Note from the previous paragraph that the condition γx,y,d 6= 0 forces x, d ∈ Υ for some right cell Υ and
y = x−1. Moreover, γx,x−1,d = γd,x,x−1 = 〈JdJx, Jx〉Γ where Γ is the two-sided cell containing Υ. Using (7.3) it follows
that γx,x−1,d = ǫ〈Jx, Jx〉Γ = ǫ for some ǫ ∈ {−1, 1} independent of x. In particular, taking x = d we have

ǫ = γd,d−1,d = γd,d,d−1 = 〈J2
d , Jd〉Γ =

∫

Ω−1(Γ)

tr(cπΓ(d)
3) dµ′(π),

where we have used the fact that d2 = e. However, by (7.3) we have cπΓ(d)
3 = ǫcπΓ (d)

2 = ǫ2cπΓ(d) = cπΓ(d), and hence

ǫ =

∫

Ω−1(Γ)

tr(cπΓ(d)) dµ
′(π) = nd,

by (7.2) and the fact that n′
d = nd for d ∈ D. Hence P5 holds.

Conjectures P3 and P13 follow more easily.

Remark 7.12. We note that some efficiency could be gained by using the logical dependencies between the conjectures
established in [15, Chapter 14]. For example, P1+P3 ⇒ P5, and P2+P3+P4+P5 ⇒ P7. However we have found
it instructive and illustrative to demonstrate each conjecture directly. For example, it is considerably more satisfying
to see that P7 is in fact a consequence of an inner product structure on Lusztig’s asymptotic algebra rather than a
consequence of axioms P2, P3, P4 and P5.

7.7 Conjecture P15

In summary, using the explicit decomposition into cells, the calculation of the a-function, and the asymptotic Plancherel
Theorem we have proved conjectures P1–P14 (see Corollaries 3.1, 6.2, 6.23, 7.9, 7.11 and Theorem 7.7). The remaining
conjecture P15 has been proved by Xie [22, Theorem 6.2] under an assumption on the a-function. We see below that
this assumption is easily checked using the results of this section, and P15 follows.

Theorem 7.13. Conjecture P15 holds for all choices of parameters.

Proof. By [22, Theorems 6.2 and 6.3] it is sufficient to verify that a(d) = deg hd,d,d for all d ∈ D. This in turn is
equivalent to showing that γd,d,d 6= 0 for all d ∈ D. As we saw in the proof of P5 above (see Corollary 7.11) we have
γd,d,d = nd = ±1, and hence the result.
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