
ON INFINITE DISCRETE APPROXIMATE SUBGROUPS IN Rd

ALEXANDER FISH

School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia

Abstract. In this paper we show that any discrete, infinite approximate subgroup Λ ⊂ Rd

is relatively dense around some linear subspace L ⊂ Rd, i.e., there exists R > 0 such that for

every ball BR(x) with center at x ∈ L we have Λ∩BR(x) 6= ∅, and Λ ⊂ ∪x∈LBR(x). As an

application of our main theorem, we provide a complete classification of infinite approximate

subgroups in Zd.

1. Introduction

In this paper we study approximate subgroups. Recall that for a group H1, a set Λ ⊂ H is

called an approximate subgroup if there exists a finite set F ⊂ H such that Λ− Λ ⊂ Λ + F .

Any finite set in a group H is an approximate subgroup. An interesting question of classifica-

tion of approximate subgroups arises if we control the cardinality of F , while the cardinality

of Λ is finite but much larger than of the set of translates F , and in this case we say that Λ

has a small doubling. The classification of finite sets having small doubling for the ambient

group H = Z has been obtained by Freiman in his seminal work [2]. These results have been

eventually extended to arbitrary abelian groups by Green and Ruzsa [3], and in the case of

an arbitrary ambient group by Hrushovski [4], and by Breuillard, Green and Tao [1].

We will investigate here infinite discrete approximate subgroups in H = Rd. Infinite discrete

relatively dense approximate subgroups in Rd, Meyer sets, have been studied extensively

by Meyer [6], Lagarias [5], Moody [7] and many others. It has been proved by Meyer [6]

that a discrete relatively dense approximate subgroup Λ ⊂ Rd is a subset of a model (cut

and project) set [7]. Thus, despite a possible aperiodicity of Meyer sets, they all arise from

lattices in (possibly) much higher dimensional spaces.

The paper addresses a natural question of what kind of structure has to possess an infinite

discrete approximate subgroup Λ in Rd which is not relatively dense in the whole space. The

E-mail address: alexander.fish@sydney.edu.au.
1We will be using the additive notation since we are interested in the case where H is commutative.
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conclusion that we derive here is that an infinite discrete approximate subgroup in Rd is

almost as rigid as a Meyer set. In particular, we show that any discrete infinite approximate

subgroup in Rd is at the bounded distance from a Meyer set “living” on a subspace of Rd,

see Theorem 2.3.

Acknowledgment. The author is grateful to American Institute of Mathematics (AIM) and

the organisers of the workshop on “Nonstandard methods in combinatorial number theory”

at AIM, where this project has been initiated. We also thank Terrence Tao who suggested

the statement of Theorem 2.2 in the case d = 2. Finally, this paper has been influenced

by Michael Björklund, and, particularly, by his series of lectures on quasi-crystals given at

Sydney University in April 2016. We thank Michael for sharing his mathematical ideas with

us.

2. Main Results

We will always assume that the underlying group H posses an H-invariant metric dH , and

for any r > 0 and h ∈ H we will denote by Br(h) = {g ∈ H | dH(g, h) ≤ r} the ball of radius

r around h. We will call a set Λ ∈ H relatively dense if there exists R > 0 such that for

every h ∈ H we have BR(h) ∩ Λ 6= ∅. It is easy to see that if an approximate subgroup Λ

is discrete then it is also uniformly discrete, i.e., there exists δ > 0 such that for any h ∈ H
the ball of radius δ at h intersects Λ in at most one point.

In this paper we show that discrete approximate subgroups in Rd are relatively dense around

some subspace. Our main result is

Theorem 2.1. Let Λ ⊂ Rd be an infinite, discrete, approximate subgroup. Then there

exists a linear subspace L ⊂ Rd, and R > 0 such that:

• For every y ∈ L the ball of radiusR and center y, i.e., BR(y) = {x ∈ Rd | ‖x−y‖ ≤ R},
intersects non-trivially Λ.

• The R-neighbourhood of L in Rd contains Λ, i.e.,

Λ ⊂
⋃
y∈L

BR(y).

As a corollary, we obtain a complete characterization of infinite approximate subgroups in

Zd.

Theorem 2.2. Let Λ be a subset in Zd. The set Λ is an infinite approximate subgroup if

and only if there exists a linear subspace L ⊂ Rd and R > 0 such that
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• Λ ⊂
⋃

y∈LBR(y),

• For every y ∈ L we have Λ ∩BR(y) 6= ∅.

As another application of Theorem 2.1, we prove that any discrete approximate subgroup

in Rd is “very close” to be a Meyer set on a subspace of Rd. More precisely, we prove the

following result.

Theorem 2.3. Let Λ ⊂ Rd be an infinite discrete approximate subgroup. Then there exist

a subspace L ⊂ Rd and R > 0 such that:

• The projection ΛL of Λ on the subspace L is a Meyer set in L, i.e., ΛL is discrete

relatively dense approximate subgroup in L,

• Λ ⊂ ΛL +BR(0Rd).

3. Proof of Theorem 2.1

Let Λ ⊂ Rd be an approximate subgroup. Then Λ∪ {0Rd} is also an approximate subgroup.

Therefore without loss of generality we assume that 0Rd ∈ Λ. Denote by K = diam(F ). The

following two important properties will enable us to treat arbitrary approximate subgroup

as being almost symmetric:

(A) for every ` ∈ Λ there exists `′ ∈ BK(−`) ∩ Λ,

(B) for any `1, `2 ∈ Λ there exists `′ ∈ B2K(`1 + `2) ∩ Λ.

We will call the property (A) the almost symmetry, and (B) the almost doubling. We start

with an easy observation which proves Theorem 2.1 in the case d = 1.

Proposition 3.1. Let Λ ⊂ R be an infinite discrete approximate subgroup. Then Λ is

relatively dense.

Proof. Assume that Λ ⊂ R is an infinite approximate subgroup. Take ` ∈ Λ with ` > 3K

(which exists by uniform discreteness of Λ). By the almost doubling property there exists

`2 ∈ Λ with `2 ∈ [2` − 2K, 2` + 2K] ⊂ [` + K, 2` + 2K]. Similarly, there exists `3 ∈
Λ ∩B2K(`2 + `). Therefore, `3 ∈ [`2 +K, `2 + `+ 2K]. Assume that we already constructed

`1 = `, `2, . . . , `n ∈ Λ satisfying that `m+K ≤ `m+1 ≤ `m+`+2K for m = 1, . . . , n−1. Then

there exists `n+1 ∈ Λ ∩ [`n + `− 2K, `n + `+ 2K]. Therefore, we constraucted an increasing

sequence in Λ ∩ R+ with bounded gaps. By almost symmetry property of Λ, we also have

in Λ the elements {−`′,−`′2, . . . ,−`′n, . . .} with `′ ∈ BK(−`). This finishes the proof of the

Proposition. �
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A higher-dimensional case is much more subtle. An important role in the proof of Theorem

2.1 will play the set of asymptotic directions of the points in Λ.

Definition 3.2. Let Λ ⊂ Rd be a uniformly discrete infinite set. We call

D(Λ) = {u ∈ Sd−1 | there exists (`n) ∈ Λ with
`n
‖`n‖

→ u and `n →∞}

the set of asymptotic directions of Λ.

It is easy to see that D(Λ) is non-empty closed set. It will be very convenient to us to

introduce the subspace generated by D(Λ). Let L ⊂ Rd be the smallest linear subspace with

the property that D(Λ) ⊂ L. In other words, we have

L = Span(D(Λ)).

The next lemma is an important ingredient in the proof of Theorem 2.1.

Lemma 3.3. Assume that Λ is an infinite discrete approximate subgroup. Let L = Span(D(Λ))

be a proper subspace in Rd. Then there exists R > 0 (R = 3 · diam(F )) such that

Λ ⊂
⋃
x∈L

BR(x).

Proof. Let Λ ∈ Rd be an infinite discrete approximate subgroup, i.e., there exists a finite set

F ⊂ Rd with Λ−Λ ⊂ Λ +F . Denote by K = diam(F ). For any ε > 0 and any u ∈ Sd−1 we

define the cone

Vε(u) = {tv | t > 0, v ∈ Sd−1 with 〈v, u〉 ≥ 1− ε}.

Let us take R = 3K. We claim that

Λ ⊂
⋃
x∈L

BR(x).

Indeed, if there exists ` ∈ Λ such that ` 6∈
⋃

x∈LBR(x), let us define u = `
‖`‖ and 1 − ε =√

‖`‖2−5K2

‖`‖ . Then we construct a sequence `1, `2, `3, . . . in Λ with `n → ∞ and `n ∈ Vε(u).

Since, clearly, we have

Vε(u) ∩ L = {0Rd},

this will imply the contradiction.

The construction is the same as in the proof of Proposition 3.1. Let us define `1 = `. We

find `2 ∈ B2K(`1 + `) ∩ Λ. The following calculation guarantees that `2 ∈ Vε(u):〈
`2
‖`2‖

, u

〉
≥ 2‖`‖√

4`2 + 4K2
=

‖`‖√
`2 +K2

≥ 1− ε.
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Also, it is clear that ‖`2‖ ≥ ‖`1‖ + K. Assume that we constructed a finite sequence

`1, `2, . . . , `n ∈ Λ with ‖`m+1‖ ≥ ‖`m‖ + K, m = 1, . . . , n − 1, and `1, `2, . . . , `n ∈ Vε(u).

Then there exists `n+1 ∈ B2K(`n + `) ∩ Λ. Clearly, we have

‖`n+1‖ ≥ ‖`n‖+K.

Finally, for any vector v ∈ Vε(u) we have

B2K(v + `) ⊂ Vε(u).

This will guarantee that `n+1 ∈ Vε(u). Indeed, if a vector v ∈ Vε(u), then v+ Vε(u) ⊂ Vε(u),

and therefore we have:

dist(v + `, ∂Vε(u)) ≥ dist(v + `, ∂(v + Vε(u)))

= dist(`, ∂(Vε(u))) = ‖`‖(1− ε) =
√
‖`‖2 − 5K2 > 2K.

�

Our next step in the proof of Theorem 2.1 is to construct a system of “basis” vectors for Λ.

Let L = Span(D(Λ)), and let R satisfy

Λ ⊂
⋃
x∈L

BR(x).

Assume that dimL = k, where 1 ≤ k ≤ d, and denote by K = diam(F ). By uniform

discreteness of the approximate subgroup Λ, there exists ε > 0 such that for every M > 0

there exist k elements `1, . . . , `k ∈ Λ satisfying the following properties:

• (ε-well spreadness) For all 1 ≤ i ≤ k, any vi ∈ B2K(`i), and vj ∈ B2K(εj`j), j 6=
i, εj ∈ {−1, 1}, let us denote by γi the angle between vi and the subspace V i =

Span{v1, . . . , vi−1, vi+1, . . . , vk}. Then we require:

ε < γi < π − ε,

• (no short vectors) For every 1 ≤ i ≤ k we have

‖`i‖ ≥M.
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By almost symmetry of Λ, we can also find the “reflected” vectors {`′1, . . . , `′k} ⊂ Λ which

satisfy the property

`′i ∈ BK(−`i), i = 1, . . . , k.

Let us denote by F = {`1, . . . , `k, `′1, . . . , `′k}. By Lemma 3.1 there exists R > 0 such that

Λ ⊂ LR, where LR =
⋃

x∈LBR(x) the R-thickening of the subspace L. Let us assume

that R ≥ K. Finally, for any choice of M > 0, let us call the corresponding system F as

(M, ε, L,R)-system in Rd, and denote by T (F) = max{‖`i‖ | i = 1, . . . , k}.

Our next claim is the following.

Proposition 3.4. Let 0 < ε < 1 and R,K > 0. There exists M > 0 large enough such that

for every (M, ε, L,R)-system F = {`1, . . . , `k, `′1, . . . , `′k} in Rd and for any x ∈ Rd ∩LR with

‖x‖ large enough there exists ` ∈ F such that for every v ∈ BK(`) we have

‖x− v‖ ≤ ‖x‖ − Mε

12
.

Proof. By continuity of the distance function, it is enough to prove the conclusion of the

proposition in the case where

• F is symmetric, i.e., if ` ∈ F then −` ∈ F ,

• F ⊂ L,

• x ∈ L,

• v ∈ F .

Let us call the system F an (M, ε)-system, since F is already inside the subspace L. Our

next step is to observe that for any vector x ∈ S(L) = {x ∈ L | ‖x‖ = 1} there exists v ∈ F
such that the angle between x and v, denoted by γ, satisfies:

0 ≤ γ < π/2− ε/2.

Indeed, in the case of dim(L) = 1 the statement is obviously true. Assume that we know

that the statement is true for the case dim(L) = k − 1. Let dim(L) = k, and let us define

W = Span{`1, . . . , `k−1}. Let us denote by αi, i = 1, . . . , k − 1, the angles between x and

Li = {t`i | t ∈ R}. Assume that we have for all i = 1, . . . , k − 1:

π/2− ε/2 ≤ αi ≤ π/2.

Then we claim that for every vector w ∈ W , the angle α between x and w satisfies:

π/2− ε/2 ≤ α ≤ π/2.
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Indeed, denote by δ = cos−1(π/2− ε/2). Then we have for every vector w =
∑k−1

i=1 ci`i ∈ W
that

|〈x,w〉|
‖w‖

=

∣∣∣∑k−1
i=1 ci〈x, `i〉

∣∣∣
‖w‖

≤ δ
‖w‖1
‖w‖2

≤ δ.

This shows that the angle between x and w satisfies the claim.

Let us denote by U = Span{x, `k}. If dimU = 1, the claim that 0 ≤ γ < π/2−ε/2 is obvious.

So, assume that dimU = 2. Since W ∩ U is one-dimensional, there exists w ∈ W such that

U ∩W = Span{w}. Denote by Lw = Span{w}. Then we are in the two-dimensional case,

i.e., the vectors x, `k, w lie in the plane U ∩W . Let us denite by α the angle between the

vector x and Lw. Then α satisfies

π/2− ε/2 ≤ α ≤ π/2.

Denote by β the angle between `k and Lw. Then β satisfies by ε-spreadness of F :

ε < β ≤ π/2.

Altogether, this implies that the angle γ between x and the line spanned by `k satisfies:

0 ≤ γ < π/2− ε/2.

Next, let us consider a triangle with the vertices at the origin, x and at v ∈ F with the angle

between x and v, denoted by γ, satisfiying:

γ < π/2− ε/2.

Denote by D = ‖v‖. We have that D ≤ T (F). Also, denote by ε′ = cos (γ). We have that

ε′ ≥ ε/4. The cosine rule implies

‖x− v‖2 = ‖x‖2 +D2 − 2xD cos(γ).

Notice that if ‖x‖ ≥ T (F) ≥ ‖v‖ and assume that ‖x‖ ≥ 4T (F)
ε

we have:

‖x‖ − ‖x− v‖ =
D(2‖x‖ cos(γ)−D)

‖x‖+ ‖x− v‖
≥ D(‖x‖ε/2−D)

3‖x‖
≥ D‖x‖ε/4

3‖x‖
=
Dε

12
≥ Mε

12
.

�
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Proof of Theorem 2.1. Assume that Λ ⊂ Rd is an infinite discrete approximate subgroup

satsifying Λ−Λ ⊂ Λ+F for a finite set F . Denote by K = diam(F ) and by L = Span(D(Λ)).

Then by Lemma 3.3 there exists R > 0 such that Λ ⊂ LR =
⋃

x∈LBR(x). By the discussion

above, there exists ε > 0 such that for an arbitrary M > 0 there exists (M, ε, L,R)-system

F within Λ. Let us take M > 0 so large that the claim of Proposition 3.4 holds true. Let

R′ be such that for every x ∈ LR with ‖x‖ ≥ R′ there exists ` ∈ F with the property that

for every v ∈ BK(`) we have:

‖x− v‖ ≤ ‖x‖ − Mε

12
.

We will show that for every z ∈ LR we will have BR′(z) ∩ Λ 6= ∅. Assume, on the contrary,

that there exists z ∈ LR such that BR′(z) ∩ Λ = ∅ Take minimal R2 > R′ such that

BR2(z) ∩ Λ 6= ∅. This means that for every r < R2 we have Br(z) ∩ Λ = ∅, and that there

exists y ∈ BR2(z) ∩ Λ.

Let us denote by x = z− y. Then ‖x‖ = R2, and therefore there exists ` ∈ F ⊂ Λ such that

for every v ∈ BK(`) we have

‖x− v‖ ≤ ‖x‖ − Mε

12
< ‖x‖ = R2.

But, since Λ is an approximate subgroup with diam(F ) = K, we have that there exists

v ∈ BK(`) such that y + v ∈ Λ. This implies:

‖z − (y + v)‖ < R2.

Therefore, there exists r < R2 such that Br(z)∩Λ 6= ∅. So, we get a contradiction. Therefore,

indeed, for every x ∈ LR we have BR′(x) ∩ Λ 6= ∅. This finishes the proof of the theorem.

�

4. Proof of Theorem 2.2

It follows immediately from Theorem 2.1 that if Λ ⊂ Zd is an infinite approximate group,

then there exists a subspace L ⊂ Rd and R > 0 such that Λ ⊂ L + BR(0Rd), and for every

` ∈ L we have that Λ ∩ BR(`) 6= ∅. Let us call any Λ that satisfies these constraints with

respect to a subspace L as being relatively dense around L.

On the other hand, assume that Λ ⊂ Zd is relatively dense around a subspace L ⊂ Rd. We

will show that such Λ is necessarily an approximate subgroup.

Indeed, let us first take R1 > 0 with the property2 that for any point x ∈ Rd we have

BR1(x) ∩ Zd 6= ∅. Since, for any λ ∈ Λ there exists ` ∈ L such that λ ∈ BR(`), we have that

2We can take any R1 >
√
d
2 .
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for any λ1, λ2 ∈ Λ there exist x1, x2 ∈ Zd ∩ L+BR1(0) such that

λi ∈ BR+R1(xi), for i = 1, 2.

Therefore, there exist f1, f2 ∈ BR+R1(0) ∩ Zd such that

λi = xi + fi, for 1 = 1, 2.

Also, notice that x1 − x2 ∈ L + B2R(0). Therefore, there exists λ ∈ Λ such that x1 − x2 ∈
B3R(λ). Thus, there exists f ′ ∈ B3R(0)∩Zd such that x1−x2 = λ+f ′. Finally, let us denote

by F = B5R+2R1(0) ∩ Zd (finite set). Then we have

λ1 − λ2 = (x1 + f1)− (x2 + f2) = (x1 − x2) + (f1 − f2) = λ+ (f1 − f2 + f ′) ∈ Λ + F.

This finishes the proof of the Theorem.

�

5. Proof of Theorem 2.3

Let Λ be a discrete approximate subgroup in Rd. By Theorem 2.1 we know that there exist

a subspace L and R > 0 such that Λ is relatively dense around L, i.e., Λ ⊂ L+BR(0Rd) and

for any x ∈ L we have BR(x) ∩ Λ 6= ∅. Let us denote by π the orthogonal projection from

Rd to L. And let ΛL = π(Λ).

By linearity of the map π we get that ΛL is an approximate subgroup. For `1, `2 ∈ ΛL there

exist λ1, λ2 ∈ Λ such that `i = π(λi), i = 1, 2. Denote by L⊥ the orthgonal complement to

L, i.e., we have Rd = L⊕ L⊥. Then there exist µ1, µ2 ∈ L⊥ such that

λi = `i + µi, for i = 1, 2.

But Λ is an aproximate subgroup. Therefore, there exists a finite set F ⊂ Rd such that

Λ− Λ ⊂ Λ + F . This implies that there exist λ ∈ Λ, and f ∈ F such that

λ1 − λ2 = λ+ f.

By projecting both sides on L we obtain:

`1 − `2 = π(λ) + π(f).

Let us denote F ′ = π(F ) (a finite set). Then we have

ΛL − ΛL ⊂ ΛL + F ′.

We also have that ΛL is relatively dense in L since Λ ⊂ L+BR(0Rd).

The set ΛL is discrete. Indeed, assume that it is not discrete. Then there exists (`n) ⊂ ΛL

with `n → x ∈ L and `n 6= x for every n. Let (µn) ⊂ L⊥ such that λn = `n + µn ∈ Λ.
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Since all µn are bounded, then there is a convergent subsequence (µnk
). Denote its limit by

µ ∈ L⊥. Then we have

λnk
= `nk

+ µnk
→ x+ µ.

Since Λ is discrete, this implies that the sequence λnk
is fixed for k large enough. This implies

that the subsequence `nk
is fixed for k large enough and we get a contradiction.

All this together, shows that the set ΛL ⊂ L is a Meyer set.

Finally, by the construction we have Λ ⊂ ΛL +BR(0Rd).

�
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