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ABSTRACT. On a convex bounded Euclidean domain, the ground state for the Laplacian with
Neumann boundary conditions is a constant, while the Dirichlet ground state is log-concave.
The Robin eigenvalue problem can be considered as interpolating between the Dirichlet and
Neumann cases, so it seems natural that the Robin ground state should have similar concavity
properties. In this paper we show that this is false, by analysing the perturbation problem from
the Neumann case. In particular we prove that on polyhedral convex domains, except in very
special cases (which we completely classify) the variation of the ground state with respect to
the Robin parameter is not a concave function. We conclude from this that the Robin ground
state is not log-concave (and indeed even has some superlevel sets which are non-convex) for
small Robin parameter on polyhedral convex domains outside a special class, and hence also on
arbitrary convex domains which approximate these in Hausdorff distance.
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1. INTRODUCTION AND MAIN RESULTS

The Laplacian eigenvalue problem on a bounded convex domain Ω ⊂ Rn is to find a func-
tion u and a constant λ satisfying

(1.1) −∆u = λu in Ω,
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subject to one of the following boundary conditions:

Dirichlet: u = 0 on ∂Ω,

Neumann: Dνu = 0 on ∂Ω,

or Robin: Dνu + αu = 0 on ∂Ω.(1.2)

Here ν is the outward pointing unit normal to Ω, and α is a real constant. In this paper we
are exclusively concerned with the case α ≥ 0. For each of these problems, there exists an
non-decreasing sequence of eigenvalues

0 ≤ λ0 < λ1 ≤ · · · → ∞.

Our main interest in this paper is in the first Robin eigenvalue λR
0 (α) for α > 0, and the

corresponding ground state uα which is (up to scaling) the unique eigenfunction with definite
sign (which we take to be positive). The Robin problem (2.1)-(1.2) with α > 0 is often regarded
as interpolating between the Dirichlet and Neumann cases: if we consider α as a parameter,
the Neumann case corresponds to α = 0 and the Dirichlet case to the limit as α → ∞. In
particular, if we write the eigenvalues for each boundary condition as λD

j , λN
j , λR

j (α), then the
jth Robin eigenvalue λR

j (α) is monotone in α, so in particular we have following monotonicity
property:

λN
j ≤ λR

j (α) ≤ λD
j for all α ≥ 0.

We are particularly concerned with the shape of the first eigenfunction uα. In the Neumann
case, the first eigenfunction is constant. In the Dirichlet case, the first eigenfunction u∞ is log-
concave (that is, log u∞ is concave) [4]. Explicit eigenfunctions on rectangular domains show
that this cannot be improved to concavity of the eigenfunction itself.

In the Dirichlet case, the log-concavity of the first eigenfunction is a key step in proving
the lower bound on the gap between λD

0 and λD
1 [1, 19, 23]. Our investigation of the concavity

properties of the ground state was motivated by possible applications to such a lower bound
for the Robin case: indeed, in those cases where the first Robin eigenfunction is log-concave,
the same proof as in the Dirichlet case applies, implying the (non-sharp) inequality

λR
1 (α)− λR

0 (α) ≥
π2

D2 ,

where D is the diameter of Ω and α > 0. We describe this result in Section 2.
For some domains, the Robin eigenfunction uα can be found explicitly and is log-concave.

For example, on a ball Ω = BR of radius R > 0, the first eigenfunction uα is a rotationally
symmetric function uα(r) satisfying

u′′α +
d− 1

r
u′α + λR

1 (α) uα = 0 on [0, R), with u′α(0) = 0.

Defining v = (log uα)′, we have

(1.3) v′ =
u′′α
uα
−
(

u′α
uα

)2

= −d− 1
r

v− λR
1 (α)− v2 < −d− 1

r
v on [0, R)
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and v(0) = 0. Thus, v < 0 on (0, R). Letting w = v′ (so that w < 0 for small r by (1.3)) we find
that

w′ = −
(

d
r
+ 2v

)
w− λR

1 (α) + v2

r
< −

(
d
r
+ 2v

)
w on [0, R).

It follows that w < 0 on [0, R). The eigenvalues of the Hessian of log uα are (log uα)′′ = w < 0
and (log uα)′

r = v
r < 0, so uα is log-concave.

Another easily computed example is that of rectangular domains given by products of in-
tervals, where separation of variables produces the first eigenfunction as a product of concave
trigonometric functions, which is therefore log-concave.

One might expect then that in general, the first Robin eigenfunction uα with α > 0 on a
convex domain is log-concave, a question raised by Smits [20]. In this paper we show that
this is not the case: there exist convex domains, and small values of α > 0, for which the first
Robin eigenfunction uα fails to be log-concave and has some non-convex superlevel sets.

Our main result is concerned with convex polyhedral domains Ω in Rd, d ≥ 1, by which we
mean open bounded domains given by the intersection of finitely many open half-spaces:

Ω =
m⋂

i=1

{
x ∈ Rd

∣∣∣ x · νi < bi

}
,

where ν1, . . . , νm are unit vectors and b1, . . . , bm are constants. The corresponding faces Σi of Ω
are given by

Σi =
{

x ∈ Ω
∣∣∣ x · νi = bi

}
and νi denotes the outer unit normal to Ω on the face Σi. The tangent cone Γx to Ω at x ∈ Ω is

Γx :=
⋂

i∈I(x)

{
y ∈ Rd

∣∣∣ y · νi < 0
}

with index set I(x) :=
{

i ∈ {1, . . . , m}
∣∣∣ x · νi = bi

}
.

We introduce a special subclass of polyhedral domains, with terminology borrowed from [2]:

Definition 1.1. A convex polyhedral domain Ω in Rd is a circumsolid if there exists a ball
BR(x0) ⊂ Ω touching every face of Ω (that is, ∂BR(x0) ∩ Σi contains exactly one point for
every i ∈ {1, · · · , m}). Equivalently, Ω has the form

Ω =
m⋂

i=1

{
x ∈ Rd

∣∣∣ (x− x0) · νi < R
}

.

We say that a convex polyhedron Ω is a product of circumsolids if there is a decomposition of
Rd into orthogonal subspaces E1, · · · , Ek, and circumsolids Ωi ⊂ Ei for i = 1, · · · , k such that

Ω =
{

x ∈ Rd
∣∣∣ πi(x) ∈ Ωi for i = 1, . . . , k

}
where πi is the orthogonal projection from Rd onto Ei for each i. Here, circumsolids are triv-
ially products of circumsolids.

We say that a point x ∈ Ω has consistent normals if the outward unit normals {νi | i ∈ I(x)}
to the tangent cone Γx are such that there exists a solution γ ∈ Rd of the system of equations

γ · νi = −1, i ∈ I(x).
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FIGURE 1. Planar circumsolid examples: Regular triangle, regular pentagon,
skew quadrilateral

Otherwise we say that x has inconsistent normals. Consistency of the normals at x is equivalent
to the statement that the points {νi | i ∈ I(x)} lie in a hyperplane disjoint from the origin, or
to the statement that the tangent cone Γx is an (unbounded) circumsolid (see Proposition 9.3).

We mention some examples: In one dimension any interval is a circumsolid. Planar exam-
ples include all regular polygons, such as the triangle and pentagon in Figure 1. However
circumsolids can be non-symmetric, such as the skew quadrilateral in Figure 1. Every triangle
is a circumsolid (Figure 2). The same is not true for quadrilaterals: For the trapezium shown
in Figure 3 only a specific spacing between the ends (marked with a dashed line) results in a
circumsolid; a very long trapezium is not a circumsolid.

x0

ΩR

FIGURE 2. Skew triangle

Ω

FIGURE 3. Trapezium

In higher dimensions any affine simplex is a circumsolid: For any d + 1 points x0, . . . , xd

in Rd which do not lie in a (d − 1)-dimensional subspace, the tetrahedron {∑d
i=0 λixi | λi ≥

0, ∑i λi = 1} is a circumsolid (Figure 4).

FIGURE 4. Tetrahedron
FIGURE 5. Regular dodecahedron
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However, truncating one of the vertices as in Figure 6 does not produce a circumsolid unless
the plane of truncation is chosen to match the inscribed sphere. Other examples of three-
dimensional circumsolids include the platonic solids and other Archimedean solids (see for
example Figure 5).

Ω

FIGURE 6. Tetrahedron
with a flat top FIGURE 7. Prism over

a regular pentagon

In the plane, the only domains which are nontrivial products of circumsolids are rectangles
(products of intervals in orthogonal one-dimensional subspaces). In three dimensions, rect-
angular prisms (products of three intervals) are productes of circumsolids, as are prisms over
planar circumsolids, such as the example in Figure 7.

Ω
x0

FIGURE 8. Tetrahedron with non-
horizontal sliced tip

We note that if Ω is a product of circumsolids then every boundary point has consistent
normals, since we can define γ by πi(γ) = − 1

Ri
πi(xi

0− x) for i = 1, · · · , k, where xi
0 and Ri are

the centre and radius of the circumsolid Ωi ⊂ Ei for each i. In the plane, every boundary point
of a convex polygon has consistent normals. Figure 8 is an example of a convex polyhedron
in R3 with vertex x0 having inconsistent normals.

The following Theorem is the main result of this paper.
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Theorem 1.2. Let Ω be a convex polyhedral domain in Rd, d ≥ 2, which is not a product of circum-
solids. Then for sufficiently small α > 0, the first Robin eigenfunction uα is not log-concave.

To prove that the first Robin eigenfunction uα admits non-convex superlevel sets in dimen-
sion d ≥ 3, we make the following stronger assumption:

Theorem 1.3. Let Ω be a convex polyhedral domain in Rd. If d = 2 and Ω is not a product of
circumsolids, then the first Robin eigenfunction uα admits non-convex superlevel sets for sufficiently
small α > 0. The same conclusion holds if d ≥ 3 and Ω has boundary points with inconsistent
normals.

We stress that although Theorem 1.2 is stated for polyhedral domains, one cannot hope to
avoid such non-concavity results by imposing more regularity on the boundary.

Corollary 1.4. Let Ω0 be a convex polyhedral domain in Rd, d ≥ 2, which is not a product of circum-
solids. Then for any sufficiently small α > 0, for any convex domain Ω which is sufficiently close to
Ω0 in Hausdorff distance, the first Robin eigenfunction uα on Ω is not log-concave.

For α < 0, the first Robin eigenvalue λα is negative, and the methods used to prove Theo-
rem 1.2 and Corollary 1.4 also lead to the following result.

Theorem 1.5. Let Ω be a convex polyhedral domain in Rd, d ≥ 2, which is not a product of circum-
solids. Then for sufficiently small α < 0, the first Robin eigenfunction uα is not log-convex. Moreover,
for any convex domain Ω̂ which is sufficiently close to Ω in Hausdorff distance, the first Robin eigen-
function ûα on Ω̂ is not log-convex.

Our approach to Theorem 1.2 is to treat the Robin problem (2.1)-(1.2) for small positive α as
a perturbation from the Neumann case α = 0. To be more precise, let v = duα

dα

∣∣
α=0. Then we

show in Section 3 that the function v satisfies

(1.4)

∆v + µ = 0 in Ω,

Dνv = −1 on ∂Ω,

for some constant µ. The concavity properties of uα for small α relate directly to the concavity
properties of v, so we proceed to investigate the latter, in the particular case of polyhedral
domains. We deduce Theorem 1.2 from the statement that the solution v of (1.4) on a convex
polyhedral domain Ω is concave precisely when Ω is a product of circumsolids.

Our argument proceeds as follows: After some preliminary material on the perturbation
problem in Section 3, we prove in Section 4 the remarkable result that every C2 solution of
(1.4) on a polyhedral domain is a quadratic function. In section 5 we relate this to concave so-
lutions, by showing that any concave solution of (1.4) is C2 up to the boundary. This involves
expanding the solution in terms of homogeneous harmonic functions about any boundary
point, and requires in particular the interesting observation that any degree two homogeneous
harmonic function with bounded second derivatives and with Neumann boundary condition
on a polyhedral cone in Rd is a quadratic function.

In Section 8 we prove that those polyhedral domains on which a quadratic function solves
the equation (1.4) are products of circumsolids. This completes the preliminaries needed to
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prove our main Theorem 1.2 in Section 9. In the last section, we discuss some interesting
observations and open problems.

2. MOTIVATION: LOG-CONCAVITY AND THE FUNDAMENTAL GAP

In the case of Dirichlet boundary data, the log-concavity of the first eigenfunction is a key
step in proving the lower bound of the gap between the two smallest eigenvalues [1]. In the
case that the first Robin eigenfunction is log-concave, then a similar bound holds. Here we
note that we can include a potential, and since we impose the strong hypothesis that the first
eigenfunction is log-concave, we do not need to assume that the potential is convex.

Theorem 2.1. Let λ0 and λ1 be the two smallest eigenvalues for the eigenvalue problem

(2.1) −∆u + Vu = λu in Ω,

with Robin boundary conditions (1.2) on a bounded convex domain Ω with diameter D, and V ∈
L1

loc(Ω). If the ground state u0 associated to λ0 is log-concave, then

(2.2) λ1 − λ0 ≥
π2

D2 .

Proof. Let u0 and u1 be the eigenfunctions associated to λ0 and λ1 respectively. Since u0 is
positive on Ω, we can set

v(x, t) :=
e−λ1tu1(x)
e−λ0tu0(x)

which solves the parabolic equation

(2.3)
∂v
∂t

= ∆v + 2D log u0 · Dv on Ω× (0,+∞).

On the lateral boundary ∂Ω× (0,+∞), the normal derivative of v disappears:

Dνv =
e−λ1t

e−λ0t

(
Dνu1

u0
− u1Dνu0

u2
0

)
= v (−α + α) = 0.

By hypothesis, u0 is log-concave, so the drift term in (2.3) given by X := 2 D log u0 satisfies
the modulus of contraction inequality(

X(y, t)− X(x, t)
)
· y− x
|y− x| ≤ 0

corresponding to the modulus of contraction ω ≡ 0. Therefore by [1, Theorem 2.1], for some
large constant C > 0, the function

ϕ(s, t) := Ce−
π2

D2 t sin
(πs

D

)
for every s ∈ [0, D/2], t ≥ 0,

is a modulus of continuity for v, that is,

v(y, t)− v(x, t) ≤ 2 ϕ
(

y−x
|y−x| , t

)
for every x, y ∈ Ω, t ≥ 0,

where π2

D2 is the second (or the difference of the second and first) Neumann eigenvalue on the
interval. From this, we can deduce that

e−(λ1−λ0)t osc
Ω

(
u1

u0

)
≤ C e−

π2

D2 t for all t ≥ 0,
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which can only hold if inequality (2.2) holds. This completes the proof of Theorem 2.1. �

The argument given follows the approach used in the Dirichlet case [1]. A similar result
would follow using the gradient estimate approach of [19, 23].

The resulting estimate is sharp in the case α = 0, where it is the Payne-Weinberger inequal-
ity for the first nontrivial Neumann eigenvalue [18, 24]. Otherwise, it is not sharp, as can be
seen from the one dimensional case, where the eigenvalues can be computed. It is appealing
to conjecture that the sharp lower bound for given α and D should correspond to the gap for
the corresponding one-dimensional problem, which would result in an estimate which de-
pends on α and increases from π2

D2 to 3π2

D2 as α increases from 0 towards infinity. However, our
main theorem (Theorem 1.2, that the ground state is in general not log-concave) means that a
sharp result must necessarily be proved by rather different means.

3. THE ROBIN EIGENVALUE PROBLEM AND PERTURBATIONS

We recall some properties of the first Robin eigenvalue λα and the corresponding eigen-
function uα. These results are quite well established [13], see also [14, Theorem 1.3.1] or [11],
however we include a proof for the convenience of the reader.

Proposition 3.1. Let Ω be a connected bounded Lipschitz domain in Rd. Then

(1) For every α ∈ R, there is a first Robin eigenvalue λα ∈ R with a positive eigenfunction
uα ∈ H1(Ω).

(2) For every α ∈ R, the first Robin eigenvalue λα is simple.
(3) The function α 7→ λα is differentiable, with derivative given by

(3.1) λ̇α =

∫
∂Ω u2

α dH∫
Ω u2

α dx
≥ 0.

(4) The positive Robin eigenfunction uα (normalised to have 1
|Ω|
∫

Ω u2
α dx = 1) is C1-dependent

on α in H1(Ω) and in C0,β(Ω) for some β ∈ (0, 1). More precisely, uα is continuously depen-
dent on α in H1(Ω) and in C0,β(Ω), and if for α0 ∈ R, v is the unique solution, orthogonal to
uα0 in L2(Ω), of

(3.2)

∆v + λα0 v = −λ̇α0 uα0 in Ω,

Dνv + α0v = −uα0 on ∂Ω,

then uα = uα0 + v (α− α0) + o(α− α0) for every α in a neighbourhood of α0, where o(α−
α0)/(α− α0)→ 0 in H1(Ω) ∩ C0,β(Ω) as α→ α0.

Proof. We begin by showing that for every α ∈ R, there is a first Robin eigenvalue λα ∈ R. For
every M > 0, let [·, ·]M be given by

[u, v]M :=
∫

Ω
Du Dv dx + M

∫
Ω

u v dx

for every u, v ∈ H1(Ω). Then [·, ·]M is an inner product on H1(Ω), which by the theorem of
the bounded inverse [5, Corollary 2.7] is equivalent to the usual inner product on H1(Ω). We
denote by ‖·‖M the norm on H1(Ω) induced by [·, ·]M. For the rest of this proof, we denote by
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H1
M(Ω) the Hilbert space H1(Ω) equipped with the inner product [·, ·]M, and set

τ(u, v) =
∫

∂Ω
u v dH andquadquadb(u, v) =

∫
Ω

u v dH

for every u, v ∈ H1
M(Ω). The bilinear forms τ and b on H1

M(Ω) are bounded. Hence, by the
Riesz-Fréchet representation theorem [5, Theorem 5.5], for every u ∈ H1

M(Ω), there are unique
Tu ∈ H1

M(Ω) and Bu ∈ H1
M(Ω) satisfying

[Tu, v]M = τ(u, v) and [Bu, v]M = b(u, v)

v ∈ H1
M(Ω). This defines bounded linear mappings T and B on H1

M(Ω). Since H1(Ω) is
compactly embedded in L2(Ω), B is also a compact linear operator on H1

M(Ω). We employ
the two operators αT and B to characterise Robin eigenfunctions. First, recall that for every
α ∈ R, u ∈ H1(Ω) \ {0} is a Robin eigenfunction to eigenvalue λα if and only if u satisfies∫

Ω
Du Dv dx + α

∫
∂Ω

u v dH = λα

∫
Ω

u v dx

for every v ∈ H1(Ω), or equivalently for every M > 0,∫
Ω

Du Dv dx + M
∫

Ω
u v dx +

∫
∂Ω

u v dH = (λα + M)
∫

Ω
u v dx

for every v ∈ H1(Ω). Thus, if I is the identity operator then the above is equivalent to

(I + αT)u = (λα + M)Bu in H1(Ω).

By the continuity of the trace operator on W1,1(Ω) (cf [16, Theorem 15.8]) and Young’s in-
equality, we find that for all ε > 0, there is Cε > 0 such that

‖v‖2
L2(∂Ω) ≤ ε ‖Dv‖2

L2(Ω) + Cε‖v‖2
L2(Ω)

for every v ∈ H1(Ω) and so by choosing Mε = Cε/ε, we obtain that

(3.3) ‖v‖L2(∂Ω) ≤
√

ε
(
‖Dv‖2

L2(Ω) +
Cε
ε ‖v‖

2
L2(Ω)

)1/2
=
√

ε ‖v‖Mε

for every v ∈ H1(Ω). Applying Cauchy-Schwarz’s inequality and (3.3), we see

‖Tu‖2
Mε

= [Tu, Tu]Mε = τ(u, u) ≤ ‖u‖L2(∂Ω) ‖Tu‖L2(∂Ω) ≤ ε ‖u‖Mε ‖Tu‖Mε ,

proving that for every ε > 0, the operator T on H1(Ω), [·, ·]Mε has operator norm ‖T‖L(H1(Ω)) ≤
ε. Now, for given α ∈ R, we fix ε > 0 such that |α| < 1

ε . It follows that the operator αT on
(H1(Ω), [·, ·]Mε) has operator norm ‖−αT‖L(H1(Ω)) < 1. Hence the operator I + αT is invert-
ible on H1(Ω), and so uα ∈ H1(Ω) is a Robin eigenfunction with eigenvalue λα if and only if
uα is an eigenfunction of the operator Tα := (I + αT)−1B for the eigenvalue λα + Mε. Note, for
every α ∈ R, Tα is compact on H1(Ω) since (I + αT)−1 is bounded and B is compact on H1(Ω).
Therefore [5, Theorems 6.6 & 6.8], for every α ∈ R, the point spectrum σp(Tα) of Tα consists of

a sequence (Λ(j)
α )j≥1 of eigenvalues Λ(j)

α ∈ R \ {0} of finite algebraic and geometric mulitiplic-
ity. In particular, this proves the existence of the first Robin eigenvalue λα := 1

Λα(1)
−Mε ∈ R

for every α ∈ R (for α = 0, λα = 0 is the first Neumann eigenvalue). The eigenspace of λα

is one-dimensional (see [14, Theorem 1.3.1]) and admits a positive eigenfunction uα ∈ H1(Ω)
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satisfying the normalisation
∫

Ω u2
α dx = 1. Now, the family (Tα)α∈R of compact operators Tα

satisfies the hypotheses of [13, Theorem 2.6 of Chapter 8.2]. Thus, statement (4) with respect
to the topology given by H1(Ω) holds. Furthermore, if we apply [17, Theorem 3.14] to the
function w := uα̂ − uα − v(α̂ − α), then we see that statement (4) holds with respect to the
topology given by C0,β(Ω) for some β ∈ (0, 1). �

Next, we state a convergence result on Robin problems on varying domains, which is a
slight improvement of [6, Corollary 3.4]. For this, we recall the definition of the Hausdorff com-
plementary topology on open sets (cf [6, Section 2]). For closed subsets F1, F2 in Rd, the Hausdorff
metric dH is defined by

dH(F1, F2) = max
{

sup
x∈F1

dist(x, F2), sup
x∈F2

inf
y∈F1
|x− y|

}
,

where dist(x, Fi) := infy∈Fi |x − y| with the standard conventions dist(x, ∅) = +∞ so that
dH(x, F) = 0 if F = ∅ and dH(∅, F) := +∞ if F 6= ∅. Let Ωc = Rd \Ω be the complement
of Ω. Now, a sequence (Ωn)n≥1 of open sets Ωn in Rd converges to the open set Ω in Rd in
the Hausdorff complementary topology, which we write as Ωn → Ω inHc, if for every closed
ball B in Rd, one has that dH(B ∩Ωc

n, B ∩Ωc)→ 0 as n→ ∞.

Proposition 3.2. For d ≥ 1, let D ⊆ Rd be an open and bounded set, and let Ω and Ωn be open
domains with a Lipschitz continuous boundary satisfying Ω, Ωn ⊂⊂ D. Let

Ωn → Ω inHc, |Ωn| → |Ω|, Hd−1(∂Ωn)→ Hd−1(∂Ω)

as n → +∞. Furthermore, for α > 0, let λα,n and λα be the first Robin eigenvalue on Ωn and Ω, and
let uα,n and uα be the first positive Robin eigenfunctions with unit L2(Ω)-norm. Then

λα,n → λα as n→ +∞,

uα,n 1Ωn → uα 1Ω in H1(D) as n→ +∞.(3.4)

Furthermore, there are γ ∈ (0, 1) and C > 0 such that

(3.5) ‖uα,n‖C0,γ(Ωn)
≤ C for all n ≥ 1,

and for every non-empty set B ⊆ ⋂n≥n0
Ωn, n0 ≥ 1, and 0 ≤ γ̂ < γ, there is a subsequence (uα,n̂)n̂≥1

of (uα,n̂)n̂≥1 such that

(3.6) uα,n̂ → uα in C0,γ̂(B) as n̂→ +∞.

Proof. Under the hypotheses of this Proposition, [6, Corollary 3.4] implies (3.1). Thus,

lim
n→+∞

‖Duα,n‖2
L2(Ωn;Rd) + α‖uα,n‖2

L2(∂Ωn)
= lim

n→+∞
λα,n

= λα

= ‖Duα‖2
L2(Ω;Rd) + α‖uα‖2

L2(∂Ω).

(3.7)

Since Ωn ⊆ D for all n ≥ 1, we can conclude from the limit (3.7) and by [6, Lemma 4.2
and Lemma 4.7] that limit (3.4) holds strongly in L2(D) and weakly in H1(D). Moreover,
by limit (3.7) and since Duα,n 1Ωn → Duα 1Ω weakly in L2(D; Rd) as n → +∞ and by [6,
Lemma 4.7], it follows that limit (3.4) holds in H1(D). Finally, bound (3.5) and limit (3.6) in
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C0,γ̂(B) for every non-empty set B ⊆ ⋂
n≥1 Ωn and 0 ≤ γ̂ < γ are consequences from [17,

Proposition 3.6]. �

4. REGULAR SOLUTIONS ARE QUADRATIC

When α = 0, the perturbation problem (3.2) reduces to equation (1.4), with the constant
µ computed by integrating the first equation over Ω and applying the boundary condition,
yielding µ = Hd−1(∂Ω)/Hd(Ω).

In this and the next several sections we consider a class of problems generalising (1.4),
under the assumption that Ω is a convex polyhedral domain in Rd for d ≥ 2. More precisely,
this means that Ω is the intersection of finitely many open half-spaces:

Ω =
m⋂

i=1

{
x ∈ Rd

∣∣∣ x · νi < bi

}
,

and we can assume without loss of generality that the description is minimal, meaning that
omitting any one of the half-spaces from the intersection results in a strictly larger set. In this
case Ω has m faces

Σi =
{

x ∈ Ω
∣∣∣ νi · x = bi

}
for i = 1, . . . , m, each of which is itself a convex polyhedral subset of the affine subspace
{x ∈ Rd | νi · x = bi}. The outer unit normal to Ω on the face Σi is νi.

For an open convex set Ω in Rd, the tangent cone Γx to Ω at a point x ∈ Ω is defined by

Γx =
{

r(y− x)
∣∣∣ y ∈ Ω, r > 0

}
=
⋃
r>0

r(Ω− x).

If x is in Ω, the tangent cone Γx is simply Rd. In the case of polyhedral domains, the tangent
cone can be described as follows: For each point x ∈ Ω, let

(4.1) I(x) :=
{

i ∈ {1, . . . , m}
∣∣∣ x · νi = bi

}
index the faces touching x, then the tagent cone

Γx =
⋂

i∈I(x)

{
y
∣∣∣ y · νi < 0

}
.

This is a cone over the subset Ax = Γx ∩ Sd−1 of the unit sphere. In particular, Γx is the
intersection of finitely many half-spaces with the origin in their common boundary. We call
such a set a polyhedral cone.

Remark 4.1. A special feature of polyhedral domains is that for every x ∈ Ω there exists r > 0
such that Br(x) ∩Ω = x + (Br(0) ∩ Γx), so that Ω is a cone near x.

We now establish a version of the strong maximum principle on general open cones Γ with
a Lipschitz boundary. In this paper, our application of Proposition 4.2 remains on cones with
a polyhedral structure.
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Proposition 4.2. Let Γ be an open cone with Lipschitz boundary and vertex at the origin in Rd, and
r > 0. Let w ∈ H1(Br(0) ∩ Γ) be a weak solution of

(4.2)

∆w = 0 on Br(0) ∩ Γ,

Dνw = 0 on Br(0) ∩ ∂Γ.

If w(0) = 0 and w ≤ 0 on Br(0) ∩ Γ, then w ≡ 0 on Br(0) ∩ Γ.

By scaling it suffices to consider the case r = 1. We begin by setting A = Sd−1 ∩ Γ. Then the
set B1(0) ∩ Γ can be described by the polar coordinate map

(r, z) ∈ (0, 1)× A 7→ rz ∈ B1(0) ∩ Γ.

Since the set A is a Lipschitz domain in Sd−1, there is a complete L2(A)-orthonormal set
of eigenfunctions {ϕi}∞

i=0 for the Neumann Laplacian on A, with associated eigenvalues λi

which we arrange in non-decreasing order with λ0 = 0. Let w ∈ H1(B1(0) ∩ Γ). Then for
every r ∈ (0, 1), w ∈ H1( Br(0) ∩ Γ), the trace w(r, ·) of w exists in L2(A). Using this, we see
that w can be rewritten in polar coordinates as

(4.3) w(r, z) =
∞

∑
i=0

wi(r)ϕi(z) for every (r, z) ∈ [0, 1)× A,

where for every r ∈ (0, 1) and i ≥ 1,

(4.4) wi(r) := (w(r, ·), ϕi)L2(A)

is the ith Fourier coefficient of the trace of w(r, ·) in L2(A). In order to continuous the proof
of Proposition 4.2, we need to establish first some more properties of the series decomposi-
tion (4.3) of the weak solution w of (4.2). This is done in the next two statements.

Lemma 4.3. Let Γ be an open cone with Lipschitz boundary and vertex at the origin in Rd, and let
w ∈ H1(B1(0) ∩ Γ) be a weak solution of Neumann problem (4.2). Then for all i ≥ 1,

(4.5) fi := lim
r→1

wi(r)

exists, and furthermore the series ∑∞
i=0
√

1 + λi f 2
i converges with

(4.6)
∞

∑
i=0

√
1 + λi f 2

i ≤ C ‖w‖2
H1(B1(0)∩Γ).

Proof. The H1(B1(0) ∩ Γ)-norm of w can be written as

‖w‖2
H1(B1(0)∩Γ) =

∫
B1(0)∩Γ

w2 + |Dw|2 dHd

=
∞

∑
i,j=0

{∫ 1

0

(
wiwj + w′iw

′
j

)
rd−1 dr

∫
A

ϕi ϕjdHd−1(z)
}

+
∞

∑
i,j=1

{∫ 1

0
wiwjrd−3dr

∫
A

Dϕi · Dϕj dHd−1(z)
}

=
∞

∑
i=0

∫ 1

0

((
1 +

λi

r2

)
w2

i + (w′i)
2
)

rd−1 dr,

(4.7)
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where w′i(r) =
dwi
dr (r) =

∫
A∇w(r, z) · z ϕi(z) dHd−1(z) and∫

A
Dϕi · Dϕj dHd−1 = −

∫
A

∆ϕi ϕj dHd−1 = λi

∫
A

ϕi ϕj dHd−1 = λiδij.

Let δ ∈ (0, 1) and consider the mapping g : [δ, 1)→ L2(A) defined by

g(r) =
∞

∑
i=0

√
1 + λi w2

i (r) for every r ∈ [δ, 1).

Then ∣∣∣∣ d
dr

g(r)
∣∣∣∣ =

∣∣∣∣∣2 ∞

∑
i=0

√
1 + λi wiw′i

∣∣∣∣∣ ≤ ∞

∑
i=0

w2
i

(
1 +

λi

r2

)
+

∞

∑
i=0

(
w′i
)2

and so

|g(r2)− g(r1)| ≤
∫ r2

r1

∣∣∣∣ d
dr

g(r)
∣∣∣∣ dr

≤
∫ r2

r1

∞

∑
i=0

(1 +
λi

r2 )w
2
i +

∞

∑
i=0

(
w′i
)2 dr

≤ Cδ

∞

∑
i=0

∫ r2

r1

(
(1 +

λi

r2 )w
2
i + (w′i)

2
)

rd−1 dr.

(4.8)

for every 0 < δ < r1 < r2 < 1. By (4.7), the right hand side in the last estimate of (4.8) tends to
zero as r1, r2 → 1−. Hence, the Cauchy criterion implies that

lim
r→1−

g(r) =
∞

∑
i=0

√
1 + λi f 2

i exists,

where fi is defined by (4.5). This shows that the function g is absolutely continuous on [δ, 1]
for every δ ∈ (0, 1). By the mean value theorem for integrals, there is an rδ ∈ (δ, 1) satisfying

g(rδ) =
1

1−δ

∫ 1

δ
g(r)dr = 1

1−δ

∞

∑
i=0

∫ 1

δ

√
1 + λiw2

i dr ≤ Cδ
1−δ‖w‖

2
H1(B1(0)∩Γ),

where we also used (4.8) and (4.7). Using this together with (4.8), one finds

g(r) = g(r)− g(rδ) + g(rδ) ≤ C ‖w‖2
H1(B1(0)∩Γ)

for some C > 0 independent of r ∈ (δ, 1). Sending r → 1, we find (4.6). �

Due to Lemma 4.3, every weak solution w of (4.2) has the following series expansion.

Proposition 4.4. Let Γ be an open cone with Lipschitz boundary and vertex at the origin in Rd, and
follow the notation of Lemma 4.3. Then every weak solution w ∈ H1(B1(0) ∩ Γ) of (4.2) satisfies

(4.9) w(rz) =
∞

∑
i=0

fi rβi ϕi(z) for every z ∈ A and r ∈ (0, 1).

The convergence of the series holds in H1(B1(0) ∩ Γ) ∩ Cγr(Br(0) ∩ Γ) for every 0 < r < 1, where
γr ∈ (0, 1), and for every integer i ≥ 0, βi ≥ 0 solves

(4.10) β2
i + (d− 2)βi − λi = 0.

We will often use (4.10) in the form βi =
1
2

(
d− 2 +

√
(d− 2)2 + 4λi

)
.
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Proof. We define
ψi(rz) := rβi ϕi(z) for every rz ∈ B1(0) ∩ Γ.

Then ψi is harmonic on B1(0) ∩ Γ since

∆(rβ
i ϕi(z)) = rβi−2∆Sd−1 ϕi + (d− 1)

∂rβi

∂r
ϕi +

∂2rβi

∂r2 ϕi

= rβi−2 (−λi + (d− 2)βi + β2
i
)

ϕi

= 0

by (4.10) and the fact that ϕi satisfies

∆Sd−1
ϕi + λi ϕi = 0 on A.

Furthermore, ψi satisfies Neumann boundary conditions on B1(0)∩ ∂Γ, since ϕi satisfies Neu-
mann conditions on ∂A. Thus, each ψi is a weak solution of (4.2).

Now, let w̃ : B1(0) ∩ ∂Γ→ R be given by

w̃(r, z) :=
∞

∑
i=0

fi ψi(rz) =
∞

∑
i=0

fi rβi ϕi(z) for every rz ∈ B1(0) ∩ Γ,

where fi is given by (4.5). Next, we show that the infinite series of w̃ converges in H1(B1(0) ∩
Γ). For this, let w̃N be the partial sum of w̃ given by

w̃N(r, z) =
N

∑
i=0

fi rβi ϕi(z) for every rz ∈ B1(0) ∩ Γ.

For integers 1 ≤ M < N, applying (4.7) to w̃N − w̃M = ∑N
i=M+1 firβi ϕi, we find

‖w̃N − w̃M‖2
H1(B1(0)∩Γ) =

N

∑
i=M+1

∫ 1

0

(
f 2
i r2βi+d−1 + β2

i f 2
i r2βi+d−3

)
dr

=
N

∑
i=M+1

(
1

2βi + d
+

β2
i

2βi + d− 2

)
f 2
i

≤ C
N

∑
i=M+1

(βi + 1) f 2
i

≤ C
N

∑
i=M+1

√
1 + λi f 2

i .

Lemma 4.3 implies that the infinite series ∑∞
i=0
√

1 + λi f 2
i is convergent, and so there is w̃ ∈

H1(B1(0) ∩ Γ) such that w̃N converges to w̃ in H1(B1(0) ∩ Γ). Since every partial sum w̃N is a
weak solution of (4.2), the limit function w̃ is also a weak solution of (4.2) and has L2-trace

∞

∑
i=0

fi ϕi on A.

Since the same is true for w, we have w = w̃, proving that (4.9) holds in H1(B1(0) ∩ Γ).
To obtain convergence of the series (4.3) in Cγr(Br(0) ∩ Γ) for every 0 < r < 1 with some
γr ∈ (0, 1), we employ a reflection argument in a small neighbourhood U of each boundary
point of Br(0) ∩ ∂Γ as in [17] and use the interior Hölder-regularity result [12, Theorem 8.24].
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Further, we can cover Br(0) ∩ Γ \ ∂Γ by finitely many balls and apply again the interior Hölder-
regularity to w. Summarising, we see that for every 0 < r < 1, there is a γr ∈ (0, 1) such that
the series (4.3) converges in Cγ

r (Br(0) ∩ Γ). �

With the above preliminary results established, we can prove Proposition 4.2:

Proof of Proposition 4.2. Since w(0) = 0 and βi > 0 for i > 0, we have f0 = 0. Note that βi is
non-decreasing in λi and hence in i.

Now assume w is not identically zero. Let fi0 be the first non-zero coefficient, so that we
have

w(r, z) = rβi0

 ∑
βi=βi0

fi ϕi(z) + ∑
βi>βi0

firβi−βi0 ϕi(z)

 .

The bracket on the right is non-positive since w ≤ 0, and the second term converges uniformly
to zero in z as r approaches zero, while the first term is constant in r. Hence we have that the
term

h(z) := ∑
β=βi0

fi ϕi(z) ≤ 0 for all z ∈ A.

But h is a non-constant Neumann eigenfunction on the connected domain A, and hence
changes sign. This is a contradiction, and so w must be identically zero as claimed in Proposi-
tion 4.2. �

Although we are mostly interested in the perturbation problem (1.4), the results of this
section and the next also apply for a somewhat larger class: We consider (weak) solutions v of
the problem

(4.11)

∆v + µ = 0 in Ω,

Dνi v + γi = 0 on Σi.

where µ and γ1, · · · , γm are constants. We observe (by integration of the first equation over
Ω and application of the boundary condition on each face Σi) that these constants necessarily
satisfy the relation

m

∑
i=1

γiHd−1(Σi) = µHd(Ω).

The main result of this section is the following:

Theorem 4.5. Let Ω be a polyhedral domain in Rd with faces Σ1, . . . , Σm and v be a solution of (4.11).
If v ∈ C2(Ω) then v is quadratic; that is, there are constants aij, bi, c ∈ R such that

v(x) =
d

∑
i,j=1

aijxixj +
d

∑
i=1

bixi + c

for every x ∈ Ω.

Our strategy to prove Theorem 4.5 is to show that there exists a subspace E in Rd on which
the Hessian function (x, e) 7→ D2v|x(e, e) is constant for all unit vectors e ∈ E and x ∈ Ω. It will
follow from this that v(x) is a multiple of the squared length of the E component of x, plus
another function depending only on the E⊥ component, where E⊥ denotes the orthogonal
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complement of E in Rd. This reduces the original problem to a similar problem on the lower-
dimensional space E⊥, enabling an induction on dimension to establish the result.

Accordingly, we proceed by induction: For d = 1, a polyhedral domain is simply an in-
terval, and every solution to (4.11) is a quadratic function, so the statement of Theorem 4.5
holds in this case. Now, assume that the statement of Theorem 4.5 holds for every polyhedral
domain in Rj for j < d, and let Ω be a polyhedral domain in Rd and v ∈ C2(Ω) be a solution
of (4.11) on Ω. Since v ∈ C2(Ω), there exists (x0, e1) ∈ Ω× Sd−1 such that

Λ := max
x∈Ω, e∈Sd−1

D2v|x(e, e) = D2v|x0(e1, e1).

Lemma 4.6. Suppose that v is a C2 function on an open subset B of Ω, where Ω is a polyhedral domain
in Rd. For j ∈ {1, . . . , m}, let νj be the outward pointing unit normal vector on face Σj and suppose

(4.12) Dνj v + γj = 0 on Σj ∩ B.

Then for every tangent vector e parallel to Σj one has

(4.13) D2v|x(e, νj) = 0 for every x ∈ Σj ∩ B.

In particular, νj is an eigenvector for the Hessian D2v|x for each x ∈ Σj ∩ B.

Proof. On polyhedra, the normal vector νj is constant on face Σj. Differentiating the boundary
condition (4.12) in the direction of any tangent vector e ∈ TΣj yields (4.13). Since Rd can be
decomposed as a direct sum of the tangent space TΣj and the normal vector νj, (4.13) implies
that νj is an eigenvector for the Hessian D2v|x for x ∈ Σj ∩ B. �

Our second lemma captures in slightly greater generality the dimension-reduction argu-
ment outlined above:

Lemma 4.7. Suppose that v is a C2 solution of (4.11) on a convex open subset B of Ω, where Ω is a
polyhedral domain in Rd. If there exists (x0, e1) in B× Sd−1 such that

(4.14) D2v|x0(e1, e1) = Λ := sup
(x,e)∈B×Sd−1

D2v|x(e, e),

then there exists a subspace E of positive dimension in Rd such that

B ∩Ω =
{

x ∈ B
∣∣∣ πE(x) ∈ ΩE, πE⊥(x) ∈ Ω⊥

}
,

where E⊥ is the orthogonal complement of E, πE and πE⊥ are the orthogonal projections onto E and E⊥,
and ΩE = πE(Ω) and Ω⊥ = πE⊥(Ω) are polyhedral domains in E and E⊥ respectively. Furthermore,

(4.15) v(x) =
Λ
2
|πE(x− x0)|2 + Dv|x0 (πE(x− x0)) + g(πE⊥(x))

for all x ∈ B, where g is a C2 solution of an equation of the form (4.11) on πE⊥(B) ⊆ Ω⊥ ⊆ E⊥.

Proof. Without loss of generality, we can assume that we have chosen x0 ∈ B so that the
dimension of the eigenspace of Hv(x0) with eigenvalue Λ is maximized. We begin by defining
u to be the part of v without its quadratic approximation about x0:

(4.16) u(x) := v(x)− v(x0)− Dv|x0(x− x0)−
1
2

D2v|x0(x− x0, x− x0)
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for every x ∈ B. Then u has the following properties:

u(x0) = 0, Du(x0) = 0, D2u|x0 = 0;

Du|x = Dv|x − Dv|x0 − D2v|x0(x− x0, .) for every x ∈ B;(4.17)

∆u(x) = ∆v(x)− ∆v(x0) = −µ + µ = 0 for every x ∈ B ∩Ω;(4.18)

Dνj u(x) = 0 for all x ∈ Σj ∩ B if j ∈ I(x0),(4.19)

where the index set I(x0) is given by (4.1). To see that (4.19) holds, first note that this is
trivially satisfied if x0 6∈ ∂Ω, since then I(x0) is empty. If x0 ∈ ∂Ω, then by Lemma 4.6, for
every j ∈ I(x0), v satisfies (4.13). If x ∈ Σj ∩ B, then both x and x0 lie in the same face Σj and
so (x− x0) ∈ TΣj. By taking e = x− x0 and using (4.17) and (4.13), one has

Dνj u(x) = Dνj v(x)− Dνj v(x0)− D2v
∣∣

x0
(e, νj) = γj − γj = 0 for all x ∈ Σj ∩ B.

Now, let E be the eigenspace of D2v|x0 corresponding to its largest eigenvalue Λ. Then,
e1 ∈ E ∩ Sd−1. We choose an orthonormal basis {e1, e2, . . . , ek} of E, 1 ≤ k ≤ d, and set

f (x) = trE
(

D2u|x
)

:=
k

∑
i=1

D2u
∣∣

x (ei, ei) for every x ∈ B.

Then f has the following properties:

f (x) =
k

∑
i=1

(
D2v|x − D2v|x0

)
(ei, ei) for all x ∈ B by (4.16);

f (x0) = 0 by the above;(4.20)

∆ f (x) = 0 for every x ∈ Ω ∩ B by (4.18);

f (x) ≤ 0 for every x ∈ B;(4.21)

Dνj f (x) = 0 for every x ∈ B ∩ Σj, if j ∈ I(x0).(4.22)

To see that (4.21) holds, note that by (4.14),

D2u|x(ξ, ξ) = D2v|x(ξ, ξ)− D2v|x0(ξ, ξ) = D2v|x(ξ, ξ)−Λ ≤ 0

for all ξ ∈ E ∩ Sd−1 and x ∈ B.
To show (4.22), fix j ∈ I(x0). Then by Lemma 4.6 applied to v, the normal νj is an eigen-

vector of D2v|x for x ∈ Σj. On the interior of the face Σj, v ∈ C3(Σj) (since u extends by even
reflection in Σj as a harmonic function) and so we can differentiate (4.13) again to find

(4.23) D3v
∣∣

x (e, e, νj) = 0 for every e ∈ TΣj and x ∈ Σj.

Since the normal νj is an eigenvector of D2v|x0 , and all eigenspaces of the matrix D2v|x0 are
orthogonal, the eigenvector νj is either in E or belongs to the orthogonal space E⊥. If νj ∈ E⊥,
then ei is orthogonal to νj and so is in TΣj for each i ∈ {1, · · · , k}. Then (4.23) implies

Dνj f (x) = Dνj

(
k

∑
i=1

D2v
∣∣

x (ei, ei)

)
= 0
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for every x ∈ B ∩ Σj. On the other hand, if νj ∈ E, then

Dνj f (x) = Dνj

(
k

∑
i=1

D2u
∣∣

x (ei, ei)

)
= Dνj

(
∆u−

d

∑
i=k+1

D2u
∣∣

x (ei, ei)

)

= Dνj

(
0−

d

∑
i=k+1

D2u
∣∣

x (ei, ei)

)
= 0

for every x ∈ B ∩ Σj, where {ek+1, . . . , ed} is a basis for E⊥ ⊆ ν⊥j = TΣj, and we again use
(4.23).

By Remark 4.1, the set Ω∩ B∩ Br(x0) coincides with x0 + (Γx0 ∩ Br(0)) for sufficiently small
r > 0. Equations (4.20)-(4.22) (and that fact that f is continuous on B since v ∈ C2(B)) allow
us to apply Proposition 4.2 to the function f̃ (z) = f (x0 + rz) on B1(0) ∩ Γx0 to infer that f is
identically zero on a neighbourhood of x0. We conclude that the set where f vanishes is a non-
empty, open, and closed subset of B, hence equal to B. It follows from (4.16) that tr ED2v ≡ kΛ
on B. Since D2v ≤ ΛI on B, this implies that D2v(ei, ei) = Λ on B for all i = 1, . . . , k and so,

(4.24) D2v|x(e, e) = Λ for all x ∈ B and e ∈ Sd−1 ∩ E.

In particular E is contained in the Λ-eigenspace of D2v|x for every x ∈ B. Since we chose
x0 ∈ B such that k is the maximal dimension of the Λ-eigenspace of D2v|x over all x ∈ B, we
can conclude that E is the Λ-eigenspace of D2v|x for every x ∈ B. It then also follows that

(4.25) D2v|x(e, ê) = 0 for all x ∈ B, e ∈ E, and ê ∈ E⊥.

Now, writing x = πE(x) + πE⊥(x), integrating (4.24) along directions in E yields

v(x) = v(πE(x0) + πE⊥(x)) + Dv(πE(x0) + πE⊥(x))πE(x− x0) +
Λ
2
|πE(x− x0)|2.

By (4.25), differentiating Dv(πE(x0) + πE⊥(x)) in a direction tangent to E⊥ gives zero, so
Dv(πE(x0) + πE⊥(x)) is independent of πE⊥(x) and in particular is equal to Dv(x0). Defining
g(πE⊥(x)) = v(πE(x0) + πE⊥(x)) shows that v is of the form (4.15).

If k = dim(E) = d then E⊥ is trivial and there is nothing further to prove. Otherwise it
follows that g is a C2 function on πE⊥(B) ⊂ Ω⊥, and we have

0 = ∆v + µ = ∆g + kΛ + µ

and for νi ∈ E⊥ we have
0 = Dνi v + γi = Dνi g + γi.

That is, g is a C2 solution of an equation of the form (4.11) on the open subset πE⊥(B) of
Ω⊥ ⊆ E⊥. By Lemma 4.6, νj is an eigenvector of Hv(x) at every point x ∈ Σj ∩ B, and hence
the normals νj are either in E or E⊥. Then we can write

Ω ∩ B =
m⋂

i=1

{
x ∈ B

∣∣∣ x · νi < bi

}
=

⋂
i: νi∈E

{
x ∈ B

∣∣∣ x · νi < bi

}⋂ ⋂
i: νi∈E⊥

{
x ∈ B

∣∣∣ x · νi < bi

}
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=
⋂

i: νi∈E

{
x ∈ B | πE(x) · νi < bi

}⋂ ⋂
i: νi∈E⊥

{
x ∈ B

∣∣∣ πE⊥(x) · νi < bi

}
=
{

x ∈ B
∣∣∣ πE(x) ∈ ΩE, πE⊥(x) ∈ Ω⊥

}
,

where

ΩE =
⋂

i: νi∈E

{
x ∈ E

∣∣ x · νi < bi

}
and Ω⊥ =

⋂
i: νi∈E⊥

{
x ∈ E⊥

∣∣∣ x · νi < bi

}
.

This completes the proof of Lemma 4.7. �

Now, we can give the proof of Theorem 4.5:

Proof of Theorem 4.5. By Lemma 4.7 (applied with B = Ω), we have that v is of the form (4.15)
for some solution g of (4.11) on Ω⊥. If k = dim(E) = d then v is quadratic and there is nothing
further to prove. Otherwise the function g is a C2 solution of an equation of the form (4.11)
on Ω⊥ in Rd−k. By the inductive hypothesis, g is a quadratic function, and therefore v is also
quadratic. This completes the induction and the proof of Theorem 4.5. �

5. TAME DOMAINS

Our aim over the next several sections is to prove that concave solutions of (4.11) are twice
continuously differentiable. The result of the previous section then implies that such solutions
are quadratic functions.

Recall that a function f is semi-concave if there exists C ∈ R such that the function x 7→
f (x)− C|x|2 is concave.

Over the course of the next three sections we will prove the following:

Theorem 5.1. Let Ω be a polyhedral domain in Rd with faces Σ1, . . . , Σm, and v be a weak solution of
problem (4.11) for some µ, γ1, . . . , γm ∈ R. If v is semi-concave in Ω, then v ∈ C2(Ω).

The main difficulty in proving that v ∈ C2(Ω) is to understand the behaviour of v at points
on the boundary ∂Ω, particularly where two or more of the faces Σi intersect. We begin by
using the series expansion (4.9) to understand the behaviour of v near a boundary point x0 in
terms of homogeneous Neumann harmonic functions on the tangent cone Γx0 . A crucial step
in our argument will be to prove the result that homogeneous degree two Neumann harmonic
functions must be quadratic if they have bounded second derivatives. We will accomplish this
in the next section. In the rest of this section we will establish that this result is sufficient to
prove regularity.

Definition 5.2. For given vectors ν1, . . . , νm ∈ Rd, a polyhedral cone

Γ =
m⋂

i=1

{
x ∈ Rd

∣∣∣ x · νi < 0
}

is called tame if every degree two homogeneous harmonic function v ∈ C1,1(Γ) with homoge-
neous Neumann boundary condition on ∂Γ is quadratic. If Ω is a polyhedral domain in Rd

and B is a relatively open subset of Ω, then B is called tame if the tangent cone Γx is tame for
every x ∈ B.
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The significance of tameness for our argument is captured by the following preliminary
theorem which is the main result of this section.

Theorem 5.3. Let Ω be a polyhedral domain in Rd and B a relatively open tame subset of Ω. Then
every weak solution w ∈ C1,1(B) ∩ H1(B) of problem

(5.1)

∆w = 0 on Ω ∩ B,

Dνw = 0 on ∂Ω ∩ B

is in C2(B).

Proof ofTheorem 5.3. We first establish that the harmonic function w is twice differentiable at
each point x0 ∈ B, using the decomposition (4.9). Since the restriction of B to a sufficiently
small ball about x0 agrees with a translate of the tangent cone to Ω at x0, it is sufficient to
consider a Neumann harmonic function defined on a ball about the origin in a tame cone Γ.

Lemma 5.4. Let Γ be a tame polyhedral cone in Rd with outer unit face normals ν1, . . . , νm, and let
B = B1(0) ∩ Γ, where B1(0) is the open unit ball in Rd. Then there exist constants C > 0 and
γ ∈ (0, 1) depending only on Γ such that for every weak solution w ∈ C1,1(B) ∩ H1(B) of (5.1), there
exists a linear functional L : Rd → R with {ν1, . . . , νm} ⊆ ker(L) and a symmetric bilinear form
a : Rd ×Rd → R with trace tr(a) := ∑d

i=1 a(ei, ei) = 0 such that the following estimate holds:

(5.2)
∣∣w(x)− w(0)− L(x)− 1

2a(x, x)
∣∣ ≤ C ‖w‖L∞(B∩Γ) |x|2+γ for every x ∈ B1/2(0) ∩ Γ.

Consequently w has derivatives up to second order at x = 0, with Dw|0 = L and D2w|0 = a.

Proof of Lemma 5.4. We only need to consider the case d ≥ 2. By Proposition 4.4, w has the
series decomposition (4.3). Since in the series (4.3), ϕ0 ≡ 1 and β0 = 0, we have w(0) = f0.
Thus, writing in polar coordinates x = rz for r > 0 and z ∈ Sd−1,

w(rz) = w(0) + ∑
i>1

fi rβi ϕi(z) for every rz ∈ B ∩ Γ,

The second derivatives D2ψi of ψi(x) := |x|βi ϕi(x/|x|) are homogeneous of degree (βi − 2).
In particular, for every i with βi < 2, D2ψi is unbounded as r = |x| approaches zero, except
in the case where βi = 1 and ψi is a linear function. Since w ∈ C1,1(B), the only non-zero ψi

with 0 < βi < 2 are those with βi = 1, and these form a linear function L. Those ψi satisfy
homogeneous Neumann boundary conditions on B ∩ ∂Γ, implying that L(νi) = 0 for every
i = 1, . . . , m. Now, defining v(rz) := ∑βi=2 fi r2 ϕi(z) for every rz ∈ B ∩ Γ, one has that

(5.3) w(rz) = w(0) + L(rz) + v(rz) + ∑
βi>2

fi rβi ϕi(z)

for every rz ∈ B ∩ Γ. The function v is harmonic and homogeneous of degree 2, satisfies
Dνv = 0 on ∂Γ and has bounded second derivatives since they are given by limits of second
derivatives of w ∈ C1,1(B) as r → 0+. Thus v ∈ C1,1(Γ). Since Γ is tame, v is quadratic and
since v is a homogeneous quadratic function and so, there is a symmetric bilinear form a on
Rd such that

v(x) = 1
2a(x, x) for every x ∈ Γ.
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Since v is harmonic, we have that

0 = ∆v(x) = tr(a) for every x ∈ B ∩ Γ.

Furthermore, since v satisfies homogeneous Neumann boundary conditions, one has that

0 = Dνi v(x) = Dv|x(νi) = a(x, νi) for every x ∈ Σi and i = 1, . . . , m.

Differentiating the last equality in any direction e ∈ TxΣi,= (νi)
⊥, we see that

0 = a(e, νi) for every e ⊥ νi,

showing that νi is an eigenvector of a.
Next, defining β̄ = min{βi > 2 : fi 6= 0} > 2, the remaining term on the right-hand side

in (5.3) has the form
rβ̄ ∑

βi>2
firβi−β̄ ϕi(z).

Since fi is defined by (4.4)-(4.5) and since ‖ϕ‖L2(A) = 1, we have that

(5.4) | fi| ≤ ‖w‖L∞(B∩Γ) for every i ≥ 1.

Further, by [8, Corollary 1] and (4.10),

(5.5) ‖ϕi‖L∞(A) ≤ C λ
d−1

4
i ≤ C 2 β

d−1
2

i for every i ≥ 1,

where C = C(d) > 0 is a constant. Combining (5.4) and (5.5), one sees that

(5.6)

∣∣∣∣∣ ∑
βi≥2

fi rβi−β̄ ϕi(z)

∣∣∣∣∣ ≤ C ‖w‖L∞(B∩Γ) ∑
βi≥2

β
d−1

2
i rβi−β̄

Note, for every r ∈ (0, 1), there is an N(r) > 0 such that f (β) := β(d−1)/2 rβ is decreasing on
[N(r),+∞). Thus, for every r ∈ (0, 1), let ir ≥ 1 be the first integer satisfying βir ≥ N(r) + 2.
Then

β
(d−1)/2
i rβi ≤ β

(d−1)/2
ir rβir ≤ β

d−1
2

ir rβi for all i ≥ ir.

By the eigenvalue estimates due to Cheng and Li [8, Theorem 1] and (4.10), there is an integer
i∗ ≥ ir and a constant C = C(|A|, d) > 0 such that

βi ≥ 1√
d−1

√
λi ≥ C i

1
d−1 for all i ≥ i∗.

Applying this to the last estimate, we see that

β
(d−1)/2
i rβi ≤ β

(d−1)/2
ir rC i

1
d−1 for all i ≥ i∗

and so by (5.6), ∣∣∣∣∣∑i≥i∗

fi rβi−β̄ ϕi(z)

∣∣∣∣∣ ≤ C ‖w‖L∞(B∩Γ) ∑
i≥i∗

rC i
1

d−1 .

This shows that the series S(rz) := ∑βi≥2 fi rβi−β̄ ϕi(z) converges pointwise on B ∩ Γ, and
uniformly on B1/2(0) ∩ Γ. In particular, S is bounded on B1/2(0) ∩ Γ by C1/2 ‖w‖L∞(B∩Γ) for
some constant C1/2 > 0. Applying this to (5.3) and noting that β̄ > 2 yields the desired
estimate (5.2). The fact that Dw(0) = L and D2w(0) = a follow from this estimate.

�
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Continuation of the Proof of Theorem 5.3. The remaining difficulty in the proof of Theorem 5.3 is
to confirm continuity of the second derivative. As before in Lemma 5.4, it suffices to consider
a Neumann harmonic function w on a cone, and to establish the continuity of the second
derivative at the origin. Accordingly, we fix a point x0 in ∂Ω∩ B, and r0 > 0 sufficiently small
to ensure that

Ω ∩ Br0(x0) =
{

x0 + x
∣∣∣ x ∈ Γx0 , |x| < r0

}
,

where Γx0 is the tangent cone to Ω at x0. To show that the second derivatives of w are contin-
uous at x0, it is sufficient to show that the Neumann harmonic function

ŵ(x) =
u(x0 + r0x)

‖w‖L∞(Br0 (x0)∩Γx0 )

for every x ∈ B ∩ Γ

has continuous second derivative at the origin, where B = B1(0) is the open unit ball and Γ a
polyhedral cone with vertex at the origin.

Now we label parts of Γ according to the number of faces which intersect. Recall the faces
of Ω are Σi with outward unit normal vectors νi for every for i = 1, · · · , m. Then

Γ(k) :=
⋃

S⊂{1,··· ,m}
|S|=k

(⋂
i/∈S

{
x
∣∣∣ x · νi ≤ 0

})
∩

⋂
j∈S

{
x
∣∣∣ x · νj = 0

}
denotes the set of all x ∈ Γ where k faces intersect. Thus Γ(0) = Γ, Γ(1) = ∂Γ, and 0 ∈ Γ(m).

We now proceed by (decreasing) induction on k, starting with k = m:

Proposition 5.5. Let Γ be a tame polyhedral cone in Rd and B = B1(0)∩ Γ. Then there exist constants
C > 0 and γ ∈ (0, 1) depending only on Γ such that for every weak solution w ∈ C1,1(B) ∩ H1(B)
of (5.1),

(5.7)
∣∣w(y)− w(x)− Dw|x(y− x)− 1

2 D2w|x(y− x, y− x)
∣∣ ≤ C |y− x|2+γ

for every x ∈ B1/2(0) ∩ Γ(m) and y ∈ B ∩ Γ.

For the proof of Proposition 5.5 we will use the following auxiliary result, which will be
also useful several times later.

Lemma 5.6. Let a be a symmetric bilinear form and L a linear functional on Rd, and let c ∈ R. Define

q(x) = a(x, x) + L(x) + c for every x ∈ Rd.

If for r > 0 and M ≥ 0, one has that supx∈Br(0) |q(x)| ≤ M, then |c| ≤ M, ‖L‖ ≤ 2M/r, and the
eigenvalues λi of a satisfy |λi| ≤ 2M/r2.

Proof. Choosing x = 0 gives |c| ≤ M, implying that |a(x, x) + L(x)| ≤ 2 M for all x ∈ Br(0).
Further, for x ∈ Br(0), we have (by replacing x by −x) that |a(x, x)− L(x)| ≤ 2 M, and hence
(taking sums and differences) |a(x, x)| ≤ 2 M and |L(x)| ≤ 2 M. Thus, |λi| ≤ 2M/r2 follows
by choosing x/r to be a normalised eigenvector of a, and ‖L‖ ≤ 2M/r follows by choosing
x ∈ ∂Br(0) with L(x) = ‖L‖|x|. �

In order to apply the lemma above, we need a suitable ball. This is provided by the follow-
ing:
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Lemma 5.7. Let Ω be a bounded open convex set in Rd. Then there exist σ > 0 and R > 0 such that
for every x ∈ Ω and every r ∈ (0, R), there exists x̂ ∈ Ω such that the open ball Bσr(x̂) is contained
in Br(x) ∩Ω.

Proof. Let ρ− be the inradius and x− an incentre of Ω, and let ρ+ be the circumradius of Ω.
Then, for R = 2ρ+ (so that Ω is included in BR(x) for any x ∈ Ω) and σ = ρ−

R , one has that

(5.8) BσR(x−) = Bρ−(x−) ⊆ Ω = Ω ∩ BR(x)

for any x ∈ Ω. Now, for fixed x ∈ Ω and r ∈ (0, R), let

Tλ(y) = x + λ(y− x) for y ∈ Rd and λ = r
R ∈ (0, 1).

Since Tλ(y) = (1− λ)x + λy, convexity of Ω implies that Tλ(Ω) ⊆ Ω. Thus, by (5.8) and since
Tλ(BR(x)) = Br(x), one has that

Bσr(x−) = Tλ(BσR(x−)) ⊆ Tλ (Ω ∩ BR(x)) = Tλ(Ω) ∩ Tλ(BR(x)) ⊆ Ω ∩ Br(x),

as claimed. �

With these preliminaries, we can prove the base case of our (decreasing) induction.

Proof of Proposition 5.5. For x ∈ B1/2(0) ∩ Γ(m), the tangent cone Γx to Ω at x agrees with Γ at
the origin. Thus, we can apply Lemma 5.4 to the function

wx(v) = w
(

x +
v
2

)
for every v ∈ B1 ∩ Γ

and obtain that ∣∣wx(v)− wx(0)− Dwx|0(v)− 1
2 D2wx|0(v, v)

∣∣ ≤ C |v|2+γ

for all v ∈ B1/2(0) ∩ Γx. Now, setting v = 2(y − x) for y ∈ B1/4(x) ∩ Γ and using the def-
inition of wx we obtain that estimate (5.7) holds for all y ∈ B1/4(x) ∩ Γ. To derive the same
inequality for y ∈ B1(0) \ B1/4(x), we first derive bounds on the size of Dw|x and D2w|x, using
Lemma 5.6: by Lemma 5.7 applied to Ω = B ∩ Γ and r = 1/4, there are σ > 0 and x∗ ∈ B ∩ Γ
such that the open ball Bσ/4(x∗) is contained in B1/4(x) ∩ Γ. Due to estimate (5.7) and since w
is bounded on Bσ/4(x∗), there is a C > 0 such that

sup
y∈Bσ/4(x∗)

∣∣Dw|x(y− x) + 1
2 D2w|x(y− x, y− x)

∣∣ ≤ C.

For y ∈ Bσ/4(x∗), setting v = y− x∗, this shows that the quadratic function

q(v) := Dw|x (v + x∗ − x) + 1
2 D2w|x(v + x− x∗, v + x− x∗)

is bounded on Bσ/4(0) and hence by Lemma 5.6, the coefficients of q are bounded. Moreover,
the quadratic part of q gives that the eigenvalues λi(x) of D2w|x satisfy |λi(x)| ≤ 32C/σ2.
Since D2wx|0 = 1

4 D2w|x and D2wx|0 is symmetric by Lemma 5.4, the Hessian D2w|x is sym-
metric and so, the bound on λi(x) implies that ‖D2w|x‖ ≤ 32C/σ2. Further, the linear part of
q gives that

‖Dw|x + D2w|x(x∗ − x)‖ ≤ 8C/σ
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and since ‖D2w|x‖ ≤ 32C/σ2 and |x− x∗| < 1/4, this yields that ‖Dw|x‖ ≤ 16C/σ. Now, if
y ∈ B1(0) \ B1/4(x), then we have 1

4 ≤ |y− x| ≤ 3
2 , and so, the bounds on w(y), w(x), Dw|x,

D2w|x, |y− x| and |y− x|−1 show that∣∣w(y)− w(x)− Dw|x(y− x)− 1
2 D2w|x(y− x, y− x)

∣∣ ≤ C ≤ C |y− x|2+γ,

as required. �

Next, we establish the inductive step:

Proposition 5.8. Let Γ be a tame polyhedral cone in Rd and B = B1(0)∩ Γ. Suppose that there exists
a γ ∈ (0, 1) such that if a weak solution w ∈ C1,1(B) ∩ H1(B) of (5.1) satisfies

(5.9)
∣∣w(y)− w(x)− Dw|x(y− x)− 1

2 D2w|x(y− x, y− x)
∣∣ . |y− x|2+γ

for every x ∈ B1/2(0)∩ Γ(k) and y ∈ B1(0)∩ Γ, then w also satisfies (5.9) for all x ∈ B1/2(0)∩ Γ(k−1)

and y ∈ B1(0) ∩ Γ.

To prove this proposition, we intend to apply Lemma 5.4 about x ∈ (B1/2(0)∩ Γ(k−1)) \ Γ(k).
In order to do this we need to estimate the cone radius

(5.10) ρ(x) := sup
{

r > 0
∣∣∣ Br(x) ∩ Γ = x + (Br(0) ∩ Γx)

}
,

where Γ is a polyhedral cone in Rd with vertex at the origin and Γx the tangent cone to Γ at
x ∈ ∂Γ \ {0}. This is supplied by the following result.

Lemma 5.9. There exists σ > 0 such that

(5.11) ρ(x) ≥ σd(x, Γ(k)) for all x ∈ Γ(k−1) \ Γ(k).

We say that a convex cone Γ in Rd admits a linear factor E if there exist a linear subspace E of
Rd of positive dimension with orthogonal complement E⊥ in Rd and a convex cone Γ̃ in E⊥

such that
Γ =

{
x ∈ Rd

∣∣∣ πE⊥(x) ∈ Γ̃
}

,

where πE⊥ is the orthogonal projection onto E⊥. In this situation, we write Γ = Γ̃⊕ E.

The following observation is used in the inductive step of our argument, and will also be
used later in the paper.

Lemma 5.10. Let Γ be a polyhedral cone in Rd with vertex at the origin and outer unit face normals
ν1, · · · , νm. Let x0 ∈ ∂Γ \ {0}. Then the tangent cone Γx0 to Γ at x0 has a linear factor Rx0, and
so had the form Γx0 = Γ̃⊕Rx0, where Γ̃ is the polyhedral cone in the (d− 1)-dimensional subspace
(Rx0)⊥ of Rd defined by

(5.12) Γ̃ =
⋂

i∈I(x0)

{
x ∈ (Rx0)

⊥
∣∣∣ x · νi < 0

}
with I(x0) :=

{
i ∈ {1, . . . , m}

∣∣∣ x0 · νi = 0
}

.

Proof. Since

Γx0 =
⋂

i∈I(x0)

{
x ∈ Rd

∣∣∣ x · νi < 0
}

,

and i ∈ I(x0) implies νi · x0 = 0, we have that νi ∈ (Rx0)⊥ for all i ∈ I(x0). Therefore
Γx0 = Γ̃⊕Rx0, where Γ̃ is given by (5.12). �
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Proof of Lemma 5.9. If there is no such σ > 0 such that (5.11) holds, then there exists a sequence
(xn)n≥1 of points xn ∈ Γ(k−1) \ Γ(k) such that

(5.13)
ρ(xn)

d(xn, Γ(k))
→ 0.

Since both ρ(·) and d(·, Γ(k)) are homogeneous of degree one, we can scale xn so that xn ∈
Sd−1 ∩ Γ.

We first exclude the possibility that there are α > 0 and a subsequence (xn′)n′≥1 of (xn)n≥1

such that d(xn′ , Γ(k)) ≥ α for all n′ ≥ 1. Otherwise, for such a subsequence (xn′)n′≥1 of (xn)n≥1,
one has that ρ(xn′)→ 0. Since xn′ ∈ Sd−1 ∩ (Γ(k−1) \ Γ(k)), we can extract another subsequence
of (xn′)n′≥1 which we denote, for simplicity, again by (xn′)n′≥1 such that xn′ converges to a
point x̄ ∈ Sd−1 ∩ Γ(k−1) \ Γ(k). Label the faces so that x̄ · νi is in non-increasing order. Then,
since x̄ ∈ Γ(k−1) \ Γ(k), we have x̄ · νi = 0 for i = 1, . . . , k− 1 and x̄ · νk < 0. Since the function
x 7→ x · νi is continuous, any point x in Γ(k−1) \ Γ(k) sufficiently close to x̄ also satisfies x · νi = 0
for i = 1, . . . , k− 1 and x · νi <

1
2 x̄ · νk < 0 for i ≥ k. It follows that

Γx = Γx̄ =
k−1⋂
i=1

{
z
∣∣∣ z · νi < 0

}
,

so the tangent cone is constant and hence the cone radius ρ is continuous on Γ(k−1) near x̄. In
particular, we have that ρ(xn′) is bounded below, contradicting the fact that ρ(xn′)→ 0.

The remaining possibility is that d(xn, Γ(k)) converges to zero. Passing to a subsequence,
we have convergence to a point x̄ ∈ Sd−1 ∩ Γ(k). In particular for n sufficiently large xn ∈
Bρ(x̄)(x̄) ∩ Γ̄.

In Lemma 5.10, we have observed that since x̄ 6= 0, the tangent cone Γx̄ is the product
Γx̄ = Γ̃⊕Rx̄, where Γ̃ is a polyhedral cone in the (d− 1)-dimensional subspace (Rx̄)⊥. Thus,
it follows that both ρ(xn) and d(xn, Γ(k)) are invariant under translation in the x̄-direction and
homogeneous of degree one under rescaling about x̄. Therefore, we can replace xn by

x̃n =

(
xn − xn·x̄

|x̄|2 x̄
)

∣∣∣(xn − xn·x̄
|x̄|2 x̄

)∣∣∣ ∈
(
Γ̃× {0}

)
∩ Sd−1

and still have a sequence (x̃n)n≥1 satisfying x̃n ∈ Γ̃ ∩ (Γ(k−1) \ Γ(k)) and (5.13) where xn is
replaced by x̃n.

Now, we repeat the above argument inductively, with Γ replaced by Γ̃. At each application,
the dimension of the cone reduces by one, which is impossible since Γ is finite-dimensional.
This contradicts our assumption that there is no positive σ satisfying the statement of Lemma
5.9, so the proof of the Lemma is complete. �

Now, we can complete the proof of the inductive step.

Proof of Proposition 5.8. Fix x ∈ (B1/2(0) ∩ Γ(k−1)) \ Γ(k). Let x̃ ∈ Γ(k) be the closest point to
x in Γ(k) satisfying |x − x̃| < 1/2. We claim that x̃ ∈ B1/2(0). As λx̃ is in Γ(k) for λ > 0,
g(λ) := |x− λx̃|2 is minimised at λ = 1, and so 0 = g′(1) = −2(x− x̃) · x̃. Since x− x̃ and x̃
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are orthogonal,
|x|2 = |x− x̃ + x̃|2 = |x− x̃|2 + |x̃|2 ≥ |x̃|2

and since |x| < 1/2, it follows that |x̃| < 1/2 as claimed. Hence, by hypothesis, w satisfies (5.9)
at x̃. More precisely,

(5.14)
∣∣w(y)− w(x̃)− Dw|x̃(y− x̃)− 1

2 D2w|x̃(y− x̃, y− x̃)
∣∣ ≤ C|y− x̃|2+γ

for all y ∈ B1(0) ∩ Γ for some constant C > 0 and γ ∈ (0, 1). To make use of this, we define

w̃(y) := w(y)− w(x̃)− Dw|x̃(y− x̃)− 1
2 D2w|x̃(y− x̃, y− x̃)

for every y ∈ B1(0) ∩ Γ. Then w̃ is a weak solution of (5.1) on B1(0) ∩ Γ and by (5.14),

(5.15) |w̃(y)| ≤ C|y− x̃|2+γ for y ∈ B1(0) ∩ Γ.

To proceed, we will apply Lemma 5.4 about x. But first note that by x̃ ∈ Γ(k), after a possible
re-ordering, we may assume without loss of generality that x̃ · νi = 0 for all i = 1, . . . , k and
since x ∈ Γ(k−1) \ Γ(k), there must be an 1 ≤ i0 ≤ k such that x · νi0 < 0. Now, let ρ(x) be the
cone radius around x given by (5.10) and we claim that

(5.16) ρ(x) ≤ |x− x̃|.

If ρ(x) > |x− x̃|, then there is an ε > 0 such that

x + (B(1+ε)|x−x̃|(0) ∩ Γx) = B(1+ε)|x−x̃|(x) ∩ Γ

and since x̃ ∈ B(1+ε)|x−x̃|(x) ∩ Γ, there is a v ∈ B|x−x̃|(0) ∩ Γx such that v = x̃ − x. Then
x + (1 + ε)v ∈ x + (B(1+ε)|x−x̃|(0) ∩ Γx) and hence, x + (1 + ε)v ∈ Γ. However,

(x + (1 + ε)v) · νi0 = x · νi0 + (1 + ε)(x̃− x) · νi0 = −εx · νi0 > 0,

which contradicts the definition of Γ, proving our claim (5.16). Since |x− x̃| < 1/2,

ŵ(y) := w̃(x + yρ(x)) for y ∈ B1(0) ∩ Γx

is a well-defined function. Moreover, ŵ is a weak solution of (5.1) on B1(0) ∩ Γx. Hence, by
Lemma 5.4, there is a γ ∈ (0, 1) and a C > 0 such that∣∣ŵ(y)− ŵ(0)− Dŵ|0 y− 1

2 D2ŵ|0(y, y)
∣∣ ≤ C ‖ŵ‖L∞(B1(0)∩Γx) |y|

2+γ

for y ∈ B1/2(0) ∩ Γx. Note, by (5.15) and using (5.16),

(5.17) sup
B1(0)∩Γx

ŵ = sup
Bρ(x)(x)∩Γ

w̃ ≤ sup
B2|x−x̃|(x̃)∩Γ

w̃ ≤ C|x− x̃|2+γ.

Combining the last two estimates then gives∣∣ŵ(y)− ŵ(0)− Dŵ|0(y)− 1
2 D2ŵ|0(y, y)

∣∣ ≤ C|y|2+γ|x− x̃|2+γ

for y ∈ B1/2(0) ∩ Γx. By the definition of ŵ, this gives∣∣w̃(y)− w̃(x)− Dw̃|x(y− x)− 1
2 D2w̃|x(y− x, y− x)

∣∣ ≤ C
(
|y− x|
ρ(x)

)2+γ

|x− x̃|2+γ
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for every |y− x| < 1
2 ρ(x). Since by Lemma 5.9, there is a σ > 0 such that

(5.18) ρ(x) ≥ σ|x− x̃|,

we can conclude from the last estimate that

(5.19)
∣∣w̃(y)− w̃(x)− Dw̃|x(y− x)− 1

2 D2w̃|x(y− x, y− x)
∣∣ ≤ C |y− x|2+γ

for every |y− x| < 1
2 ρ(x). From this, we deduce bounds on Dw̃|x and D2w̃|x: By Lemma 5.7

applied to Ω = B1/2(x) ∩ Γ, there are x∗ ∈ B1/2(x) ∩ Γ and σ∗ > 0 such that the open ball
Bσ∗ρ(x)(x∗) is contained in Bρ(x)(x) ∩ Γ. By (5.17), we have

|w̃(x)|+ |w̃(y)| ≤ C|x− x̃|2+γ for every y ∈ Bσ∗ρ(x)(x∗)

and so, by (5.19), ∣∣Dw̃|x(y− x) + 1
2 D2w̃|x(y− x, y− x)

∣∣ ≤ C|x− x̃|2+γ

for every y ∈ Bσ∗ρ(x)(x∗). Moreover, from the previous application of Lemma 5.4 to ŵ, we
know that the Hessian D2ŵ|0 = ρ−2(x)D2w̃|x is symmetric. Thus Lemma 5.6 yields that

‖Dw̃|x(x∗ − x) + 1
2 D2w̃|x(x∗ − x)‖ ≤ C |x− x̃|2+γ

∥∥Dw̃|x + D2w̃|x(x∗ − x)
∥∥ ≤ 2C|x− x̃|2+γ

σ∗ρ(x)
≤ C|x− x̃|1+γ,(5.20)

∥∥D2w̃|x
∥∥ ≤ 2

4C|x− x̃|2+γ

σ2
∗ρ

2(x)
≤ C|x− x̃|γ,(5.21)

where we used the estimate (5.18) in the second inequalities of both (5.20) and (5.21). Since
|x− x∗| ≤ C|x− x̃|, inequality (5.20) implies that

(5.22) ‖Dw̃|x‖ ≤ C|x− x̃|1+γ.

Next, we establish estimate (5.19) for y ∈ (B1(0) \ Bρ(x)/2(x)) ∩ Γ: On this set, we have
|x − x̃|+ |y− x̃| ≤ C|y− x| due to (5.18) and since ρ(x)/2 ≤ |y− x|. Thus, by (5.15), (5.22),
and (5.21), ∣∣w̃(y)− w̃(x)− Dw̃|x(y− x)− 1

2 D2w̃|x(y− x, y− x)
∣∣

≤ |w̃(y)|+ |w̃(x)|+ ‖Dw̃|x‖ |y− x|+ 1
2‖D

2w̃|x‖ |y− x|2

≤ C|y− x̃|2+γ + C|x− x̃|2+γ + C|x− x̃|1+γ|y− x|+ C|x− x̃|γ|y− x|2

≤ C|y− x|2+γ,

as required. This shows that estimate (5.19) holds for all y ∈ B1(0)∩ Γ. Finally, we note that w̃
and w differ by a quadratic function, so

w̃(y)− w̃(x)− Dw̃|x(y− x)− 1
2 D2w̃|x(y− x, y− x)

= w(y)− w(x)− Dw|x(y− x)− 1
2 D2w|x(y− x).

(5.23)

Therefore inequality (5.9) holds for all y ∈ B1(0) ∩ Γ and x ∈ B1/2(0) ∩ Γ(k−1), and the proof
of Proposition 5.8 is complete. �
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Completion of the Proof of Theorem 5.3. Now, Proposition 5.5 and Proposition 5.8 allow us to es-
tablish estimate (5.7) for all points x ∈ B1/2(0) ∩ Γ and all points y ∈ B1(0) ∩ Γ, by (decreasing)
induction on k: Due to Proposition 5.5, estimate (5.7) holds for x ∈ Γ(m), and by Proposition 5.8
if estimate (5.7) holds for x ∈ Γ(k) then it also holds for x ∈ Γ(k−1). Therefore, by induction, es-
timate (5.7) holds for all x ∈ B1/2(0)∩ Γ(0) = B1/2(0)∩ Γ. This allows us to complete the proof
of Theorem 5.3 by proving that D2w is continuous at the origin. So we must prove that D2w|x
approaches D2w|0 as x ∈ B1/2(0) ∩ Γ approaches zero. To do this, we apply estimate (5.7)
about x ∈ B1/2(0) ∩ Γ: Let

w̃(y) = w(y)− w(0)− Dw|0(y)− 1
2 D2w|0(y, y)

for every y ∈ B ∩ Γ. By estimate (5.7),

|w̃(y)| ≤ C |y|2+γ for every y ∈ B1(0) ∩ Γ.

By (5.23), estimate (5.7) yields

sup
y∈B|x|(x)

∣∣Dw̃|x(y− x) + 1
2 D2w̃|x(y− x, y− x)

∣∣ ≤ C|x|2+γ

for every x ∈ B1/2(0). By Lemma 5.7 there is a ball of radius comparable to |x| in B|x|(x) ∩ Γ,
and applying Lemma 5.6 on this ball gives that

|Dw̃|x(x) + 1
2 D2w̃|x(x, x)| ≤ C|x|2+γ, ‖Dw̃|x + D2w̃|x(x, .)‖ ≤ C|x|1+γ,

and

(5.24) ‖D2w̃|x‖ ≤ C|x|γ

for every x ∈ B1/2(0) ∩ Γ. Since D2w̃|x = D2w|x −D2w|0, inequality (5.24) can be rewritten as

‖D2w|x − D2w|0‖ ≤ C|x|γ for every x ∈ B1/2(0) ∩ Γ.

proving that harmonic functions on a tame cone B1 ∩ Γ satisfying homogeneous Neumann
boundary condition on B1 ∩ ∂Γ are C2,γ. This completes the proof of Theorem 5.3. �

6. POLYHEDRAL CONES ARE TAME

Next, we prove the following, making the tameness hypothesis in Theorem 5.3 redundant.

Proposition 6.1. Every polyhedral cone Γ in Rd is tame.

Proof. The proof uses an induction on the dimension d ≥ 1, and uses the regularity results for
tame domains established in the previous section. Our argument here is similar to that used
in the proof of Proposition 4.5, in that we apply a strong maximum principle to the Hessian of
the function. The homogeneity of the function allows us to consider points x0 ∈ ∂Γ, which are
not near the vertex of the cone, and this is the basis of the induction on dimension: We observe
that by Lemma 5.10, the tangent cone is a direct product of a lower-dimensional cone with a
line: Γx0 = Γ̃ ⊕Rx0, where Γ̃ is a polyhedral cone in the subspace (Rx0)⊥. To proceed, we
need to understand the relationship between homogeneous harmonic functions on Γx0 and
those on Γ̃:
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Lemma 6.2. Any homogeneous degree 2 Neumann harmonic function u on Γ̃⊕Rx0 has the form

(6.1) u(x + sx0) = ũ(x) + sṽ(x) + C
(

s2|x0|2 −
1

d− 1
|x|2

)
for x ∈ Γ̃, s ∈ R, where ũ is a homogeneous degree 2 Neumann harmonic function on Γ̃, ṽ is a
homogeneous degree 1 Neumann harmonic function on Γ̃, and C is constant.

Proof. Without loss of generality, we may assume that |x0| = 1. We choose an orthonormal
basis for Rd so that x0 = ed. Denote A = (Γ̃⊕Red) ∩ Sd−1, and Ã = Γ̃ ∩ Sd−2. Then homoge-
neous degree 2 harmonic Neumann functions on Γ̃⊕Red are determined by their restriction
to A which is a Neumann eigenfunction. The corresponding eigenvalue is determined by the
relation (4.10) which produces λi = 2d when βi = 2 (cf [7, Chapter 2.4]).

In the case d = 2, the cone Γ̃ cannot be Re1, since then Γ would be R2, contradicting x0 ∈ ∂Γ.
Therefore Γ̃ is a ray in the direction of±e1, and the cone Γ̃⊕Rx0 is congruent to the half-space
H = {x > 0} in R2.

Any Neumann harmonic function u on H extends by even reflection to an entire harmonic
function on R2, which is therefore C∞. In particular a homogeneous degree 2 Neumann
harmonic function on H is C2 at the origin and therefore agrees with the degree 2 Taylor
polynomial, since the second derivatives are homogeneous of degree zero, which must equal
C(x2 − y2). In this case, (6.1) is satisfied with ṽ ≡ ũ ≡ 0.

Now, consider the case d ≥ 3. We will construct eigenfunctions on A from eigenfunctions
on Ã using separation of variables: We parametrise points of A by the map

Φ : Ã×
[
−π

2
,

π

2

]
→ Sd−1 given by Φ(z, θ) = (cos θ) z + (sin θ) ed, z ∈ Ã, θ ∈

[
−π

2
,

π

2

]
.

The construction which follows is quite general (producing a basis of eigenfunctions on warped
product spaces in terms of eigenfunctions on the warping factors), but we describe it here only
in our specific situation.

Sd−1
A

(z, θ)

θ
Sd−2

z
Ã

The metric induced on Ã× [−π/2, π/2] by the map Φ is

g = cos2 θ ḡ + dθ2,

where ḡ is the metric on Sd−2. The Laplacian in these coordinates is

∆Sd−1
=

1
cos2 θ

∆Sd−2 − (d− 2) tan θ ∂θ + ∂2
θ .
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If ϕ is an eigenfunction on Ã satisfying ∆Sd−2
ϕ + µϕ = 0, then the function f (θ)ϕ(z) satisfies

the eigenfunction equation on A with eigenvalue λ provided

(6.2) Lµ f := f ′′ − (d− 2) tan θ f ′ − µ

cos2 θ
f = −λ f .

Then f ϕ is a Neumann eigenfunction on A provided ϕ satisfies Neumann conditions on
Ã and f ϕ extends continuously to the poles θ = ±π

2 of A. If ϕ is constant on Ã (corre-
sponding to µ = 0) then this amounts simply to the requirement that f extends continu-
ously to [−π/2, π/2], but if ϕ is non-constant (corresponding to µ > 0) then continuity
of f ϕ at the poles amounts to the requirement that f has limit zero at ±π

2 . We note that
the endpoints ±π/2 are regular singular points of the ODE (6.2), and so solutions are as-

ymptotic to C1(θ + π/2)−
d−3

2 −
√
( d−3

2 )
2
+µ + C2(θ + π/2)−

d−3
2 +

√
( d−3

2 )
2
+µ as θ → −π/2, and to

C3(π/2 − θ)−
d−3

2 −
√
( d−3

2 )
2
+µ + C4(π/2 − θ)−

d−3
2 +

√
( d−3

2 )
2
+µ as θ → π/2. The continuity re-

quirements are therefore that C1 = 0 and C3 = 0.
The operator Lµ is essentially self-adjoint on L2((cos θ)d−2dθ). Accordingly, for any µ there

is an increasing sequence of values λµ,j approaching infinity such that there is a solution fµ,j of
equation (6.2) satisfying the required endpoint conditions. These form a complete orthonor-
mal basis for L2((cos θ)d−2dθ). We claim that if {ϕi}∞

i=0 is a complete orthonormal basis of
Neumann eigenfunctions on Ã with eigenvalues µi, then the resulting collection of eigen-
functions { fµi ,j(θ)ϕi(z)} forms a complete orthonormal basis of Neumann eigenfunctions on
A. To see this, suppose that g is a function in L2(dωḡ(cos θ)d−2dθ) which is orthogonal to
fµi ,j(θ)ϕi(z) for all i and j. That is, we have∫ π/2

−π/2

∫
Ã

g(z, θ)ϕi(z) dωḡ(z) fµi ,j(θ)(cos θ)d−2 dθ = 0

for all i and j. Fix i, and let gi(θ) =
∫

Ã g(z, θ)ϕi(z)dωḡ(z). Then gi is orthogonal to fµi ,j for
every j in L2((cos θ)d−2dθ), and so vanishes almost everywhere. It follows that for almost all
θ, gi(θ) = 0 for every i. That is, g(θ, z) is orthogonal to ϕi(z) for every i, and hence g(θ, z) = 0
for almost all z. This proves that g = 0 almost everywhere, proving completeness.

It follows that an eigenfunction on A with eigenvalue λ = 2d is a finite linear combination
of terms of the form fµi ,j(θ)ϕi(z) for which λµi ,j = 2d.

Lemma 6.3. For λ = 2d, solutions fµ of (6.2) with the required boundary conditions

fµ → C±(π/2− |θ|)−
d−3

2 +
√
( d−3

2 )
2
+µ as θ → ±π/2

exist only for µ = 0, µ = d− 2 and µ = 2(d− 1), and these are given by f0(θ) = sin2 θ− 1
d−1 cos2 θ,

fd−2(θ) = sin θ cos θ, and f2(d−1)(θ) = cos2 θ.

Proof. The particular solutions given are constructed from homogeneous degree two spherical
harmonics (harmonic polynomials on Rd): These arise from the above construction in the case
Ã = Sd−2, and so give rise to solutions of (6.2). On Sd−1, we have xd = sin θ and |x| = cos θ,
where x = (x1, · · · , xd−1).
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The harmonic function x2
d −

1
d−1 |x|2 therefore restricts to f0(θ) = sin2 θ − 1

d−1 cos2 θ. The
restriction of this to Sd−2 is constant, hence an eigenfunction with eigenvalue µ = 0 on Sd−2.
It follows that L0 f0 + 2d f0 = 0.

The harmonic function xdx1 restricts on Sd−1 to the function sin θ cos θ x1
|x| = fd−2(θ)ϕ(x/|x|)

on Sd−1, where ϕ(x) = x1 is a homogeneous degree one harmonic function on Rd−1, hence an
eigenfunction of the Laplacian on Sd−2 with eigenvalue µ = d− 2. It follows that Ld−2 fd−2 +

2d fd−2 = 0.
Finally, the harmonic function x2

2 − x2
1 on Rd restricts to f2(d−1)(θ)ϕ(x/|x|), where

f2(d−1)(θ) = cos2 θ and ϕ(x) = x2
2 − x2

1,

which is the restriction to Sd−2 of a degree 2 homogeneous harmonic function on Rd−1, hence
an eigenfunction of the Laplacian on Sd−2 with eigenvalue µ = 2(d − 1). It follows that
L2(d−1) f2(d−1) + 2d f2(d−1) = 0, as required.

These formulae can be checked by explicit computation.
The harder part of the proof is to show that these are the only solutions of (6.2) with

the required boundary conditions. It is convenient to perform a transformation of equation
(6.2) to de-singularise the endpoints at ±π/2. To do this we introduce the new variable s
by tanh(s/2) = tan(θ/2), so that s increases over the entire real line as θ increases from
−π/2 to π/2. This choice implies that dθ

ds = cos θ, and we have the identities cos θ = 1
cosh s ,

sin θ = tanh(s) and tan θ = sinh s. The equation (6.2) transforms to

0 = fss − (d− 3) tanh s fs +

(
2d

cosh2 s
− µ

)
f .

Defining f = (cosh s)
d−3

2 g then produces the equation

(6.3) 0 = gss +

(
(d + 1)(d + 3)

4 cosh2 s
−
(

d− 3
2

)2

− µ

)
g.

The behaviour at θ = ±π/2 translates to the condition that g is asymptotic to C2es
√
( d−3

2 )
2
+µ

as s→ −∞ and to C4e−s
√
( d−3

2 )
2
+µ as s→ ∞.

Next, we consider the Riccati equation associated to the ODE (6.2), which is the first order
ODE satisfied by the function q = gs

g :

∂sq =
gss

g
−
(

gs

g

)2

= µ +

(
d− 3

2

)2

− (d + 1)(d + 3)
4 cosh2 s

− q2.

The boundary conditions then become the requirement that q →
√(

d−3
2

)2
+ µ as s → −∞

and q→ −
√(

d−3
2

)2
+ µ as s→ ∞.

The function q approaches infinity whenever the value of g crosses zero. We remove these
singularities by defining a new variable σ which gives (twice) the angle from the positive x
axis of the point (g(s), gs(s)), so that tan (σ/2) = gs(s)/g(s) = q. This is defined only modulo
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2π, but a continuous choice of σ exists and is uniquely defined up to an integer multiple of
2π. It follows from the definition that tan(σ/2) = q, and we deduce that

(6.4) σs = (1 + cos σ)

(
µ + 1 +

(
d− 3

2

)2

− (d + 1)(d + 3)
4 cosh2 s

)
− 2.

From the asymptotic conditions on q, our construction requires a solution σ such that

σ(s)→ σ−(µ) := 2 arctan

√(d− 3
2

)2

+ µ


as s→ −∞, and σ(s)→ σ+(µ) modulo 2πZ as s→ ∞, where

σ+(µ) := −2 arctan

√(d− 3
2

)2

+ µ

 .

For each µ there is a unique solution σµ(s) of (6.4) with σµ(s) → σ−(µ) as s → −∞ (arising
from the solutions of (6.2) with the required asymptotics near θ = −π/2 provided by the
theory of regular singular points). It remains to find those values of µ for which σµ has the
required behaviour as s→ ∞.

The crucial property we require is monotonicity of σµ(s) with respect to µ for each s:
Suppose µ2 > µ1 ≥ 0. Then we observe that σµ1(x) satisfies

∂sσµ1 = (1 + cos σ)

(
µ1 + 1 +

(
d− 3

2

)2

− (d + 1)(d + 3)
4 cosh2 s

)
− 2

≤ (1 + cos σ)

(
µ2 + 1 +

(
d− 3

2

)2

− (d + 1)(d + 3)
4 cosh2 s

)
− 2,

so that solutions of (6.4) for µ = µ2 cannot cross σµ1 from above. But now for s sufficiently
negative we have σµ1(s) as close as desired to σ−(µ1), while σµ2(s) is as close as desired to
σ−(µ2), and we have σ−(µ1) < σ−(µ2). That is, we have σµ1(s) < σµ2(s) for s sufficiently
negative, and the comparison principle implies that this remains true for all s ∈ R. This proves
that σµ(s) is strictly increasing in µ ≥ 0 for any fixed s. The limit σµ := lims→∞ σ(µ, s) therefore
also exists and is (weakly) increasing in µ, although it can (and will) be discontinuous.

Our construction produces a solution fµ with the required boundary behaviour precisely
when σµ − σ+(µ) = 2πk for some k ∈ Z. Since σµ is increasing in µ and σ+(µ) is strictly
decreasing in µ, we have that σµ − σ+(µ) is strictly increasing in µ, and hence each integer
k can arise for at most one value of µ. We note from (6.4) that σµ(s) is strictly decreasing
at any point where it takes values which are an odd multiple of π (corresponding to points
where g(s) = 0), and hence the value of k can be computed as the number of points where the
corresponding solution g of (6.3) equals zero.

The three solutions constructed above allow us to compute σµ − σ+(µ) for these three spe-
cific values of µ: For µ = 0, the solution f0 = sin2 θ − 1

d−1 cos2 θ gives rise to

g = (cosh s)−
d−3

2

(
1− d

d− 1
1

cosh2 s

)
,
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which has two crossings of zero, so that we have σ0 − σ+(0) = −4π. For µ = d − 2, the
solution fd−2 = sin θ cos θ gives g = (cosh s)−

d+1
2 sinh s which has a single crossing of zero and

so, we have σd−2 − σ+(d− 2) = −2π. Finally, for µ = 2(d− 1), the solution f2(d−1) = cos2 θ

produces g = (cosh(s))−
d+1

2 , which has no zero crossings, and hence σ2(d−1)− σ+(2(d− 1)) =
0. Since the σµ − σ+(µ) is strictly increasing, there can be no other values of µ between 0 and
2(d− 1) for which σ− σ+ ∈ 2πZ. For µ > 2(d− 1) we have σµ − σ+(µ) > 0, and we observe
that the line σ = π cannot be crossed by solutions of (6.4) from below, so that we can never
have σµ − σ+(µ) = 2πk for k a positive integer. This completes the proof that only the values
µ = 0, d− 2, 2(d− 1) are possible. �

Finally, we complete the proof of Lemma 6.2: The argument above shows that a Neumann
eigenfunction on A with eigenvalue 2d has the form

f0(θ)ϕ0(z) + fd−2(θ)ϕd−2(z) + f2(d−1)ϕ2(d−1)(θ)v2(d−1)(z)

where f0, fd−2 and f2(d−1) are given in Lemma 6.3, and ϕ0, ϕd−2 and ϕ2(d−1) are Neumann
eigenfunctions with the corresponding eigenvalues on Ã ⊂ Sd−2. In particular, ϕ0 is a con-
stant, ϕd−2 is the restriction to Ã of a Neumann homogeneous degree 1 harmonic function ṽ on
Γ̃ ⊂ Rd−1, and ϕ2(d−1) is the restriction to Ã of a Neumann homogeneous degree 2 harmonic
function ũ on Γ̃.

The homogeneous degree 2 Neumann harmonic function u is then given by extending this
eigenfunction on A using the homogeneity:

u(x + sx0) = |x + sx0|2
(

cos2 θũ
(

x
|x|

)
+ sin θ cos θṽ

(
x
|x|

)
+ ϕ0

(
sin2 θ − 1

d− 1
cos2 θ

))
= |x + sx0|2

(
|x|2

|x + sx0|2
1
|x|2 ũ(x) +

s|x|
|x + sx0|2

1
|x| ṽ(x)

+ ϕ0

(
s2

|x + sx0|2
− 1

d− 1
|x|2

|x + sx0|2

))
= ũ(x) + sṽ(x) + ϕ0

(
s2 − 1

d− 1
|x|2

)
where we used sin2 θ = s2

s2+|x|2 and cos2 θ = |x|2
s2+|x|2 , the expressions for f0, fd−2 and f2(d−1)

from Lemma 6.3, and the homogeneity of ṽ and ũ. �

Remark 6.4. The proof above applies with minor modifications to prove that for any posi-
tive integer k, the values of µ which can give rise to an eigenfunction on A with eigenvalue
λ = k2 + (d− 2)k (corresponding to the restriction of a harmonic function on Γ̃×R which is
homogeneous of degree k) are precisely µ = j2 + (d− 3)j for j = 0, . . . , k (corresponding to
eigenfunctions on Ã given by the restriction of a harmonic function on Γ̃ which is homoge-
neous of an integer degree no greater than k).

Lemma 6.5. If Γ̃ is a tame cone in a (d− 1)-dimensional subspace E = (x0)⊥ of Rd, then Γ̃⊕Rx0 is
a tame cone in Rd.
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Proof. Suppose u is a homogeneous degree two Neumann harmonic function on Γ̃⊕Rx0, with
bounded second derivatives. By Lemma 6.2 we can write

u(x + sx0) = ũ(x) + sṽ(x) + C
(

s2|x0|2 −
1

d− 1
|x|2

)
for every x ∈ Γ̃,

where ũ is a homogeneous degree 2 Neumann harmonic function on Γ̃, ṽ is a homogeneous
degree 1 Neumann harmonic function on Γ̃, and C is constant. The last term has bounded
second derivatives, so the sum of the other two terms must also. Fixing s = 0 we conclude
that ũ has bounded second derivatives, and hence is quadratic function since Γ̃ is tame. Fixing
s = 1 we conclude that ṽ also has bounded second derivatives. But the second derivatives of a
homogeneous degree one function are homogeneous of degree−1, and hence are unbounded
unless they are zero. Therefore ṽ is a linear function, and we conclude that u is a quadratic
function. �

Now, we complete the proof of Proposition 6.1 by induction on dimension. Suppose that u
is a homogeneous degree 2 Neumann harmonic function on Γ with bounded second deriva-
tives. We must show that u is a quadratic function.

First, for d = 1 then every Neumann harmonic function is constant, so every homogeneous
degree 2 Neumann harmonic function vanishes and hence is a quadratic function.

Now suppose that every polyhedral cone in Rp is tame for 1 ≤ p < d, and let Γ be a
polyhedral cone in Rd. We observe that by Lemma 5.10, for every x0 ∈ ∂Γ \ {0} the tangent
cone Γx0 is a product of a cone Γ̃ in (x0)⊥ with Rx0. By the induction hypothesis, Γ̃ is tame,
and hence by Lemma 6.5 we conclude that Γx0 is tame. That is, Γ \ {0} is a tame domain. It
follows from Proposition 5.3 that u is C2 on Γ \ {0}.

Since the second derivatives of u are bounded, there exists a sequence (xk)k≥1 of points xk

in Γ and a sequence (ek)k≥1 of ek ∈ Sd−1 such that

eT
k D2u(xk)ek → C2 := sup

(x,e)∈Γ×Sd−1

eTD2u(x)e as k→ +∞.

The second derivatives of a homogeneous degree 2 function are homogeneous of degree zero,
so we can replace (xk)k≥1 by (x̃k)k≥1 given by x̃k = xk

|xk |
∈ Sd−1 ∩ Γ, and conclude that

eT
k D2u(x̃k)ek → C2 as k → +∞. By compactness, (x̃k, ek) converges for a subsequence of k

to (x̄, e) ∈ (Sd−1 ∩ Γ)× Sd−1. Since u is C2 at x̄, we have that D2u|x̄(ē, ē) = C2.
Now we apply Lemma 4.7 with B = Γ \ {0}, and deduce that Γ = ΓE × Γ⊥, where ΓE is a

polyhedral cone in a subspace E of Rd of positive dimension K, and Γ⊥ is a polyhedral cone
in E⊥, and we have

u(x) = Λ|πE(x)|2 + g(πE⊥(x)).

If K = dim E = d then since u is harmonic we have Λ = 0 and u vanishes. Otherwise we
write

u(x) = KΛ
(

1
K
|πE(x)|2 − 1

d− K
|πE⊥(x)|2

)
+ g̃(πE⊥(x)).

The first term is harmonic, and u is harmonic, so the last term g̃ is also harmonic. Furthermore,
since u is homogeneous of degree 2, so is g̃, and g̃ also satisfies zero Neumann boundary
conditions on Γ⊥ since u and the first term do. Finally, g̃ has bounded second derivatives
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since u does. Therefore by the induction hypothesis, g̃ is a quadratic function, and so u is
quadratic and Γ is tame. This completes the induction and the proof of Proposition 6.1. �

7. CONCAVE IMPLIES REGULAR

The results of the previous two sections allow us to complete the proof of the main regular-
ity result, Theorem 5.1. We begin with the following observation.

Lemma 7.1. Let Ω be a bounded domain in Rd with a continuous boundary ∂Ω. For µ ∈ R, let
v ∈ H1

loc(Ω) be weak solution of ∆v + µ = 0 on Ω. If v is semi-concave on Ω, then v belongs to
C1,1(Ω).

Proof. Note, that due to classical regularity theory of second order elliptic equations (cf [12,
Corollary 8.11]), v ∈ C∞(Ω). By assumption, there is constant C ∈ R such that D2v|x ≤ CI for
every x ∈ Ω. Given any x ∈ Ω and any unit vector e, choose an orthonormal basis {e1, · · · , ed}
with e = ed. Then

D2v|x(e, e) = ∆v(x)−
d−1

∑
i=1

D2v|x(ei, ei) ≥ µ− C(d− 1)

for every x ∈ Ω. Thus D2v is also bounded from below. It follows that Dv is Lipschitz with
bounded Lipschitz constant, and so extends continuously to Ω as a Lipschitz function. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. We prove that v is C2 on a neighbourhood of any point x0 ∈ ∂Ω. Choose
r > 0 sufficiently small such that

(7.1) Br(x0) ∩Ω = x0 + r(B1(0) ∩ Γx0)

and set
w(x) = v(x0 + rx)− Dv|x0(rx) +

µ

2d
r2|x|2 for every x ∈ B1 ∩ Γx0 .

Then w is well-defined on B1 ∩ Γx0 , with ∆w = 0 on B1 ∩ Γx0 , and

Dνw|x = rDνv|x0+rx − rDνv|x0 +
µ

d
r2 x · ν = 0 for x ∈ B1 ∩ ∂Γx0 ,

since both x0 and x0 + rx are in Σi, so Dνi v|x0+rx = Dνi v|x0 = −γi. We also use that x is normal
to νi. This shows that w is a weak solution of (5.1). By hypothesis, there is a constant C ∈ R

such that D2v ≤ C on Ω, and so

D2w|x(e, e) = r2D2v|x0+rx(e, e) +
µ

d
r2|e|2 ≤

(
r2C +

µ

d
r2
)
|e|2

for every e ∈ Rd and x ∈ B1 ∩ Γx0 , showing that w is semi-concave on B1 ∩ Γx0 . Thus, by
Lemma 7.1, w is in C1,1(B1 ∩ Γx0). By Proposition 6.1, B = B1(0) ∩ Γx0 is tame and hence by
Theorem 5.3, w ∈ C2(B). Since x0 is arbitrary, w ∈ C2(Ω). �

The results of Theorem 5.1 and Theorem 4.5 imply the following:

Corollary 7.2. Let Ω be a convex polyhedral domain in Rd with faces Σ1, . . . , Σm, and for given µ,
γ1, . . . , γm ∈ R, let v be a weak solution of problem (4.11). If v is semi-concave, then v is a quadratic
function.
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8. QUADRATIC SOLUTIONS AND CIRCUMSOLIDS

In this section we determine precisely which are the domains on which the solution of (1.4)
(or, more generally, (4.11)) is a quadratic function:

Proposition 8.1. Let v be a quadratic function on Rd, and let E1, · · · , Ek be the eigenspaces of the
Hessian of v with eigenvalues λ1, · · · , λk. Then v satisfies an equation of the form (4.11) on a convex
polyhedral domain Ω if and only if Ω = {x ∈ Rd | πEi(x) ∈ Ωi}, where Ωi is a polyhedral domain in
Ei for each i. Furthermore, v satisfies equation (1.4) if and only if λi < 0 and Ωi is a circumsolid in Ei

with center at the maximum of v|Ei and radius equal to −1/λi for each i (see Definition 1.1).

Proof. For a quadratic function, the Hessian D2v|x is constant. Accordingly we denote the Hes-
sian by A and let E1, . . . , Ek be the eigenspaces of A, so that we have v(x) = 1

2 ∑k
i=1 λi|πi(x)|2 +

b · x + c, where πi is the orthogonal projection onto Ei, where λ1, · · · , λk are the eigenvalues
of A, and b ∈ Rd and c ∈ R are constants.

First we show that v satisfies (4.11) on a polyhedral domain Ω if and only if Ω is a product
of polyhedral domains Ωi ⊂ Ei: If Ω has this form then

Ω =
k⋂

i=1

{
x | πi(x) ∈ Ωi

}
=

k⋂
i=1

mi⋂
j=1

{
x
∣∣∣ πi(x) · νi

j ≤ bi
j

}
=
⋂
i,j

{
x
∣∣∣ x · νi

j ≤ bi
j

}
,

where Ωi =
⋂mi

j=1{x ∈ Ei | x · νi
j ≤ bi

j} for each i. Thus the normals to the faces of Ω are ν
j
i for

1 ≤ i ≤ k and 1 ≤ j ≤ mi, corresponding to the face Σj
i = Ω ∩ {x | x · νj

i = bj
i}. The derivative

of v is given by

Dv|x(e) =
k

∑
p=1

λpπp(x) · e + b · e,

so on the face Σj
i we have

D
ν

j
i
v|x =

k

∑
p=1

λpπp(x) · νj
i + b · e = λix · ν

j
i + b · e = λib

j
i + b · e,

which is constant on the face. Also we have ∆v = ∑k
i=1 dim(Ei)λi which is constant, and so v

is a solution of an equation of the form (4.11) on Ω.
The converse statement follows from the argument of Lemma 4.7: Equation (4.13) shows

that each normal vector νi to a face of Ω is an eigenvector of A, and so lies in Ej for some j.
This allows us to write

Ω =
⋂

i

{
x ∈ Rd

∣∣∣ x · νi < bi

}
=

k⋂
j=1

⋂
νi∈Ej

{
x ∈ Rd

∣∣∣ x · νi < bi

}

=
k⋂

j=1

⋂
νi∈Ej

{
x ∈ Rd

∣∣∣ πj(x) · νi < bi

}

=
k⋂

j=1

{
x ∈ Rd

∣∣∣ πj(x) ∈ Ωj

}
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where Ωj =
⋂

i: νi∈Ej
{x ∈ Ej | x · νi < bi}.

Now we specialise to the case of equation (1.4): First suppose v is strictly concave, so that
λi < 0 for i = 1, · · · , k. Then we have

(8.1) v =
1
2

k

∑
i=1

λi|πi(x)|2 + b · x + c =
1
2

k

∑
i=1

λi

∣∣∣∣πi(x)− 1
λi

πi(b)
∣∣∣∣2 + c̃

for some constant c̃. Hence 1
λi

πi(b) is the maximum point of v restricted to Ei. The condition
that Ωi is a circumsolid in Ei with centre at the maximum of v|Ei and radius −1/(2λi) is that

Ωi =
mi⋂

j=1

{
x ∈ Ei

∣∣∣ (x− πi(b)
λi

)
· νi

j < −
1
λi

}
.

In this case, we have for x in the face Σi
j = {x | (x− πi(b)

λi
) · νi

j = −
1
λi
} that

Dνi
j
v(x) = ∑

p
λp

(
πp(x)−

πp(b)
λp

)
· νi

j = λi

(
πi(x)− πi(b)

λi

)
· νi

j = λi
−1
λi

= −1

as required. Conversely, if we suppose that the boundary condition in (1.4) holds, then we
can show that λi < 0 for every i as follows. We have

Dv|x(e) =
k

∑
p=1

λpπp(x) · e + b · e.

Integrating over Ωi and using the divergence theorem gives

−|∂Ωi| =
∫

∂Ωi

νi
j · Dv =

∫
Ωi

∆Ei v = dim(Ei)λi|Ωi|,

so that λi < 0 and v is strictly concave. Therefore v has the form (8.1), and the boundary
condition gives

−1 = Dv|x · νi
j = λi

(
πi(x)− πi(b)

λi

)
· νi

j

so that Ωi is a circumsolid in Ei with radius 1
λi

and centre at πi(b)
λi

. �

Corollary 8.2. For a convex polyhedral domain Ω, there is a quadratic function v solving the elliptic
boundary-value problem (1.4) if and only if Ω is a product of circumsolids.

Proof. Proposition 8.1 shows that if Ω has a quadratic solution of (1.4) then Ω is a product of
circumsolids. Conversely, suppose Ω is a product of circumsolids. Then there is a decompo-
sition Rd = E1 ⊕ · · · ⊕ Ek of Rd into orthogonal subspaces E1, . . . , Ek and

Ω =
k⋂

i=1

{
x ∈ Rd

∣∣∣ πi(x) ∈ Ωi

}
, where Ωi :=

mi⋂
j=1

{
x ∈ Ei

∣∣∣ (x− pi) · νi
j < Ri

}
for some pi ∈ Ei and Ri > 0. The above calculations show that

v(x) = −1
2

k

∑
i=1

|πi(x)− pi|2
Ri

for every x ∈ Ω,

is a solution of (1.4) on Ω. �
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Summarising, let v be a weak solution of (1.4) on a convex polyhedral domain Ω in Rd.
Then by Lemma 7.1, if v is semi-concave then v ∈ C1,1(Ω). Using that for every boundary
point x0 ∈ ∂Ω and r > 0 small enough, v can be written as v(x0 + r·) = w + q on B1(0) ∩ Γx0

for a quadratic function q and a weak solution w of (5.1), Theorem 5.3 and Proposition 6.1
states that v ∈ C1,1(Ω) implies v is in C2(Ω) and according to Theorem 4.5, the latter yields
that v is quadratic. By Proposition 8.1, v then needs to be concave. Combining this together
with Corollary 8.2, we can state the following characterisation.

Corollary 8.3. Let v be a weak solution of (1.4) on a convex polyhedral domain Ω in Rd. Then the
following statements are equivalent.

(1) v is semi-concave;
(2) v is in C1,1(Ω);
(3) v is in C2(Ω);
(4) v is quadratic;
(5) v is concave;
(6) Ω is a product of circumsolids.

9. PROOF OF THE MAIN RESULTS

In this section, we complete the proofs of our main results: Theorem 1.2, Theorem 1.3, and
Corollary 1.4.

Proof of Theorem 1.2. Suppose Ω is polyhedral domain in Rd that is not a product of circum-
solids. We first show that for all α > 0 small enough, the first Robin eigenfunction uα is not
log-concave. Set vα = log uα. Then v0 ≡ 0 and so, by Proposition 3.1, vα can be expanded as

vα = αv + f α,

where f α belongs to o(α) in C0,β(Ω) for all α > 0 small enough, β ∈ (0, 1), and v is a solution
of the Neumann problem (1.4) for µ = dλα

dα |α=0. Now, by Corollary 8.3, v is not concave on Ω.

Thus, there exist x, y ∈ Ω and t ∈ (0, 1) such that

ε := t v(x) + (1− t) v(y)− v(tx + (1− t)y) > 0.

On the other hand, for every δ > 0, there is an α0 > 0 such that ‖ f α‖∞ ≤ δα for all 0 < α ≤ α0.
Set δ = ε/4, and let α be less than the corresponding α0. Then

tvα(x) + (1− t)vα(y)− vα(tx + (1− t)y)

= α [t v(x) + (1− t)v(y)− v(tx + (1− t)y)]

+ t f α(x) + (1− t) f α(y)− f α (tx + (1− t)y)

≥ αε− 3δα > 0,

so vα is not concave for any α < α0, proving Theorem 1.2. �
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Next we consider the convexity of superlevel sets {x
∣∣ uα(x) > c}. We first establish two

preliminary results. The first is a Lichnérowicz-Obata type result for the first non-trivial Neu-
mann eigenvalue on a convex subset of the sphere Sd−1, which extends partially the result
of [10] by allowing non-smooth boundary, resulting in a larger class of quality cases.

Theorem 9.1. For d ≥ 3, let A be a convex open subset of the sphere Sd−1. Then the first nontrivial
eigenvalue

λ1(A) = inf
ϕ∈C∞(A):

∫
A ϕdVg=0

∫
A|Dϕ|2 dVg∫

A|ϕ|2dVg

of the Neumann Laplacian on A satisfies λ1 ≥ d− 1. Moreover, λ1(A) = d− 1 if and only if the cone
Γ = {x = rz ∈ Rd | z ∈ A} in Rd has a linear factor, so that (after an orthogonal transformation)
Γ = Γ̃ × R for some convex cone Γ̃ in Rd−1. In this case, the corresponding eigenfunction is the
restriction to Sd−1 of the linear function L(x, y) = y for (x, y) ∈ Rd−1 ×R.

Proof. First suppose that A has smooth boundary. Then for any u ∈ H1(A) and f ∈ H3(A)

with Dν f = 0 on ∂A, the following Reilly-type formula holds:∫
A
(∆ f − (d− 1)u)2 −

∫
A
‖∇2 f − ug‖2 − (d− 2)

∫
A
‖∇ f +∇u‖2 −

∫
∂A

h(∇̄ f , ∇̄ f )

= (d− 2)
[
(d− 1)

∫
A

u2 −
∫

A
‖∇u‖2

](9.1)

where∇ is the covariant derivative on Sd−1, h is the second fundamental form of ∂A, and ∇̄ f
is the gradient vector of the restriction of f to ∂A. This is proved by integration by parts and
application of the curvature identity (the proof due to the first author for the situation without
boundary is described in [9, Theorem B.18]).

In particular, given u ∈ H1(A) with
∫

A u = 0, let f be a solution of the problem

(9.2)

∆ f = (d− 1)u on A;

Dν f = 0 on ∂A.

With this choice the first term on the left vanishes, and the remaining terms are non-positive,
so the right-hand side is non-positive, proving the Poincaré inequality∫

A
‖∇u‖2 ≥ (d− 1)

∫
A

u2

for all u ∈ H1(A) with
∫

A u = 0, implying that λ1(A) ≥ d− 1.
Now consider the general case, where the boundary of A may not be smooth. Suppose

that {An} is a sequence of convex domains in Sn with smooth boundary, which converge in
Hausdorff distance to A (these can be constructed by smoothing level sets of the distance to
∂A, for example). Let {un} be the corresponding sequence of first eigenfunctions, normalised
to
∫

An
u2

n = 1. The solution of (9.2) is then given by fn = − d−1
λ1(An)

un. As n → ∞ we have
λ1(An)→ λ1(A), so λ1(A) ≥ d− 1.

Suppose that equality holds. Then we can find a subsequence along which un converges
weakly in H1 to the first eigenfunction u on A, and the interior regularity estimates imply
that un converges to u in C∞(B) for any compact subset B of A. The right-hand side of (9.1)
is equal to (d − 1) − λ1(An), which converges to zero. The first term on the left is equal to
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zero for every n, and the last term on the left is non-positive by the convexity of An, so on any
compact subset B we have∫

B
‖∇2 fn − (d− 1)un‖2 + (d− 2)

∫
B
‖∇ fn +∇un‖2

≤
∫

An

‖∇2 fn − (d− 1)un‖2 + (d− 2)
∫

An

‖∇ fn +∇un‖2

≤ (d− 2)(λ1(An)− (d− 1)).

Since fn converges to −u on B, the left-hand side converges to
∫

B ‖∇
2u + ug‖2, while the

right-hand side converges to zero. Therefore we have ∇2u + ug = 0 at every point of B, and
hence at every point of A since B is an arbitrary compact subset of A.

It follows that u is the restriction of a linear function on Rd to Sd−1: Define e(z) := u(z)z +
∇iu(z)gij∂jz ∈ Rd. Then we have

∂ke = ∂kuz + u∂kz +∇k∇iugij∂jz +∇iugij(−gkiz) = (∇2u + ug)kigij∂jz = 0,

so that e is constant on A. Finally, we have u(z) = e(z) · z, which is a linear function. The
claimed structure of A now follows from the Neumann condition Dνu = 0. �

This result has an immediate consequence, which is important in our proof of Theorem 1.3.

Lemma 9.2. Let Γ be a polyhedral convex cone in Rd with vertex at the origin. Then there is a harmonic
function ŵ on Γ which is homogenous of degree one and satisfies Dνŵ = −1 on ∂Γ.

Proof. Set A := Γ ∩ Sd−1. First consider the case when Γ does not admit a linear factor. Then
by Theorem 9.1, d− 1 is in the resolvent set ρ(−∆Sd−1

|A ) of the operator −∆Sd−1

|A equipped with
homogeneous Neumann boundary conditions and realised in L2(A). Therefore, there exists a
unique weak solution ϕ̃ of

(9.3)

∆Sd−1
ϕ̃ + (d− 1)ϕ̃ = 0 on A,

Dν ϕ̃ = −1 on ∂A.

It follows that the function

ŵ(rz) := r ϕ̃(z) for r ∈ [0, 1], z ∈ A

is harmonic on Γ, homogeneous of degree one, and satisfies Dνŵ = −1 on ∂Γ.
Now suppose Γ has a linear factor, so that there is a k ∈ {1, . . . , d − 1} such that A =

(Rk⊕ Γ̃)∩Sd−1 for a polyhedral cone Γ̃ in Rd−k with no linear factors. In particular, if k = d− 1
then Γ̃ = (0,+∞), and then ϕ̃(z) = z is a solution of (9.3) on Γ̃ and so,

ŵ(x1, . . . , xd−1, z) := z for every (x1, . . . , xd−1, z) ∈ Γ

is harmonic on Γ, homogeneous of degree one, and satisfies Dνŵ = −1 on ∂Γ. Otherwise we
have 1 ≤ k ≤ d − 2 and Γ̃ is a convex polyhedral cone with has no linear factor. Then by
the first case, there is a harmonic function w̃ on Γ̃ which is homogeneous of degree one and
satisfies Dνw̃ = −1 on ∂Γ̃. Then the function

ŵ(x1, . . . , xk, z) := w̃(z) for every (x1, . . . , xk, z) ∈ Rd−k × Γ̃ = Γ
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is a harmonic on Γ, homogeneous of degree one, and satisfies Dνŵ = −1 on ∂Γ. We note that
the solution space is in general of dimension k, since we can add an arbitrary linear function
on the linear factors. �

Further, in dimension d ≥ 3, we will use the following characterisation of polyhedra with
boundary points with inconsistent normals. We omit the proof of this result.

Proposition 9.3. Let Ω be a convex polyhedral domain in Rd, d ≥ 2, with outer unit face normals
ν1, . . . , νm. For each point x ∈ Ω, let I(x) be the index set (4.1) of faces touching x. Then the following
statements are equivalent.

(1) x has inconsistent normals: That is, there is no γ ∈ Rd satisfying

νi · γ = −1 for every i ∈ I(x).

(2) If ŵ is a function on Γx which is harmonic and homogeneous of degree one and satisfies

Dνi ŵ = −1 on Σi for all i ∈ I(x).

then ŵ is not a linear function.
(3) The tangent cone Γx to Ω is not a circumsolid.

We now proceed to the proof of Theorem 1.3:

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3, we first prove that the function v
satisfying the Neumann problem (1.4) has some non-convex superlevel sets.

Let x0 ∈ ∂Ω and Γ = Γx0 , and choose r > 0 small enough so that (7.1) holds. We define

ṽ(x) := v(x0 + x) +
µ

2d
|x|2 for x ∈ Br(0) ∩ Γ.

Then ṽ is harmonic on Br ∩ Γ and satisfies Dνṽ = −1 on Br ∩ ∂Γx0 . By Lemma 9.2, there is a
harmonic function ŵ on Γ which is homogenous of degree one and satisfies Dνŵ = −1 on ∂Γ.
Then the function

w(x) := ṽ(x)− ŵ(x) for every x ∈ Br(0) ∩ Γ

is a weak solution of the Neumann problem (4.2) on Br(0) ∩ Γ. Proposition 4.4 applied to a
suitable dilation of w gives the series expansion (4.9). Therefore, v can be written as

(9.4) v(x0 + x) = − µ

2d
|x|2 + ŵ(x) +

∞

∑
i=0

fi ψi(x) for every x ∈ Br ∩ Γ,

where ψi is the harmonic function on Γ given by

ψi(x) := sβi ϕi(z) for every x = sz with s > 0 and z ∈ A.

Here A = Γ∩ Sd−1, {ϕi}∞
i=0 is an orthonormal basis of L2(A) consisting of eigenfunctions ϕi of

the Neumann-Laplacian ∆Sd−1
on A, and βi are given by (4.10). Further, β0 = 0 (corresponding

to λ0 = 0), and the remaining βi are estimated by Theorem 9.1 and (4.10), so that βi ≥ 1 for
i ≥ 1. Moreover, there is no loss of generality in assuming that each βi > 1, since w̃(x) :=
∑i:βi=1 fiψi(x) is harmonic on Γ, of homogeneous degree one, and satisfies Dνw̃ = 0 on ∂Γ,
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and so w̃ can be included in ŵ. Summarising, we can write

(9.5) v(x0 + x) = v(x0)−
µ

2d
|x|2 + ŵ(x) +

∞

∑
i=1

fi ψi(x) for every x ∈ Br ∩ Γ,

where the non-vanishing terms in the sum all have exponent βi > 1.

Before continuing the proof of Theorem 1.3, we observe that the proof of Theorem 5.3 ap-
plies almost without change to prove the following generalisation:

Theorem 9.4. Let Ω be a polyhedral domain in Rd, and B a relatively open subset of Ω. Let w ∈
H1(B) be a weak solution of problem (5.1). For each x0 ∈ B ∩ ∂Ω, choose r(x0) > 0 small enough so
that (7.1) holds, so that by Proposition 4.4 w is given by the expansion

w(x0 + x) =
∞

∑
i=0

fi(x0)ψx0
i (x) for every x ∈ Br(x0)(0) ∩ Γx0 ,

where ψx0
i is the harmonic function on Γx0 given by ψx0(x) = |x|βi(x0)ϕx0

i

(
x
|x|

)
, Ax0 = Γx0 ∩

Sd−1, {ϕx0
i }∞

i=0 is an orthonormal basis of L2(Ax0) consisting of eigenfunctions ϕx0
i of the Neumann-

Laplacian ∆Sd−1
on Ax0 , and βi(x0) are given by (4.10). If fi(x0) 6= 0 only for those i with βi(x0) ≥ 2

for every x0 ∈ B ∩ ∂Ω, then w ∈ C2(B).

Continuation of the Proof of Theorem 1.3.
The case of inconsistent normals: In the case where Ω has a boundary point x0 where the

normal vectors are inconsistent, we have by Proposition 9.3 that ŵ is not a linear function.
It follows that ŵ does not have convex superlevel sets: Choosing any point z ∈ A where
ŵ(z) 6= 0 and D2ŵ|z 6= 0, we have that z is a null eigenvector of D2ŵ (since ŵ is homogeneous
of degree one), and that the trace of D2ŵ|z on the orthogonal subspace (Rz)⊥ is zero (since ŵ
is harmonic). It follows that D2ŵ|z has an eigenvector ξ ∈ (Rz)⊥ with positive eigenvalue, so
that D2ŵ|z(ξ, ξ) > 0.

Now let η = ξ − Dŵ|z(ξ)
ŵ(z) z. Then we have

Dŵ|z(η) = Dŵ|z(ξ)−
Dŵ|z(ξ)

ŵ(ξ)
Dŵ|z(z) = 0,

since Dŵ|z(z) = ŵ(z) by the homogeneity of ŵ. Also, we have

D2ŵ|z(η, η) = D2ŵ|z(ξ, ξ) > 0,

since z is a null eigenvector of D2ŵ|z. It follows that the superlevel set S = {x | ŵ(x) > ŵ(z)}
is not convex near z, since for small s 6= 0 we have ŵ(z± sη) > ŵ(z) and hence z± sη ∈ S,
but z /∈ S. Since ŵ is homogeneous, the superlevel sets Sλ = {x | ŵ(x) > λŵ(z)} are also
non-convex near λz, for any λ > 0.

Now we conclude that v also has some non-convex superlevel sets: By the non-convexity
and openness of S, there exist points x1 and x2 in Γ such that x1, x2 ∈ S but x1+x2

2 /∈ S. It follows
that there exists ε > 0 such that ŵ(xi) > ŵ(z) + ε for i = 1, 2, but ŵ

( x1+x2
2

)
< ŵ(z)− ε. Now
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we use the expression (9.4) to write

v(x0 + λxj) = v(x0) + λŵ(xj)−
µ

2d
λ2|xj|2 + ∑

i>1
fiλ

βi
ψi(xj)

= v(x0) + λ

(
ŵ(xj)−

µλ

2d
|xj|2 + ∑

i>1
λβi−1ψi(xj)

)
> v(x0) + λ

(
ŵ(xj)− ε

)
> v(x0) + λŵ(z)

for j = 1, 2, for λ > 0 sufficiently small. Here we used the fact that the sum ∑i>1 λβi−1ψi(xj)

converges to zero as λ approaches zero, which follows as in the proof of Lemma 5.4. Similarly,
we have

v
(

x0 + λ
x1 + x2

2

)
< v(x0) + λŵ(z)

for λ > 0 sufficiently small. This proves that the superlevel set {x | v(x) > v(x0) + λŵ(z)} is
not convex.

The case of consistent normals: Now we consider the case where the normals are consis-
tent at every point. By Proposition 9.3 this implies that for every x0, the function ŵ on Γx0

provided by Lemma 9.2 is linear. If for every x0 the non-zero terms in the expansion of the
Neumann harmonic function w(x) = ∑∞

i=1 fiψi(x) had exponent βi ≥ 2 for every x0, then by
Proposition 9.4 w is C2 near x0 and hence (9.5) implies that v is also C2 near x0.

However, if we assume that Ω is not a product of circumsolids, then by Corollary 8.3, we
have that v is not C2 and so there must be some x0 ∈ ∂Ω such that the first nontrivial term
in the sum in (9.5) has exponent βi between 1 and 2: Precisely, we can assume (by choosing a
new basis for the corresponding eigenspace if necessary) that

v(x0 + x) = v(x0)−
µ

2d
|x|2 + f1ψ1(x) +

∞

∑
i>1

fi ψi(x) + ŵ(x) for every x ∈ Br ∩ Γ,

where f1 > 0, 1 < β1 < 2, and βi > β1 for i > 1. Since ψi is homogeneous of order βi and
ŵ(x) = x · γ, we have

Dv|x0+λx(ξ) = γ · ξ − µλ

d
x · ξ +

∞

∑
i≥1

fi λβi−1Dψi
∣∣

x(ξ)(9.6)

D2v|x0+λx(ξ, η) = −µ

d
ξ · η + f1λβ1−2D2ψ1|x(ξ, η) +

∞

∑
i>1

fi λβi−2D2ψi
∣∣

x(ξ, η)(9.7)

for every x ∈ Br(0) ∩ Γ, λ ∈ (0, 1), and ξ, η ∈ Rd.
To show that v has a non-convex superlevel set, it suffices to show that there exists x with

x0 + x ∈ Ω, and ξ ∈ Rd, such that

Dv|x0+x(ξ) = 0 and D2v|x0+x(ξ, ξ) > 0.

We note that as λ approaches zero, the right-hand side of (9.6) is dominated by the first term
since the remaining terms are homogeneous of positive degree in λ, while the right-hand side
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of (9.7) is dominated by the first non-trivial term in the sum since this is homogeneous of
degree β1 − 2 < 0 in λ.

This motivates the following lemma:

Lemma 9.5. Suppose that the restriction of ψ1 to the hyperplanar section L := {x ∈ Γ | γ · x = |γ|}
of Γ = Γx0 is not concave. Then v has a non-convex superlevel set.

Proof. Since the restriction of ψ1 to L is not concave, there exists x ∈ L and ξ0 ⊥ γ such that
D2ψ1|x(ξ0, ξ0) > 0. The expression (9.6) then implies

Dv|x0+λx(ξ0) = O(λβ1−1), and Dv|x0+λx(x) = |γ|+ O(λβ1−1),

for λ → 0+, from which it follows that Dv|x0+λx(ξ0 + c(λ)x) = 0 for some c(λ) = O(λβ1−1)

as λ→ 0+. Then we have by (9.7) that

D2v|x0+λx(ξ0 + c(λ)x, ξ0 + c(λ)x) = λβ1−2 ( f1D2ψ1|x(ξ0, ξ0) + O(λσ)
)

,

where σ = min{β1 − 1, 2 − β2, β2 − β1}. In particular, since D2ψ1|x(ξ0, ξ0) > 0, we have
that D2v|x0+λx(ξ0 + c(λ)x, ξ0 + c(λ)x) > 0 for λ > 0 sufficiently small, proving that v has a
non-convex superlevel set. �

Remark 9.6. We are unable to establish the hypothesis of Lemma 9.5 for dimensions d ≥ 3, but
note here that this would be sufficient to prove that v has a non-convex superlevel set when-
ever Ω is not a product of circumsolids, substantially strengthening the result of Theorem 1.3.

The case d = 2: We can establish the hypothesis of Lemma 9.5 in the case d = 2, as follows:
In this case the tangent cone Γx0 at any boundary point x0 ∈ ∂Ω is a sector with opening angle
θ0 ≤ π. The case θ0 = π cannot arise, since in that case the homogeneous Neumann harmonic
functions on the half-plane Γx0 are spherical harmonics with integer degree of homogeneity,
so one cannot have β1 ∈ (1, 2). Therefore θ0 ∈ (0, π).

Let γ be the inward-pointing bisector of this sector of length 1/ sin (θ0/2). Then we have
νi · γ = −1 for i = 1, 2, where ν1 and ν2 are the outer unit normal vectors to the two faces of Ω
which meet at x0. The homogenous degree one harmonic function of Lemma 9.2 is then given
by ŵ(x) = γ · x. In particular ŵ is linear, so we are in the situation where all boundary points
have consistent normals.

The corresponding eigenfunctions are given by

ψi(r (cos θ) e1 + r (sin θ) e2) =

r
iπ
θ0 cos

(
iπ
θ0

θ
)

, i even;

r
iπ
θ0 sin

(
iπ
θ0

θ
)

, i odd,
for θ ∈

(
− θ0

2 , θ0
2

)
,

with degree of homogeneity βi =
iπ
θ0

, for non-negative integer i. Here, e1 = γ
|γ| , and e2 is a unit

vector orthogonal to γ.
The only possibilities which can give rise to 1 < βi < 2 are where θ0 ∈ (π/2, π) and i = 1.

In this case ψ1 is odd in θ, and hence is an odd function when restricted to the line L (see
Figure 9). Since an odd concave function is necessarily a multiple of the identity function, the
only possibility in which ψ1 has a concave restriction to L is when

ψ1(e1 + ye2) = cy,
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Γ

(0, 0)

γ
Rγ

S1

A
L

FIGURE 9. The case d = 2.

which implies by homogeneity that

ψ1(xe1 + ye2) = cxβ1−1y.

However a direct computation shows that this is harmonic only in the cases β1 = 1 or β1 = 2,
which are impossible. This proves Lemma 9.5 for the case d = 2, so we have established that
v has a non-convex superlevel set whenever Ω is not a product of circumsolids. We note that
for d = 2 this applies except when Ω is either a circumsolid or a rectangle.

Now we complete the proof of Theorem 1.3, by proving that the Robin eigenfunction uα

also has some non-convex superlevel sets for sufficiently small α > 0:
By Proposition 3.1, for all sufficiently small α > 0, the first Robin eigenfunction uα is given

by

(9.8) uα = 1+ αv + f α

where f α is o(α) in C0,β(Ω) for some β ∈ (0, 1).
We have proved that v has some non-convex superlevel sets, which means that there exist

points x1 and x2 in Ω, a number c ∈ R, and ε > 0 such that v(xi) > c + ε for i = 1, 2, but
v
( x1+x2

2

)
< c− ε. But then we have by (9.8) for α sufficiently small that

uα(xi) = 1 + αv(xi) + o(α) > 1 + αc + αε + o(α) > 1 + αc

for i = 1, 2, while

uα

(
x1 + x2

2

)
= 1 + αv

(
x1 + x2

2

)
+ o(α) < 1 + αc− αε + o(α) < 1 + αc.

It follows that the superlevel set {x | uα(x) > 1 + αc} is not convex for sufficiently small
α > 0. �

It remains to give the proof of Corollary 1.4.



46 BEN ANDREWS, JULIE CLUTTERBUCK, AND DANIEL HAUER

Proof of Corollary 1.4. It suffices to show the following: If Ω is a convex domain for which the
Robin ground state uα(Ω) is not log-convex (or has a non-convex superlevel set) for some α,
and {Ωn} is a sequence of convex domains which approach Ω in Hausdorff distance, then the
Robin eigenfunction uα,n of Ωn is not log-concave (respectively, has a non-convex superlevel
set) for sufficiently large n.

We apply Proposition 3.2, which applies since the volume and perimeter of convex sets are
continuous with respect to Hausdorff distance. In particular, by (3.6) the eigenfunctions un,α

converge uniformly to uα on any subset which is contained in Ωn for all large n.
Under the assumption that uα is not log-concave on Ω, there exist points x1 and x2 in Ω such

that 1
2 (log uα(x1) + log uα(x2)) > log uα

( x1+x2
2

)
, or equivalently uα(x1)uα(x2) > uα

( x1+x2
2

)2.
For sufficiently large n the points x1, x2 and x1+x2

2 are all contained in Ωn, and hence we have

uα,n(x1)uα,n(x2)− uα,n

(
x1 + x2

2

)2

→ uα(x1)uα(x2)− uα

(
x1 + x2

2

)2

> 0

as n → ∞, and hence the left-hand side is positive for sufficiently large n, proving that uα,n is
not log-concave for n large.

Similarly, under the assumption that uα has a non-convex superlevel set, there exist points
x1, x2 in Ω and c ∈ R such that uα(xi) > c for i = 1, 2, while uα

( x1+x2
2

)
< c. As before the

convergence of uα,n to uα at the points x1, x1 and x1+x2
2 guarantees that uα,n(xi) > c for i = 1, 2

and uα,n
( x1+x2

2

)
< c for n sufficiently large, proving that uα,n has a non-convex superlevel

set. �

10. FINAL DISCUSSIONS AND CONJECTURES

We conclude this paper by formulating some interesting observations and conjectures.

We recall that the Dirichlet eigenvalue problem corresponds to the limiting case α → +∞
in which it is well-known (cf [4]) that the first eigenfunction is log-concave. Thus, our first
conjecture is naturally:

1. Conjecture. For a given bounded convex domain Ω, there is an α0 > 0 such that for all
α ≥ α0, the first Robin eigenfunction uα is log-concave.

Furthermore, it would be interesting to know whether the threshold α0 depends on the
dimension d ≥ 2 and whether it can be independent of the domain Ω.

Let Ω be a convex polyhdral domain that is not the product of circumsolids. In order to
prove in dimensions d ≥ 3 that the first Robin eigenfunction uα has non-convex superlevel
sets without imposing the stronger hypothesis Ω has inconsistent normals at some boundary point,
our proof of Theorem 1.3 shows that one needs to study the second case when the harmonic
function ŵ given by Lemma 9.2 is linear. The linear case in dimension d = 2 is much simpler
to treat than the (d− 1)-dimensional hyperplaneH := {x ∈ Rd | x · γ = |γ|} reduces to a line
segment L. Nevertheless, we are convinced that the following conjecture holds.

2. Conjecture. If Ω is a convex polyhedron in Rd for d ≥ 3 which is not a product of
circumsolids, then for sufficiently small α > 0, the first Robin eigenfunction uα has non-convex
superlevel sets.
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Our argument shows that it would be sufficient to establish Lemma 9.5 whenever Γ is a
polyhedral convex cone which is a circumsolid about the point γ, and ψ1 is a homogeneous
harmonic function with Neumann boundary conditions on Γ with degree of homogeneity
between 1 and 2 (see Remark 9.6).

Our initial motivation for the work undertaken in this paper was to establish the funda-
mental gap conjecture for Robin eigenvalues:

Let Ω be a bounded convex domain in Rd of diameter D, V be a weakly convex potential, and for
α > 0, let λi(α) be the Robin eigenvalues on the interval (−D

2 , D
2 ). Then for α > 0, the Robin

eigenvalues λV
i (α) of the Schrödinger operator −∆ + V satisfy

λV
1 (α)− λV

0 (α) ≥ λ1(α)− λ0(α).

In the Dirichlet case this conjecture was first observed by van den Berg [21] and then later
independently suggested by Ashbaugh and Benguria [3], and Yau [22]. The complete proof
of the fundamental gap conjecture in this case was given in [1]. Theorem 2.1 is a first attempt
to prove the fundamental gap conjecture for Robin eigenvalues, but provides non-optimal
lower bounds. But due to our main Theorem 1.2, it is clear that this conjecture can only be
proved by methods avoiding the log-concavity of the first Robin eigenfunction. To the best
of our knowledge, only Lavine’s work [15] provides a proof of the fundamental gap conjec-
ture which does not use the log-concavity of the first eigenfunction. That paper concerns the
Dirichlet and Neumann case on a bounded interval. With this in mind, we conclude with the
following question:

Open problem. How can one prove the fundamental gap conjecture for Robin eigenvalues
without using the log-concavity of the first eigenfunction?
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