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(IN)STABILITY OF TRAVELLING WAVES
IN A MODEL OF HAPTOTAXIS *

K. HARLEY', P. VAN HEIJSTER', R. MARANGELL!, G.J. PETTET',
T.V. ROBERTS!, AND M. WECHSELBERGER#

Abstract. We examine the spectral stability of travelling waves of the haptotaxis model studied
in [16]. In the process we apply Liénard coordinates to the linearised stability problem and use a
Riccati-transform/Grassmanian spectral shooting method & la [18, 25, 26] in order to numerically
compute the Evans function and point spectrum of a linearised operator associated with a travelling
wave. We numerically show the instability of non-monotone waves (type IV) and the stability of the
monotone ones (types I-III) to perturbations in an appropriately weighted space.

Key words. Evans function, Liénard coordinates, stability of travelling waves, haptotaxis.

AMS subject classifications. 35B25, 34B16, 34D15, 35P05

1. Introduction. We study the system of partial differential equations (PDEs)
introduced in [33] to describe haptotactic cell invasion in a model for melanoma. Hap-
totaxis, similar to chemotaxis, describes the preferred motion of cells towards, or away
from, the gradient of a chemical concentration. This chemical is bound to a surface for
haptotaxis, while it is suspended in a fluid for chemotaxis [16]. The original proposed
model in [33] considered three densities: the extracellular matrix (ECM) concentra-
tion, the invasive tumour cell population, and the density of protease. However, as
the protease reaction was assumed to happen on a (super-)fast time scale [33], a quasi-
steady state approximation was used to reduce to a simplified model considering only
the densities of the ECM and the tumour. Written in the nondimensionalised form of
[16] that emphasises its advection-reaction-diffusion structure, the model is given by

(1) () =< (2) + (o) *(wn):

where u and w represent nondimensionalised concentrations of the ECM and the
invasive tumour cell population respectively, and with z € R, € RT and >0 a
small parameter!.

In [16] it was shown in a rigorous fashion that (1.1) supports four types of trav-
elling wave solutions. The classification of the travelling wave solutions was based on
distinguishing, qualitative features of the waves in the singular limit ¢ — 0. Type [
waves are smooth with a monotone wave profile, type II waves are shock-fronted in w
(in the singular limit e — 0) with a monotone wave profile, type I1T waves are shock-
fronted in w with a monotone wave profile whose w-component has semi-compact
support, and type IV waves are shock-fronted in w with a non-monotone wave profile
(i.e. w is negative for certain parts of the profile). Figure 1 provides an example of
the four types of waves found.

To arrive at this result [16] followed the work of [43] and the model was analysed
in its singular limit € — 0 using canard theory and Liénard coordinates. Smooth
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INote that the original model in [33] ignored diffusion (¢ = 0) as it was assumed that diffusion
only played a minimal role.
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Fig. 1: The four different types of travelling wave solutions supported by (1.1).

travelling wave solutions (type I) were explicitly found for speeds larger than some
critical speed ¢. Similarly, shock-fronted travelling wave solutions (type II-IV) were
found for speeds smaller than this critical speed ¢. In particular, type II waves exist
for speeds in between the so-called minimal wave speed ¢, [33] and the critical wave
speed ¢, while type III waves travel with the minimal wave speed c, and type IV
waves travel slower than the minimal wave speed c,.. These travelling wave solutions
were shown to persist for a small € through the application of Geometric Singular
Perturbation Theory (GSPT). These results extended/formalised the earlier results
of [21, 33].

The connection between the observed wave speed and the asymptotic behaviour
of its initial condition was also investigated numerically in [16]. However, the (spec-
tral) stability of these four types of travelling waves has not been determined before.
Biologically, type IV waves are expected to be unstable simply because they contain
regions with negative cell population. Furthermore, in [28] it is argued that Type
IIT waves are physically the most realistic as they have (i) sharp interfaces and (ii)
zero tumour concentration in ahead of the interface. We numerically find that these
waves correspond to stable waves with the smallest positive wave speed and that
waves with smaller speeds (type IV waves) are unstable. Mathematically, the type
IIT waves decay much faster at +oo than the type II or IV waves. This means that
their derivative still decays in the appropriate exponentially weighted space. Hence,
the temporal eigenvalue \ = 0, associated with translation invariance, persists. This
eigenvalue is a (locally) smooth function of the wave speed parameter ¢ and moves
into the right-half plane as the wave speed is further decreased (as we numerically
show).

1.1. Main result: spectral stability of type I-III waves and instability
of type IV waves. We numerically establish the stability of waves of type I-III and
the instability of waves of type IV in appropriately exponentially weighted spaces via

2
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determination of the roots of an Fvans function. Originally used in the determination
of stability of nerve-axon impulses, Evans functions have received a boost in the last
30 years by linking stability of a travelling wave to geometric ideas [1, 2, 3, 7, 11, 12,
14, 22, 26, 25, 34]. Computing the Evans function can be numerically delicate, and
there are several geometrically inspired techniques to resolve this in the literature,
[1, 2, 4, 10, 12, 13, 15, 25, 26], to name a few. For a nice exposition of some of these
as well as further references, see [26].

For our stability results, we will work on the Grassmannian as in [25, 26]. The
linearity of the spectral problem means it will induce a nonlinear flow on the Grass-
mannian [5, 24, 25, 26, 29, 36, 39]. Rather than keeping track of solutions themselves,
since subspaces of solutions are preserved, we instead track them on the Grassman-
nian under the induced flow [24, 25, 26, 29, 36, 39]. The flow induced by a linear
system on the Grassmannian is called the generalised (or extended) Riccati flow [39].
It is a nonlinear, but lower order, flow on the manifold. The original definition of the
Evans function can now be interpreted in terms of this Riccati flow on the Grassman-
nian, equivalently either through projection from the Steifel manifold [26] onto a chart
of the Grassmannian, or (as we do in this manuscript) via a meromorphic function
which has been called the Riccati-Evans function [18]. Importantly, the solutions to
the matrix Riccati equation seem to be numerically well behaved on the (charts of
the) Grassmannian and we no longer have exponential growth of solutions [25, 26],
though at the expense of some solutions becoming singular [27].

Our evolution of the boundary data follows the Evans function calculation tech-
niques developed in [25, 26], however, we have managed (in this case at least) to
avoid the singularities which are typically present in solutions to the Riccati equation
[27, 39].

Previous uses of the Riccati equation to generate an Evans function include [10,
18, 25, 26]. In [26], the Riccati-Evans function approach was used to confirm stability
of Boussinesq solitary waves, autocatalytic travelling waves and the Ekman boundary
layer. In [25], the authors focussed on the stability of wrinkled fronts in a cubic
autocatalysis reaction-diffusion system with two spatial independent variables. In
[10], the singular nature of the problem was exploited and used to generate a matrix
Riccati equation and subsequent flow on the Grassmannian in order to study the
stability of periodic pulse wavetrains. In [18] the Riccati-Evans function approach
was used to study the stability of travelling waves in two lower-dimensional models:
the Fisher/Kolmogorov-Petrovsky-Piscounov equation and a Keller-Segel model of
bacterial chemotaxis. In [25, 26], a chart changing mechanism was described to avoid
singularities of the Riccati equation on the fly, and the method was linked to the
so-called ‘continuous orthogonalisation’ method [22, 25], while in [18] it was observed
that by carefully picking a single standard chart, singularities could be avoided.

The current manuscript shows another way to avoid singularities in the spectral
parameter regime of interest. In particular, we do not work in the standard charts of
the Grassmannian as in [18], but rather a judiciously chosen one.

This manuscript is organised as follows, in section 2 we briefly discuss the key
results of [16] needed for the stability analysis. In section 3 we describe the linearised
problem and compute the essential and absolute spectrum of type I-IV waves. In
section 4 we expound on the Riccati-Evans function approach for computing the point
spectrum and in section 5 apply it to the haptotaxis model (1.1) to show the spectral
instability of the type IV waves, as well as numerical evidence of spectral stability
of waves of type I, IT and III. In section 6 we briefly discuss related future research
directions, both for the haptotaxis model (1.1) and the Riccati-Evans function.
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2. Setup: existence of travelling waves. We reproduce the key results of
[16] related to the existence of the four different types of travelling wave solutions (in
a slightly modified form from [16]). Passing to a moving coordinate frame, we set
z = x — ct where ¢ > 0 is our wave speed parameter. We get the travelling wave form
of the equation:

(2.1) (Z)t =¢ (Z,) . + (cw Cuwuz>z * (w(_1UQu’ZU)> .

A travelling wave will be a steady state solution to (2.1), connecting two distinct
background states of (1.1). The background states of (1.1) are (u,w) = (0,1) and
(u,w) = (Uso,0), for us € R (i.e. we have a line of fixed points in (2.2)). Thus, a
travelling wave is a solution to the nonlinear ordinary differential equation (ODE)
and in what follows we set ' := d% for notational convenience:

(2.2) O=e (Z,) " (cw Cuwu’>/ * <w(_1U%SU)>

satisfying the boundary conditions

(2.3) Zgrzloou(z) =0, Zgrfoo u(2) = Uso, ZLlrjloow(z) =1, Zgrfoow(z) =0.
The second condition in (2.3) implies that the righthand boundary condition on wu,
denoted uy, is free. In what follows we assume u, > 0. Introducing the variables
(Liénard coordinates):
vi=1

(2.4) -,
Y= W — 0w + cw
allows us to re-write (2.2) as a system of ODE with two fast (v and w) and two slow
(u and y) variables:

u =w,

/

Yy =—w(l—w),
(2.5) 9
v = —cv +uw,
EW =y +ovw—cw.

We will refer to (2.5) as the (nonlinear) slow system, and the variable z as the slow
travelling wave coordinate. To investigate the problem in the fast timescale, we in-
troduce the fast travelling wave coordinate ( = z/e and derive the corresponding four

dimensional (nonlinear) fast system with € # 0 and with the convention that ":= d%
U = €v,
y=—cw(l —w),

(2.6) i 9
V= —Cv+uw,

w=y+w—cw.

As in [16] we now set € = 0 and pick out our solutions from the resulting systems. As
€ — 0 the nonlinear fast system becomes the so-called layer problem

u =0,
y =0,
2.7
27) @z—cv—&—uzw,

w =1y +vw — cw,
4
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while the nonlinear slow system becomes the so-called reduced problem

u =,

/

Yy = —’LU(l - ’UJ),
(2.8) )
0=—-cv+u w,
0=y +vw— cw.
Now we choose appropriate solutions to (2.7) and (2.8), and glue them together at
their end-states of the dependant variables, producing weak travelling wave solutions
to (1.1) for e = 0. In [16], the authors then exploit GSPT to show that these solutions
perturb appropriately in the full nonlinear ODEs given in (2.2).

2.1. The layer problem. Steady states of the layer problem given in (2.7)
define a critical manifold S, represented as a graph over (u,w),

ulw u?w?
Uzic Y =— +cw ¢,

C

(2.9) S = {(u,v,w, y)

and we will henceforth consider the existence problem in a single coordinate chart by
projecting onto (u,w) space. The most important property of the critical manifold S
is that it is folded. We cite the following lemma from [16] without proof:

LEMMA 2.1 ([16], Lem 2.2). The critical manifold S of the layer problem is folded
around the curve
F(u,w) := 2u*w — ¢ =0
in the (u,w) plane with one attracting side S, and one repelling side S,..

We refer to the curve F(u,w) = 0 as the fold curve or the wall of singularities. The
terminology follows from the behaviour of the reduced problem (see below). The
so-called fast fibres of the layer problem connect points on S with constant u and y.
Due to the stability of S, the direction of the flow along these fast fibres is from the
repelling side S, to the attracting side S, (see Figure 2).

2.2. The reduced problem. Equation (2.8) is a differential-algebraic problem.
The reduced flow is constrained to the critical manifold S, and the reduced vector
field is contained in the tangent bundle of S. Since S is given as a graph over (u,w)
space, we study the reduced flow in the single coordinate chart. In [16] it was shown
that the reduced problem contains a so-called folded saddle canard point [43].

Eliminating v and y from (2.8) gives the reduced vector field on S,

(2.10) <2ufU?/c c— 222w/c) <$> - <wgw “’))

The left hand side of (2.10) is singular along the fold curve F'(u,w) = 0, but can be
desingularised by multiplying both sides by the co-factor matrix of the matrix on the
left in (2.10), and by rescaling the independent variable z = z(Z) such that

dz

2 2
= = 2 - 2d%w.
¢ uw

This gives the desingularised system

du 9 2utw?
? =Cu W —
(2.11) “ ¢
dw (1 )+ 2u3w3
— =—cw(l —w
dz c

5
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Fig. 2: A schematic of the critical manifold S. The fold curve F' is represented
by the dashed line (green online). The upper part of the surface is the repelling
side of the manifold S, and the lower part the attracting side of the manifold
S,. The flow of the layer problem is along fast fibres, an example of which is
shown. Fast fibres connect a point on S, (labelled (u,v_,w_,y)), to a point of
Se (labelled (u,v4,wy,y)). Along these fast fibres u and y are constant. From
the layer dynamics, it follows that the direction of the flow can only be from S,
to S,.
The equilibrium points of (2.11) are (uy, wy) = (0,1), (ug, ws) = (tso, 0), Uso €
R and
(2.12) (ug,w )—(C[c+ 62+8} 1)
' T\ 4 Cug +1)°
The first two equilibrium points listed correspond to the background states of (1.1),
while the last is a product of the desingularisation. More specifically, the Jacobian at
(uy,wy) = (0,1) has eigenvalues and eigenvectors

)‘1 =, 1/’1 = (Ovl)a A2 = 07 "/’2 = (170)a

and is therefore centre-unstable; the Jacobian at (ug,ws) = (ux,0) has eigenvalues
and eigenvectors

Al=—c¢, P = (_uio7 1); A2 =0, 1y= (170)»

and is therefore centre-stable; and finally, the Jacobian at (ugy,wy) has eigenvalues
and eigenvectors

4 4
Ai:<c—¢jﬁ> lj:\/<4+8> 3|, wE = (e, D),

c2

with

e+ T)?
64(c2 + el + 1) £ 2(c 4+ T')2/16 + 24cT — 48¢2 + 63T — 6¢F
6

f5(e) =
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where T' := v/c? + 8, and is therefore a saddle for all ¢ > 0.
To obtain the (u,w)-phase portrait in terms of the variable z, we observe that

d d
é > 0 on S, (that is, below the fold curve F), while d—; < 0 on S,.. Therefore, the

direction of the trajectories in the (u(z),w(z))-phase portrait will be in the opposite
direction to those in the (u(z),w(z)) phase portrait for trajectories on S,, but in the
same direction for trajectories on S,. This does not affect the stability or type of the
fixed points (uy,wy) and (ug,wg) as they are on S,. However, (ug,wp) is not a
fixed point of (2.10). Rather, as the direction of the trajectories on S, are reversed,
the saddle equilibrium of (2.11) becomes a folded saddle canard point of (2.10) [43].
In particular, on S, the stable (unstable) eigenvector of the saddle equilibrium of
(2.11) becomes the unstable (stable) eigenvector of the folded saddle canard point.
This allows two trajectories to pass through (ug,wpg): one from S, to S, and one
from S, to S,. The former is the so-called canard solution and the latter the fauz
canard solution [43].
The (u,w)-phase portrait parameterised by z is shown in Figure 3.

Fig. 3: The (u, w)-phase portrait parameterised by the variable z. The fold curve
(dashed, green online) is labelled F' and the folded saddle canard point is the open
black square on it. The two solid black circles are the background states (0, 1)
and (%o, 0), which are fixed points of both (2.10) and (2.11). Travelling wave
solutions are connections from unstable steady state (0,1) to any of the family
of stable steady states (us0,0) along the u-axis. The region below F, labelled
S, corresponds to the attracting side of the critical manifold S, and above F,
(red online), corresponds to the repelling side S,.. The dotted line connecting
the canard point (orange online) to the line of steady states is a separatrix (faux
canard). Thus, existence of a heteroclinic connection (travelling wave) from the
left steady state to the point marked u, is only possible if the trajectory passes
through the canard point and then travels along the repelling side of the critical
manifold before travelling back down to the attracting sheet via a fast fibre. This
results in a shock fronted travelling wave.
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2.3. Travelling wave solutions. As alluded to in the introduction, four distinct
types of travelling wave solutions to (1.1) were identified in [16], denoted types I, II,
III, and IV (see Figure 1). The solutions were found as solutions to the desingularised
system of the reduced problem and were glued together with (appropriate) fast fibres
of the layer problem to produce (weak) traveling wave solutions to the full nonlinear
travelling wave PDE given in (2.1) (with € = 0). These solutions were then shown to
persist for small enough values of the diffusion parameter € via standard approaches
in GSPT. Figure 4 provides an example of the four types of waves found in the phase
portrait of their desingularised reduced systems. Type I waves are smooth positive
waves lying entirely in the attracting sheet of the critical manifold. Type II waves
exhibit a shock in w (in the singular limit). They pass through the folded saddle
canard point in the reduced problem, and then travel along a fast fibre of the layer
problem, landing on the attracting branch of the critical manifold, from which they
continue on to the steady state u.,. The length of the jump is determined by the
wave speed ¢ (or by us) and the symmetry of S. In particular the jump in w is
symmetric around the fold curve F' with u fixed [16]. Type III waves are those that
jump directly from the repelling sheet of the critical manifold S to the line of steady
states of the reduced problem. Type IV waves are those for which w exhibits negative
values after the jump.

3. The spectral problem, essential and absolute spectrum. In this sec-
tion, and what follows, we assume that a travelling wave solution to (1.1) of type I-IV
is given, denoted by u := (u,w)". We view the travelling wave u as a steady state
to (2.1), and motivated by dynamical systems theory, we want to examine a linear
spectral problem associated with (2.1) at u. The linearisation of (2.1) at u is formally
given by:

s (= 0) o C) arta) = (5%07)

We denote the linear operator L(u) as the right hand side of (3.1) acting on the
perturbations p and r. That is:

0 0 —2uw —u?
L(u) = 5822 + Caz - <wazz + w’(?z ’U,/az =+ u//> + < 0 (1 . 2w)> .

We define the spectrum of L(u), denoted o(L(u)) as those A € C such that L(u) — Al
is not invertible on the space X := H!(R) x H*(R) (that is we require both p and
r and their derivatives to be square integrable functions from R — C). To find such
values of A we study the system of non-autonomous ODEs

o <)+ o) + (F707) - )

The idea now is to use a linearisation of the Liénard coordinates introduced in (2.4)
to derive a linear system with the same slow-fast structure as the original travelling
waves u. We introduce the new linearised, Liénard variables

(3.3) qg:=p and s:=er’ +cr —u'r —wq,
8
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Fig. 4: An illustration of the four different types of waves found in [16] in the
phase portrait of the critical manifold S as ¢ is varied, for fixed us, = 1. The
fold lines are indicated by the green dashed lines labelled F. As in Figure 3 the
attracting sheet of the critical manifold is to the left of the fold, while the repelling
sheet is to the right. Type I waves are smooth and do not cross to the repelling
side of S. Type II waves are sharp fronted, owing to passing through the canard
point on the fold of the critical manifold to the repelling sheet, type IV waves are
also sharp-fronted travelling solutions, but are non-monotone. Type III waves,
which exist for a unique wave speed ¢ = c,, are the transition between type II
and type IV waves where the waves jump through the fast system directly to the
line of fixed points on the critical manifold.

and we rewrite (L(u) — AI) (ﬁ ) = 0 as a slow-fast, linear, non-autonomous system

with two fast (¢ and r) and two slow (p and s) variables

p 0 0 1 0 P
s | 0 0 0 A—=1+2w s
(3.4) eq| | A+2uw 0 —c u? q
er 0 1 w u —c T

We refer to (3.4) as the (linear) slow system, again with the slow variable z. For
notational convenience, we will denote the vector (p, s, ¢, ) as p and note that we can

9
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write (3.4) as p’ = A(z; A, €)p where A(z; A, €) is the matrix given by

0 0 1 0

0 0 0 A—1+2w
(3.5) Alz A e) = A+ 2uw)/e 0 —c/e u?/e

0 /e w/e (u' —c)/e

We can make the same change of independent variable as before, { = z/¢, to derive
the (linear) fast system

P 0 0 ¢ 0 p
5| 0 0 0 eA=142w)| |s]| _

(3.6) gl | A+2uw 0 —c u? q| B(GA e)p.
T 0 1w u —c T

We next recall that our travelling waves in both the slow and the fast variables are
asymptotically constant - they either satisfy the boundary conditions given in (2.3)
or the jump conditions. The jump conditions in this framework are determined by
the symmetry of S about the fold curve and are given as

[N~}

vy —vo = —(wy —wo),

:M‘owm‘:

wy +w-

where the £ subscript denotes the value of the given variable at the beginning or end
state of the shock respectively and we recall that u is constant during the shock [16].
As z or ( — oo the matrices A(z; A, €), and B((; A, ) will tend towards the constant
matrices Ay (A, ) and By (), e) respectively. The matrices Ay are given by:

0 0 1 0 0 0 1 0
0 0 0 A+l o0 0 a-1
A-(\e) = AMe 0 —c¢/e 0 » Ar(A.e) = Ne 0 —c/e u? /e
0 1/e 1/e —c/e 0 1/e 0O —c/e
The matrices By (), ¢) are given by
0 0 e 0
a 0 0 0 eA—1+2wy)
Bi(he) = A2uwye 0 —c u?
0 1 wy Vg —C

Where u is a constant in the fast (nonlinear) system, and vy and wy are the jump
conditions that must be satisfied along the fast fibres.

3.1. Definition of the essential and point spectrum. In this section, we
follow [23, 34]. The spectrum o(L(u)) splits up into two parts, the point spectrum,
denoted op(L(u)) and the essential spectrum denoted o.(L(u)). We define the point
spectrum as the values of A € o(L(u)) where L(u) — A has a finite dimensional kernel
and cokernel, and the index of L(u) — A := dim(kernel) — dim(cokernel) is zero. We
define the essential spectrum as the complement oc(L(u)) := o(L(u)) \ opt(L(u)) of
the point spectrum.

10
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The operator d% — A(z; A\, €) is a relatively compact perturbation of the piecewise
operator - — A, (X,e) for z < 0 in H}(R*), (and likewise for the appropriate B
matrices). Thus, the essential spectrum is where the Morse indices (dimension of the
unstable spatial eigenspace) of the end states are different [23, 34].

For waves of type I, II, and IV the end-states of the wave are in the slow system,
and so the matrices A4 (), ) determine the essential spectrum. We have that A €
oc(L(u)) when Ay () €) has a different number of unstable spatial eigenvalues from
A_()\ e), or either one has a purely imaginary eigenvalue. In all cases, this is a region
in the complex plane bounded by the so-called dispersion relations. These are curves
where A4 (A, e), A_(), ) have purely imaginary eigenvalues ik for k € R, and are the
following four curves (two lie on top of each other):

A= —ek?—1+ick, (A_()\e) has eigenvalue ik)
(3.7 A= —ek? +ick, (A4 () €) has eigenvalue ik)
A=1-—¢ek?+ick (A4 (), €) has eigenvalue ik)

For waves of type III, the end-state of the wave is in the slow system as z — —oo but
in the fast system as ¢ — +o00, and now the essential spectrum is the A € C when
A_ (A, e) has a different number of unstable eigenvalues from B, (A, e). We note that
it is not strictly necessary to use B in order to apply Weyl’s theorem to compute
the essential spectrum of the type III waves, as long as € > 0, due to the equivalence
of the fast and slow systems. Indeed, it turns out that the dispersion relations from
the matrix By for ¢ > 0 define the same set of curves in the spectral parameter as
those from A, . This is reflected in the specific values that the jump conditions take
for the type III waves (v4 = w4 = 0). The dispersion relations for the type III waves
are

A= —¢ck? —1+ick, (A_()¢) has eigenvalue ik)
(3.8) A= —¢ek? +ick, (A_(), ) has eigenvalue ik)
’ el = —k? +ick (B4 (A, €) has eigenvalue ik)

ed=¢e—k*+ick (B4 (A, €) has eigenvalue k).

The second and third curves lie on top of each other, even though their expressions
are different. The essential spectrum for a type III waves is thus the same as that of
types I, IT and IV (see Figure 5).

We also remark that the dispersion relations divide the complex plane into three
disjoint regions. The first we denote by Q7. In the type I, II or IV case, this is the
region where if Im (\) = ck for some k € R, then Re (\) > 1 —ek?, i.e. to the right of
the essential spectrum. 27 is also to the right of the essential spectrum in the type
III case, though here if Im (A) = %, then we require Re (A) > 1— g The next region
is 0. (L(u)) where L(u) — A does not have Fredholm index 0. The third remaining
region of the complex plane, to the left of o. (L(u)), we denote Q5 (see Figure 5).

Since we are concerned with stability of the travelling waves found in [16], it is
worth mentioning that for all types of travelling waves identified, the intersection of
the essential spectrum with the right half plane is nonempty. However, by considering
appropriate weights and weighted spaces we can move the spectrum of the linearised
operator into the left half plane for all four types of travelling waves. For a given
weight function, &(z), we define

Wl == laf e

For the travelling waves at hand, the essential spectrum due to A_ (A, €) is contained in
the left half plane, while for the essential spectrum coming from Ay (A ) or B4 (A, ¢),
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Fig. 5: A plot of the essential spectrum of the operator L(u). The dark lines
(blue online) bounding the essential spectrum and passing through the origin
in the complex plane are the dispersion relations for the matrices Ay and By,
labelled accordingly (see (3.7)). In all cases qualitatively the essential spectrum
is the same. For this figure, the value of ¢ = 0.01 while ¢ = 1. The absolute
spectrum in this case is the set (—oo0,1 — %] = (—o00,—24] € R. In particular it
is real, and far to the left (in the region Q5 and out of the figure).

determination of the appropriate weighted space is identical to determining the ap-
propriately weighted space for travelling waves in Fisher’s equation. Consequently
the appropriate weighted space for travelling waves of all types is given by a so-called

two-sided weight
1 if 2<0
ax) = .
e’ if z2>0
with

c (c— V2 —4e e+ /2 —45)
v )
2e ’ 2e

Thus if p € H!, we have that the essential spectrum of d% —A(z; A\, e) will be contained
in the left half plane.

This implies the presence of a so-called transient, or convective instability, [34, 35]
where small perturbations either outrun the travelling wave, or die back into the
wave, resulting in temporal evolution to a translate (perhaps with a slightly modified
wave speed) of the original wave. As the perturbation outruns the wave, it can (and
generically will) affect the asymptotic decay rate which, because this equation shares
dynamical qualitative (and quantitative) features with Fisher’s equation, will affect
the asymptotic wave speed and the position of the centre of the wave, see also [16]. The
effect is that small perturbations of the original travelling wave evolve into waves that
are similar in appearance and behaviour to the original wave (even if the difference in
an H! norm grows in time), and so we do not really consider these to be instabilities.
What does pose a problem for (spectral) stability is the so-called absolute spectrum.
The absolute spectrum is not spectrum per se, but rather is defined as the values of
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the spectral parameter A\ where a pair of eigenvalues of the limiting matrices, (i.e.
Ax (N ) in the type I, IT and IV cases and A_(\,¢) and B4 (A, ¢) in the type III
case) have equal real parts. The absolute spectrum provides a bound for how far the
essential spectrum can be moved by considering perturbations with different weights.
In particular if the absolute spectrum is in the right half of the complex plane, there
is no choice of a weight that can move the essential spectrum into the left half plane.

The eigenvalues of A_ (), ) for all types of waves are found to be the following,

L —cExVeE+4ed | —ct /2 +4e(A+1)
(39) Ho = T H_1 = % )

while the eigenvalues of A4 (A, ¢) (for types I, IT and IV only) are

L —cxVe 44 L —cx/ARA+4de(A-1
0 = P1 = =

1 £= = =
(3.10) Po H %

and the eigenvalues of B (A, ¢) for a type III wave are

—c+ V2 4 4e)

2

—ct /2 +4e(A—-1)

(311) By =epy = By = epi = 5
The naming conventions are as follows: p for A at minus infinity, p for A at plus
infinity, and £ for B at plus infinity. The + refers to the choice of the square root
in the eigenvalue calculation, and the subscript —1, 1, 0 refers to the value of A\ which
makes the eigenvalue with the positive square root = 0.

The absolute spectrum is real for all waves and consists of the half line

2
(3.12) Oabs ‘= ( 00,1 46] ,
and hence will be in the left half of the complex plane provided that ¢? > 4e. This is
identical to the case of the travelling waves found in the Fisher-KPP waves (where €
is the diffusion parameter/coefficient). However, unlike in the Fisher-KPP case where
the diffusion coefficient is often taken to be on the same order as the wave speed, here
we have that 0 < € <« 1 and so for the parameter regime considered in this manuscript
we do not expect the absolute spectrum to destabilise the travelling waves of interest.
In the travelling waves of type I-IV studied here, as we shall see, there is another
destabilising factor due to an element of the point spectrum entering into the right
half plane.

4. Point spectrum and the Riccati-Evans function. We next compute the
point spectrum, or lack thereof, in the right half complex plane of the linearised
operator associated with the travelling waves of types I-IV found in section 3. To do
this, we use a modified version of the so-called Evans function [23]. In order to verify
the lack of point spectrum of travelling waves of type I-III in the right half plane,
and to show the existence of an eigenvalue in the case of a type IV wave, we want to
exploit the geometry of the system in order to more efficiently make the computations.
This results in relating the Evans function to the so-called Riccati equation on the
Grassmannian of two planes in C*. We produce an Evans function of sorts in that it is
an eigenvalue detector, though it does not have all the nice properties of the classical
Evans function. In particular it is meromorphic rather than analytic, and it does not
appear to be independent of the value of z at which it is evaluated. However we show

13

This manuscript is for review purposes only.



W W W w
[S2NNNG SENTN

3

w w W w
Y Ot Ot Ot gt Ot Ot
©

S ©

361

362
363
364
365
366
367
368
369
370
371
372
373

375

377
378
379
380
381
382

383

386
387
388
389

390

391
392
393

394
395
396
397

398

that the zeros of this function are indeed independent of the point of evaluation and
provided certain conditions are met, coincide with the multiplicity of the zeros of the
Evans function.

We recall some familiar results arising in the definition of the Evans function that
will be useful for our purposes later. For a detailed discussion and proofs, see [23].
We begin with point spectrum that is away from the essential spectrum. We say that
A & o.(L(u)) is an eigenvalue of the wave uw (or of L(w)) if we can find functions

(?) € X such that L(u) (ﬁl) =A <§1> For € # 0, this is equivalent to finding a
2 2 2

A for which there is a solution to the linearised slow problem (i.e. a solution to (3.4)
in the case of a type I wave), or slow—fast—slow problem (a solution to (3.4), then (3.6)
and then (3.4) in the type II and IV case) or slow—fast problem (a solution to (3.4),
then (3.6) in the type III case) decaying to zero as z — +o0o. Exponential dichotomy
for A € 1 means that there is only one way to do this. Let Z* denote the unstable
subspace of A_(\,e) and Z° denote the stable subspace of Ay (), ¢) in the case that
u is a type I, 11, or IV wave, or the stable subspace of By (), ¢) in the case of a type
IIT wave.

We note that Z%° are each two-dimensional for A\ € Q; (to the right of the
essential spectrum) while for A € Qo (to the left fo the essential spectrum) =% is zero.
We thus (initially) restrict our search for eigenvalues to those A € €y which are to
the right of the essential spectrum. That is, for a A € 4, we let W*%*(z) be the
(two dimensional) span of solutions to the linearised system along a travelling wave
decaying to =% respectively (the span of the Jost solutions as in [23]). We have the
following:

LEMMA 4.1 ([23]). Let A € Qq, then W"(z9) N W#(29) # {0} for all zo € R if
and only if X is an eigenvalue.

Now suppose we pick a pair of linearly independent solutions in each of W* and
W*# respectively, then the above lemma says that if we evaluate them at a given fixed
20 (say zp = 0), then A\ will be an eigenvalue if and only if the four are linearly
dependent. Denoting these solutions by xi(z; A),x%(z; A), x5(z,A) and x35(z; \) We
define the Fvans function as

(4.1) D(X) := det (x3(0; X), x4 (0; X), x5 (0, A),x5(0; \))

We have the following

THEOREM 4.2 ([23]). The functions x5 (2) can be chosen so that D(X) is analytic
for X away from the essential spectrum. The roots of the Evans function D(\) are
independent of the choice of zy being chosen to be 0. The Evans function is unique
up to multiplication by a nonzero function g(\). For X to the right of the essential
spectrum, the Evans function is zero if and only if A is an eigenvalue of u.

We remark that the additional exponential factor present in many Evans function
computations [23] is dropped, as in [26] as the evolution on the Grassmannian will
make it redundant.

4.1. The Riccati equation and the Grassmannian. In this section, for the
description of the Riccati flow on the Grassmanian, we mostly follow, [20, 26, 39]
with some small adaptations to make things more clear for our purposes. We want to
exploit some of the geometry behind linear ODEs (3.4) and (3.6). The first observation
is that because our ODE is linear, the solution operator maps subspaces to subspaces.
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This means that for A to the right of the essential spectrum, both W*(z) and W*(z)
will each be two dimensional subspaces of C* for all z € R. Since we are interested in
tracking the evolution of the entire subspace, we can consider the (nonlinear) ODE
on the space of complex two dimensional subspaces of C*, the Grassmannian of two
planes in four space,[20] which we denote Gr(2,4). In this manuscript, since we are
primarily only considering the Grassmannian of two planes in four space we drop the
numbers and refer to it just as G. Before we describe the associated Riccati equation
on G, we pause for a moment to recall some facts about G and its coordinatisation.
These facts (or equivalent generalisations) can be found in most introductory texts
on algebraic geometry, see for example [19, 38].

The manifold G is a smooth, compact, complex manifold, of complex dimension
4. Tt is a homogeneous space, G =~ U(4)/(U(2) x U(2)), where U(n) is the unitary
group - the real Lie group of real dimension n? of complex matrices U such that
UTU = 1. We construct charts on the Grassmannian in the usual way, via the Pliicker
coordinates. For a pair of vectors v = (vy,v2,v3,v4) " and w = (wy, wa, w3, ws) ", in
C* we observe that v and w are linearly independent (i.e. the plane Py y spanned
by v and w is an element of G), if and only if the values of K;; := v;w; — vjw; are
not all zero for all i # j. That is the vector (Ko, K13, K14, Kos, Kos, Ks4) # 0.
This naturally embeds G into IP°, the complex projective space (this is called the
Pliicker embedding). We will use the usual designation of coordinates in projective
space, [Ki2:Kiz: Ky : Koz : Koy : Kgy] to signify that they are not all zero. It
can be checked that if P, ;, represents a complex two plane in four space, then the
following Pliicker relation must hold in the Pliicker coordinates: K12Kgq — Ki3Koq +
K;14Ko3 = 0. In this way, G is seen to be a smooth (because it is a homogeneous
space) variety in P® of complex projective space. This also gives it the structure of
a complex manifold. In a given chart, we can view G as a graph over the remaining
variables. For example, suppose that Ko # 0, then in the Pliicker coordinates we
have, by dividing through by Kjs , that our plane is represented by the sextuplet
[1:Kis: Ky Kos: Koy 0 Ki3Kos — K14Kos|, and that this represents the plane
spanned by (1,0, —Ka3, —Ka4) " and (0,1, K;3,K14) ", which we will write in so-called
frame notation [26, 39]

1 0
0 I (]I)
Ky Kiz| \K/°
-Kos Ky

The 4 x 2 matrix written as a pair of 2 x 2 matrices is called a frame for the plane
that is the span of its columns. Now we want to see how our linear ODE induces a
flow on G. Such a flow will be called the associated Riccati equation. We describe the
general process, and then later consider the linear equation coming from the spectral
problem at hand. We begin by considering a 4 x 4 linear ODE acting on pairs of vector
spaces, and writing it in the frame notation form that will be useful later [20, 26, 39]:

(4.2) m =A(2) m = [38 gg] [ﬂ

where X, Y, A, B,C, D are all 2 x 2 matrices in the independent variable z.
Suppose, for the moment that our evolution takes place where X(z) is invertible.

. Denoting the matrix

X Id
We can therefore represent the plane [Y} by the plane [YX_I}
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YX ! by W, we have that

W= (YX ) =YX+ yXy
(4.3) =YX -yxXIx'x!
=(CX+DY)X ' - YX ' (AX 4+ BY)X!

where the second step used the fact that XX ' =T and the third used (4.2). Substi-
tuting back in gives

(4.4) W' =C+ DW - WA - WBW.

Equation (4.4) will be called the (associated) Riccati equation [27, 29, 39]. It is a
higher order analogue of the familiar Riccati equation for second order linear ODEs.
This Riccati equation is a nonlinear, non-autonomous ODE of half of the original
order. The Riccati equation as written in (4.4) governs the flow on a chart of G
equivalent to the original flow prescribed by (4.2). Just as in the more familiar lower
order case, solutions to the Riccati equation can become infinite [27]. Geometrically,
this means that we are leaving the chart of G (as det(X) — 0) [26]. We will return to
how to handle this later, but for the moment, we wish to understand how the Evans
function defined above fits into the Riccati equation formulation.

=u,s

The spans of solutions W*#(z) decaying to Z** as z — 400 are solutions to the
u

X
Y"lL )
span of W#(z) where X"* and Y™"* are each 2 x 2 matrices (the pair X*** and Y** are
called the Jost matrices in [23]), and again, assuming that we stay in the same chart
(i.e det(X™?*) # 0), we have two solutions to the Riccati flow, W*(z) := Y*(X*)~!
and W*(2) := Y*(X®)~L. Recall that the eigenvalue problem as we have set it up is
to determine whether or not the subspaces W*#(z() intersect nontrivially. So writing
the definition of the Evan’s function from (4.1) in this new notation, we are interested
in zeros of the following function:

s
Riccati flow on G. We write them as for the span of W*(z) and R([S} for the

DO\ i= det [X“(zo,)\) XS(ZO,A)} |

Y"(z0,A) Y?®(z0,)

X*3 (29, \)

Y (20, )\)] are the same as those

and we know that the subspaces represented by [

represented by {W“slziz )\)} The question is how to relate the determinant of
05
Id Id
0
[W“(zo,/\) Ws(zo,)\)] to DOA!

It is straightforward to check that for a pair of 2 x 2 matrices A and B, the
following holds

Id Id
(4.5) det (A B> = det(B — A).
That is, the determinant of the 4 x 4 matrix on the left is equal to the determinant
of the difference of the matrices B and A. This is in fact generically true for n x n
matrices, one just replaces the 2 x 2 with the appropriately sized identity matrix. It
can also be extended to matrices with a block structure of a more generic type (see
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[40]), though we will not need the full generic statement here. We thus have:

Id Id

det {W“(zo, N We(z,\)

] = det(W* (20, \) — W" (20, \)).

Denote the function
(4.6) E(zo; A) :=det(W?(2z0; \) — W¥(z0; A)).
Next, we note that

{ 1d 1d } [X“(zo,)\) Xs(zo,/\)} {(X“)_l(zo,)\) 0
Wh(z0,A) W20, A)| | Y*(20,A) Y®(20,\) 0 (X%)~ (20, A)

and taking determinants and using (4.5) we have that

det(X" (203 A)) det(X* (20 ) E(z0: A) = D(N).

DEFINITION 4.3. We call the function E(zp,A) the Riccati-Evans function.

4.2. Changing charts. In this section, we use the general coordinatisaion of
the Grassmannian found in [38]. A chart on the Grassmannian is a map T : G — C*.
We can think of the charts as parametrised by invertible matrices T € GL(C,4) in the

sense that if we multiply a frame (i) by a matrix T and then compose the result

with the Pliicker coordinate map, we get a new coordinate representation for the
original plane. For example, suppose we consider the plane spanned by the columns

of the frame (g) This plane is not in the chart where K5 # 0 described earlier,
rather its coordinates in % are [0 : 0 : 0 : 0 : 0 : 1], so it lies in the chart where

K34 # 0. However if we multiply the original frame by the matrix T = (g g), then

. . . . - I
in the new coordinate chart associated with T we have that the frame is given as (O) ,

and so in this chart, the same plane is represented by Kio # 0. This parametrisation
has several advantages, namely it allows us to write down a single expression for the
evolution of an ODE which changes implicitly depending on the chart (matrix T) we
choose.

We next write out our matrix Riccati equation in the chart parametrised by T.
This is the evolution equation on G under the change of variables determined by T.
Suppose that in our original variables

(4.7) E?] — A(2) [ﬂ

Then if T is an invertible matrix, so that we have

-

This manuscript is for review purposes only.



463
464

465

166

467
468
469
470

471
472
473
474
475
476
AT'7
478
479
480
481
182
483
484
485
486
487
488
489
490
491
192
193
494
495

496
497
198

Defining W = YTX}I, the Riccati equation in this chart is
W:I‘ = CT + DTWT — WTAT — WTBTWT.

We have therefore absorbed the chart implicitly into the computations, in order to
have a single set of ODEs to evolve.
Likewise, we can define the Riccati-Evans function on this chart

Er(z0; ) := det(W(z0; A) — Win(z0; M),
and the relation
(4.9) det(T ") det (X (205 A)) det(Xp(20; A) B (20; A) = D(N)

still holds. The Riccati-Evans function is not independent of the change of coordinates,
but we use this to our advantage. We will choose a chart (matrix T') so that det(T) = 1
and det(X4") # 0 in the spectral parameter regime of interest, and produce a function
Er, the zeros of which coincide with those of D()).

We note that in the current notation, the function defined in (4.6) is for the chart
corresponding to the identity. That is

E(Zo; )\) = E]I(Z(); )\)

4.3. Extension into the essential spectrum. Using =*° defined above as
initial conditions, we can then (numerically) compute the Riccati-Evans function on
any chart associated with an invertible matrix T for any A € ;. We would like to
consider a larger domain of A € C however, not just those A € Q. This is relatively
straightforward provided we stay away from values of A\ in the absolute spectrum,
computed above in (3.12).

To extend the Evans function, we track the eigenvectors associated with uaf _1
and pg ;1 (see (3.9) and (3.10)) as we vary A. Starting with a A € €21, we can continue
the Evans function (and the Riccati-Evans function) as we vary A through the curves
defined by the dispersion relations in (3.7). A root of D()\) will no longer be evidence
of any solution which decays at 0o but rather a solution that decays at +oo along
the eigenspaces =%". For example, the eigenvalue associated with the derivative of
the type I, IT and IV waves found in section 2 will not be a root of this extended
Riccati-Evans function, as the solution will not decay along the appropriate subspace.
So, even though A = 0 (and in fact any A € 0. (L) not on the boundary of o, (L)) will
technically be an eigenvalue of L, in the sense that there will be a decaying L? solution
to the ODE, it will not be a root of this extended Evans function. In some sense this is
preferred as roots of the Evans function found in this manner can not be removed by
considering functions in weighted space which moves the essential spectrum into the
left half plane, whereas eigenvalues which are removed due to weighting are associated
with so-called transient or convective instabilities [23, 35] which are known to affect
the temporal dynamics of the wave less strongly or noticeably than eigenvalues which
cannot be weighted away. As we shall see, it is these roots of the extended Evans
function which are associated with a change in stability of the travelling waves outlined
in section 2.

4.4. Winding numbers. One typical way that the analyticity of the Evans
function D(\) is employed is via the argument principle from complex analysis. This
can be stated as follows
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THEOREM 4.4 ([6]). Suppose f : Q& — C is a complex meromorphic function on
a simply connected domain Q with a smooth boundary, and that f(z) has no zeros or
poles on 02. Then

v
omi b f2) =N T

Where N and P are integers that are equal to the number of zeros and poles of f(z)
in € respectively.

The integer |N — P| is also known as the winding number of the function f(z). It is
equal to the absolute value of the net number of times the image of f(z) winds around
the origin in C as the variable z traverses the boundary 9.

We apply this to the formula defining the Riccati-Evans functions in order to
interpret the winding of the functions E in terms of the roots of D(\). Suppose that
we were in the chart corresponding to the matrix T. Denoting - := — we have

dX

T(A) d)\ ]{ddk (detX“ det X5, )d)\

E (\) D())
(410) 0% T (det X% det X5, )
_j{D(A) B detX%d B det)‘(i}dA
] D)) det X det X5,

If we can choose a chart such that the det(X3:*) # 0 inside the simply connected
domain €, then the right two terms in (4.10) vanish and the number of zeros of the
Riccati-Evans function equals number of zeros of the original Evans function.

5. (In)Stability Results: Application to the Model Equations. We ap-
ply the Riccati-Evans function described in section 4 to first establish the numerical
instability of travelling waves of type IV. We do this by tracking a real eigenvalue
crossing zero into the right half plane as we lower the travelling wave speed below the
minimal speed ¢, demarcating the transition from type II to type IV waves. We then
numerically establish the stability of waves of type I, II and III by showing that for
a reasonably large subset of the eigenvalue parameter A € C, with 0 < Re (A\) < 10*
there are no roots of the Evans function when u is a travelling wave of speed ¢ > c,.

We compute the Riccati-Evans function for (3.5) with asymptotic end states con-
sisting of the stable subpace of A, and unstable subspace of A_ for numerically
computed waves of type I, IT and IV. Without the precise wave speed of the type
IIT waves, it is not possible to numerically solve for them, so all spectral data of the
point spectrum must be inferred [16]. We used the continuation program AUTO to
numerically compute travelling waves of type I, IT and IV (and to approximate the
minimal wave speed of type III), and used Mathematica’s NDSolve function to solve
the Riccati equation and compute the Riccati-Evans function. See Figures 6, 7, 8
and 9.

The only remaining ingredient is a (matrix for a) coordinate chart T. Finding
such a chart can be a nontrivial task as there will inevitably be singularities in the
matrix Riccati equation. The idea is to find a coordinate chart where the singularities
do not appear in the region of the eigenvalue space we are interested in. For this
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was used and evidently produced no singularities of the Riccati equation (or the
Riccati-Evans function) for values of A on the real line or in the upper right half of
the complex plane (that we could observe numerically). A detailed determination of
a chart that would always have this feature, as well as a proof of why that might be
the case, is beyond the scope of this manuscript.

5.1. Instability of type IV waves. We first establish the instability of the
type IV waves by plotting the Riccati-Evans function for real values of A and tracking
a real eigenvalue as it crosses the imaginary axis as we lower the wave speed parameter
¢ below the threshold of the type III waves (¢, = 0.6701). See Figure 6. From the
plots of the Riccati-Evans function in the chart T, we see that for real values of A
there do not appear to be any singularities of the function Er(0; ), thus any zeros
that appear are indeed zeros of the original Evans function and hence eigenvalues of
the operator L(u). There are many zeros on the real line, all of them negative until
c is made low enough, whereby the leading zero crosses into the right half plane.

5.2. Stability of waves of type I, IT and III. To numerically establish the
spectral stability of travelling waves of type I and, II (and to infer spectral stability of
the waves of type III), in the appropriately exponentially weighted spaces, we plot the
argument of the Riccati-Evans function for successively larger regions in the upper
right half plane. Because the travelling wave that we are linearising about is real,
we know that any eigenvalues of the operator L(u) must come in complex conjugate
pairs, so if A is a root of D()), then X must also be a root of D()). A consequence of
(4.9) is that, away from the poles of E, roots of the Riccati-Evans function must also
come in conjugate pairs. Hence, it is sufficient to investigate the first quadrant of the
complex plane for eigenvalues. In what follows, we show the numerical evidence for
stability of type I waves only, the figures for waves of type II are qualitatively the same.
Figure 7 shows a plot of the function Ex(A;0) for real values of A. It is clear that
there are no roots of the Riccati-Evans function for A < 20. To investigate complex
eigenvalues, we plot the argument of the function Et a large section of the complex
plane. For a meromorphic function, a zero or a pole is represented by the coalescing
of many contour lines of the argument of the function. Hence, we can visually see
from Figure 8 that there are no zeros or poles of the linearised operator L(u) for
the type I wave in this region of C. We confirm this with the argument principle by
computing the winding number of the Riccati-Evans function on successively larger
quarter circles and can again visually see that no winding takes place (see Figure 9).

6. Discussion and future work. In this manuscript, we studied the spectral
stability of the four different types of travelling waves supported by an advection-
reaction-diffusion equation originally proposed in [33] to describe haptotactic cell
invasion in a model for melanoma. Using a Riccati-Evans function approach, we
numerically showed that the biologically-unfeasible type IV waves — waves for which
the invasive tumour cell population wave profile w is negative for certain parts of the
profile — are unstable, while the other three types of waves where the tumour cell
population w stays positive are spectrally stable. Heuristically, instability of the type
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Fig. 6: The top figures in each column show the type of wave that we are lin-
earising about (Left column: type II, close to but slightly above the minimal
wavespeed, and right column: type IV close to but slightly below). The bottom
figures show the real and imaginary (blue and orange online respectively) parts of
the Riccati-Evans function E1(0;\), computed as a function of the (real) eigen-
value parameter . As the wave speed c is decreased through the minimal wave
speed (c, & 0.6701), there is a real root of the Riccati-Evans function (and hence
a real eigenvalue of the operator L(u)) which crosses into the right half plane,
and as the type II waves transition to those of type IV, they become unstable.

IV waves follows from the fact that the type III waves have a (very) fast decay at
+00. Thus A = 0, the eigenvalue associated with spatial invariance of the front, is a
temporal eigenvalue in the now weighted space. It persists, and in this case moves
into the right half-plane as the wave-speed is further decreased (which is what we
numerically showed).

A logical next step is to further study the connection between the observed wave
speed and the asymptotic behaviour of its initial condition. This connection was al-
ready partly investigated in [16, 32]. In [16], formal computations around the asymp-
totic end state of a travelling wave are used to show that the type I and type IT waves
travel with speed ¢ = 1/x + O(e), where x is the asymptotic decay rate at co of the
exponentially decaying initial condition for w (i.e. w(z,0) = wo(x) = max{l,e X*}).
This result was also numerically verified in [32]. Unfortunately, the asymptotic linear
analysis of [16] was unable to derive a correct approximation for the minimal wave
speed c, associated with the type III waves (i.e. the type III waves are pushed fronts
[42]), see in particular [16, Fig. 10]. In [32], the authors used a power series approx-
imation to derive a quadratic relationship between the minimal wave speed ¢, and
the asymptotic end state of the wave uy, in the singular limit ¢ = 0. Combining the
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Fig. 7: A plot of the real and imaginary (blue and orange online) parts of the
function Er for positive real values of the temporal spectral parameter A for the
linearised operator about a type I wave. The parameter values are us, =1, ¢ =1
and € = 0.01.
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Fig. 8: Left: A plot of contour lines of the argument of the function Ex(X;0) for the
region of the first quadrant in the right half plane extending out to Re (A) < 10 and
Im (A) < 10. It is clear that there are no zeros or poles of the function Er in this
region and hence no temporal eigenvalues. One can see the contour lines coalescing on
a zero or a pole in the left half plane (in this case it is a pole). Right: A plot of contour
lines of the argument of the function Ex(A;0) for the region of the first quadrant in
the right half plane extending out to Re(\) < 10,000 and Im (A) < 10,000. It is
clear that there are no zeros or poles of the function E+ in this region, and hence no
temporal eigenvalues. Parameter values used were u., = 1,¢ =1, and € = 0.01.

results of [16] and [32] indicated that ¢, = ¢4 (uco,€) and it remains to be seen if this
relationship can be derived analytically.

We are currently working on using this approach to study the stability of trav-
elling waves in a model for wound healing angiogenesis [17], a model for stellar wind
[8], and in two different types of tumour invasion models [9, 37]. The Riccati-Evans
function approach in this manuscript does not take advantage of the singularly per-
turbed nature of the stability problem. The nonlocal eigenvalue problem approach
[11, 12, 41] and the singular limit eigenvalue problem approach [30, 31] are two related
analytical techniques that use this singular perturbed nature to simplify the Evans
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Fig. 9: (Colour online.) A plot of the function Arg(Er) for values on the quarter
circles of radius 10 (top) and 10,000 (bottom). The left figures depict a (log-
arithmic) parametrisation of the quarter circle, while the right figures are the
corresponding plots (see colour online) of Arg(ET). It is clear from the plots that
there is no winding of the function Er here, and hence there is no spectrum of
the linearised operator L(u) in this region either. Parameter values used were
Uso = 1,c =1, and € = 0.01.

function computations. It would be interesting to see if, similar to [10], one of these
techniques can be incorporated in the Riccati-Evans function approach to further op-
timise the computations. In particular, in [10] the authors use the Riccati equation
and the singularly perturbed nature of the problem to compute a factored Evans
function via the Grassmanian, where one of the factors is analytic and never zero,
thus reducing the calculations necessary for eigenvalue determination. We comment
that the factorisation of the Evans function given by (4.9) is reminiscent of that in
[10] (when the chart is chosen properly) - though it does not make use of any singular
structure in the problem.

We note that in [15], the authors factor the Evans function in a different way,
reducing the computations to ones in a unitary matrix (Hopf) bundle. The factorisa-
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tion in (4.9) is seemingly complementary to that in [15] in the sense that the unstable
bundle in [1] factors into two sub-bundles, the transition maps of one being the uni-
tary group, while the transition maps of the other are the Grassmannian (in the sense
that it is a homogeneous space of Lie groups).
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